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Overview

1. (Software) Process: definition

2. Various Software Processes

3. The Process Influences Productivity:

Dynamic Process Modelling using Forrester System Dynamics
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Process: A Queueing System
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Event/Activity/Process
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Software Processes

“The Software Engineering process is the total set of Software

Engineering activities needed to transform requirements into

software”.

Watts S. Humphrey. Software Engineering Institute, CMU.

(portal.acm.org/citation.cfm?id=75122)
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Software Processes

• Waterfall (Royce)

• V Model (German Ministry of Defense)

• Prototyping

• Operational Specification (Zave)

• Transformational (automated software synthesis) (Balzer)

• Phased Development: Increment and Iteration

• Spiral Model (Boehm)

• Rational Unified Process (RUP)

• Extreme Programming (XP)

• System Dynamics (Dynamic Process Model)

(see Process ∼ Productivity)
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Shari Lawrence Pfleeger. Software Engineering: Theory and Practice

(Second Edition). Prentice Hall. 2001.

Chapter 2: Modelling the Process and Life Cycle.
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Waterfall Process (Royce)
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Waterfall Process in Reality
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Waterfall Process with Prototyping
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V Model (German Ministry of Defense)
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Prototyping Process
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Operational Specification Process (Zave)
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Transformational Process
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Phased Development Process
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Phased Development: Incremental vs. Iterative
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Spiral Model (Boehm)
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The Rational Unified Process (RUP):
Activity Workload as Function of Time
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The (Rational) Unified Process ((R)UP):
Empirical Observations

1. Waterfall-like sequence of

Requirements, Design, Implementation, Testing.

2. Not pure waterfall:

• Phased Development (iterative)

• Overlap (concurrency) between activities

3. Testing:

• Regression (test not only newly developed,

but also previously developed code)

• Testing starts before design and coding

(Extreme Programming)
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RUP: Phased Development

Use:

• descriptive

• prescriptive

• proscriptive
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Extreme Programming (XP)

(www.extremeprogramming.org)
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Extreme Programming (XP) highlights

User Stories are written by the customers as things that the system

needs to do for them (requirements). They drive the creation of

acceptance tests.
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Extreme Programming (XP) Process

The project is divided into Iterations.

The “inner loop” is a daily cycle!
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Extreme Programming (XP) highlights

Use Class, Responsibilities, and Collaboration (CRC) Cards

to design the system.
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Extreme Programming (XP) highlights

• Code the Unit Test first (from requirements/user stories).

• All code must have Unit Tests; All code must pass all unit tests

before it can be released.
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Extreme Programming (XP) highlights

Refactor whenever and wherever possible.

• for readability (∼ maintanability)

• for re-use

• for optimization

• . . .

Refactoring code or design.

Catalog of Refactoring Patterns (rules):

http://www.refactoring.com/catalog/
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Refactoring Pattern: Reverse Conditional

• Motivation: increase clarity.

• Mechanics: (1) remove negative from conditional; (2) Switch

clauses.

• Example:

if ( !isSummer( date ):

charge = winterCharge( quantity )

else:

charge = summerCharge( quantity )

⇒

if ( isSummer( date ) ):

charge = summerCharge( quantity )

else:

charge = winterCharge( quantity )
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Refactoring Pattern:
Consolidate Duplicate Conditional Fragments

• Motivation: increase clarity, performance optimization.

• Mechanics: lift commonality out of conditional.

• Example:

if (isSpecialDeal()):

total = price * 0.95

send()

else:

total = price * 0.98

send()

⇒

if (isSpecialDeal()):

total = price * 0.95

else:

total = price * 0.98

send()
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Refactoring Pattern: Split Loop

• Motivation: increase clarity (not performance optimization (yet)).

• Mechanics: lift commonality out of conditional.

• Example:

def printValues:

averageAge = 0

totalSalary = 0

for person in people:

averageAge += person.age

totalSalary += person.salary

averageAge = averageAge / people.length

print averageAge

print totalSalary

⇒
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def printValues:

averageAge = 0

for person in people:

averageAge += person.age

averageAge = averageAge / people.length

print averageAge

totalSalary = 0

for person in people:

totalSalary += person.salary

print totalSalary
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Refactoring Pattern: Pull Up Method

• Motivation: re-use.

• Mechanics: pull up identical (type-wise) methods from (all)

sub-classes.

• Example:
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Extreme Programming (XP) highlights

Pair Programming

(www.charm.net/∼jriley/pairall.html)
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Advantages:

• Higher Quality

• Collective Ownership of code/design

• Productivity Increase (“flow”) thanks to programmer/backseat

pair

• Learning/Training

• . . .
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Extreme Programming (XP) Process
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The Process influences Productivity

“Adding manpower to a late software project makes it later”

Fred Brooks. The Mythical Man-Month.

(www.ercb.com/feature/feature.0001.html)
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Why Brooks’ Law ? Team Size.

Model in Forrester System Dynamics

using Vensim PLE (www.vensim.com)

development rate =

nominal_productivity* (1-C_overhead*(N*(N-1)))*N
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Team Size N = 5

Hans Vangheluwe hv@cs.mcgill.ca 37



Team Size N = 3 . . . 9

Optimal Team Size between 7 and 8
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The Effect of Adding New Personnel (FSD model)

development rate = nominal_productivity*

(1-C_overhead*(N*(N-1)))* (1.2*num_exp_working + 0.8*num_new)
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5 New Programmers after 100 days
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5 New Programmers after 100 days
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0 . . . 6 New Programmers after 100 days
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