
Object-Oriented Software Design (COMP 304)

Object-Oriented Software Design

and Software Processes

Hans Vangheluwe

Modelling, Simulation and Design Lab (MSDL)

School of Computer Science, McGill University, Montréal, Canada

Hans Vangheluwe hv@cs.mcgill.ca 1

Overview

1. (Software) Process: definition

2. Various Software Processes

3. The Process Influences Productivity:

Dynamic Process Modelling using Forrester System Dynamics

Hans Vangheluwe hv@cs.mcgill.ca 2

Process: A Queueing System

Physical View

Queue Cashier

Departure

Arrival

Departure

Queue

Abstract View

Cashier
[ST distribution][IAT distribution]

Arrival

Hans Vangheluwe hv@cs.mcgill.ca 3

Event/Activity/Process

Cust2 Process

Cust1 Activity

Cust2 Arrival
Cust2 Start Queueing

Cust2 End pay cashier
Cust2 Leave

t

Cust2 End Queueing
Cust2 Start pay cashier

Cust2 Activity

Event

Cust1 Arrival
Cust1 Start pay cashier

Cust1 End pay cashier
Cust1 Leave

Cust1 Process

Cust2 Activity
queue pay cashier

pay cashier

Hans Vangheluwe hv@cs.mcgill.ca 4

Software Processes

“The Software Engineering process is the total set of Software

Engineering activities needed to transform requirements into

software”.

Watts S. Humphrey. Software Engineering Institute, CMU.

(portal.acm.org/citation.cfm?id=75122)

Hans Vangheluwe hv@cs.mcgill.ca 5

Software Processes

• Waterfall (Royce)

• V Model (German Ministry of Defense)

• Prototyping

• Operational Specification (Zave)

• Transformational (automated software synthesis) (Balzer)

• Phased Development: Increment and Iteration

• Spiral Model (Boehm)

• Rational Unified Process (RUP)

• Extreme Programming (XP)

• System Dynamics (Dynamic Process Model)

(see Process ∼ Productivity)

Hans Vangheluwe hv@cs.mcgill.ca 6

Shari Lawrence Pfleeger. Software Engineering: Theory and Practice

(Second Edition). Prentice Hall. 2001.

Chapter 2: Modelling the Process and Life Cycle.

Hans Vangheluwe hv@cs.mcgill.ca 7

Waterfall Process (Royce)

Hans Vangheluwe hv@cs.mcgill.ca 8

Waterfall Process in Reality

Hans Vangheluwe hv@cs.mcgill.ca 9

Waterfall Process with Prototyping

Hans Vangheluwe hv@cs.mcgill.ca 10

V Model (German Ministry of Defense)

Hans Vangheluwe hv@cs.mcgill.ca 11

Prototyping Process

Hans Vangheluwe hv@cs.mcgill.ca 12

Operational Specification Process (Zave)

Hans Vangheluwe hv@cs.mcgill.ca 13

Transformational Process

Hans Vangheluwe hv@cs.mcgill.ca 14

Phased Development Process

Hans Vangheluwe hv@cs.mcgill.ca 15

Phased Development: Incremental vs. Iterative

Hans Vangheluwe hv@cs.mcgill.ca 16

Spiral Model (Boehm)

Hans Vangheluwe hv@cs.mcgill.ca 17

The Rational Unified Process (RUP):
Activity Workload as Function of Time

Hans Vangheluwe hv@cs.mcgill.ca 18

The (Rational) Unified Process ((R)UP):
Empirical Observations

1. Waterfall-like sequence of

Requirements, Design, Implementation, Testing.

2. Not pure waterfall:

• Phased Development (iterative)

• Overlap (concurrency) between activities

3. Testing:

• Regression (test not only newly developed,

but also previously developed code)

• Testing starts before design and coding

(Extreme Programming)

Hans Vangheluwe hv@cs.mcgill.ca 19

RUP: Phased Development

Use:

• descriptive

• prescriptive

• proscriptive

Hans Vangheluwe hv@cs.mcgill.ca 20

Extreme Programming (XP)

(www.extremeprogramming.org)

Hans Vangheluwe hv@cs.mcgill.ca 21

Extreme Programming (XP) highlights

User Stories are written by the customers as things that the system

needs to do for them (requirements). They drive the creation of

acceptance tests.

