
UML

Object-Interaction Diagrams:
Sequence Diagrams

Communication and Time

■ In communication diagrams, ordering of messages is
achieved by labelling them with sequence numbers

■ This does not make temporal ordering easy to follow.

Sequence Diagrams

■ Sequence diagrams
make temporal
ordering explicit.

■ However, they do not
contain explicit link
information (so the
correspondence with
the class diagram is not
as explicit as with
communication
diagrams).

A closer look

Components of Sequence Diagrams

■ Vertical axis: time, increasing downwards.

■ Objects that exchange messages in a behaviour trace
are shown on the horizontal axis, at the top.

■ With every object is a vertical dashed line, which depicts
an object's lifeline.

■ Over the object's active lifetime, the lifeline is a rectangle,
which depicts when an object is active (i.e., has control).

 The rectangle's size is proportional to how long the object is active.

 Explicit time unit may be added.

 Arrows depict messages from a sender object to a target
object and the message is written along the arrow.

Types of Fragments

■ Alt: Alternative fragment for conditional
logic expressed in the guards.

■ Loop: Loop fragment while guard is
true.

■ Break: If guard is true, execute this
fragment and jump to end of parent
fragment.

■ Opt: Optional fragment that executes if
guard is true.

■ Par: Parallel fragments that execute in
parallel.

■ Critical: Critical region within which only
one thread of control active at a time.
No concurrent region (e.g.: par) may
execute at the same time.

■ Ref: Reference to another diagram.

■ Assert: This behaviour is the only valid
at that point.

■ Seq: Weak sequencing of messages;
no order of reception.

Synchronous vs. Asynchronous

■ If you order a piece of equipment, and the salesman
goes in the back of the store to get it, do you wait for the
piece of equipment?

■ If you order a piece of equipment, and the salesman tells
you it is backordered, and will arrive next week, do you
wait for the piece of equipment?

Synchronous Messages

■ The sender object waits until target object finishes its
proccessing of the message.

■ Target object processes only one message at a time.

■ Consequently, this behavior represents a single thread of
control.

 only one object is active at any time

Asynchronous Messages

■ Sender object does not wait until target object finishes its
processing of the message (execution of the called
method).

■ Target object may accept many messages at a time.

■ Consequently, this behavior requires multiple threads of
control.

 many objects can be active at any time

 this is also known as concurrency

Depicting Asynchronous Messages

■ Instead of using a filled arrowhead, we use an open
arrowhead (in both communication and sequence
diagrams).

■ In sequence diagrams

 we may have two objects active at the same time (box).

 The sender object remains active after sending a message. The
target object becomes active as well.

■ If the target object can accept multiple messages, how
does it handle them?

Concurrency

■ If target object's method implements threading,

 It can thread itself to handle messages.

 This is called operation level concurrency.

■ If target object itself implements threading,

 It can thread itself to handle messages.

 This is called object level concurrency.

■ If objects don't implement any threading but the system is concurrent,
objects must implement some way of handling messages:
system level concurrency.

 Refuse message(s) if busy

 Interrupt current executing message and start on new message

 Queue message(s) for later processing (can be priority queue)

Message Priorities

■ One way to deal with asynchronous messages is to
queue them.

■ That way, only one of them is processed at a time.

■ But what happens if one message is more important than
others.

■ You can use priority levels to determine the order
messages are processed.

■ What are the dangers of this?

Callback Mechanism

■ Uses asynchronous messages.

■ A subscriber object o1 is interested in an event e that
occurs in o2.

■ o1 registers interest in e by sending a message (that
contains a reference to itself) to o2 and continues its
execution.

■ When e occurs, o2 will callback asynchronously to o1
(and any other subscribers).

Callback (but not to self) illustrated

Object creation/destruction

■ Sequence diagrams use

 A special method sent to the object
(not its lifeline) to denote object
creation.

 an X to symbolize the end-of-life of
an object.

■ In garbage-collected
languages, nothing needs to be
done.

■ However, in other languages,
such as C++, the memory must
be freed.

Broadcast

■ Similar to iterative messaging, broadcast allows you to
send a message to multiple objects.

■ However, contrary to iterative messaging, no references
are required.

■ A broadcast is sent to all the objects in the system.

■ If only a specific category of objects is targeted, we call
this narrowcast.