Hans Vangheluwe hv@cs.mcgill.ca 22

Extreme Programming (XP) Process

The project is divided into Iterations.

The “inner loop” is a daily cycle!

Hans Vangheluwe hv@cs.mcgill.ca 23

Extreme Programming (XP) highlights

Use Class, Responsibilities, and Collaboration (CRC) Cards

to design the system.

Hans Vangheluwe hv@cs.mcgill.ca 24

Extreme Programming (XP) highlights

• Code the Unit Test first (from requirements/user stories).

• All code must have Unit Tests; All code must pass all unit tests

before it can be released.

Hans Vangheluwe hv@cs.mcgill.ca 25

Extreme Programming (XP) highlights

Refactor whenever and wherever possible.

• for readability (∼ maintanability)

• for re-use

• for optimization

• . . .

Refactoring code or design.

Catalog of Refactoring Patterns (rules):

http://www.refactoring.com/catalog/

Hans Vangheluwe hv@cs.mcgill.ca 26

Refactoring Pattern: Reverse Conditional

• Motivation: increase clarity.

• Mechanics: (1) remove negative from conditional; (2) Switch

clauses.

• Example:

if (!isSummer(date):

charge = winterCharge(quantity)

else:

charge = summerCharge(quantity)

⇒

if (isSummer(date)):

charge = summerCharge(quantity)

else:

charge = winterCharge(quantity)

Hans Vangheluwe hv@cs.mcgill.ca 27

Refactoring Pattern:
Consolidate Duplicate Conditional Fragments

• Motivation: increase clarity, performance optimization.

• Mechanics: lift commonality out of conditional.

• Example:

if (isSpecialDeal()):

total = price * 0.95

send()

else:

total = price * 0.98

send()

⇒

if (isSpecialDeal()):

total = price * 0.95

else:

total = price * 0.98

send()

Hans Vangheluwe hv@cs.mcgill.ca 28

Refactoring Pattern: Split Loop

• Motivation: increase clarity (not performance optimization (yet)).

• Mechanics: lift commonality out of conditional.

• Example:

def printValues:

averageAge = 0

totalSalary = 0

for person in people:

averageAge += person.age

totalSalary += person.salary

averageAge = averageAge / people.length

print averageAge

print totalSalary

⇒

Hans Vangheluwe hv@cs.mcgill.ca 29

def printValues:

averageAge = 0

for person in people:

averageAge += person.age

averageAge = averageAge / people.length

print averageAge

totalSalary = 0

for person in people:

totalSalary += person.salary

print totalSalary

Hans Vangheluwe hv@cs.mcgill.ca 30

Refactoring Pattern: Pull Up Method

• Motivation: re-use.

• Mechanics: pull up identical (type-wise) methods from (all)

sub-classes.

• Example:

Hans Vangheluwe hv@cs.mcgill.ca 31

Extreme Programming (XP) highlights

Pair Programming

(www.charm.net/∼jriley/pairall.html)

Hans Vangheluwe hv@cs.mcgill.ca 32

Advantages:

• Higher Quality

• Collective Ownership of code/design

• Productivity Increase (“flow”) thanks to programmer/backseat

pair

• Learning/Training

• . . .

Hans Vangheluwe hv@cs.mcgill.ca 33

Extreme Programming (XP) Process

Hans Vangheluwe hv@cs.mcgill.ca 34

The Process influences Productivity

“Adding manpower to a late software project makes it later”

Fred Brooks. The Mythical Man-Month.

(www.ercb.com/feature/feature.0001.html)

Hans Vangheluwe hv@cs.mcgill.ca 35

Why Brooks’ Law ? Team Size.

Model in Forrester System Dynamics

using Vensim PLE (www.vensim.com)

development rate =

nominal_productivity* (1-C_overhead*(N*(N-1)))*N

Hans Vangheluwe hv@cs.mcgill.ca 36

Team Size N = 5

Hans Vangheluwe hv@cs.mcgill.ca 37

Team Size N = 3 . . . 9

Optimal Team Size between 7 and 8

Hans Vangheluwe hv@cs.mcgill.ca 38

The Effect of Adding New Personnel (FSD model)

development rate = nominal_productivity*

(1-C_overhead*(N*(N-1)))* (1.2*num_exp_working + 0.8*num_new)

Hans Vangheluwe hv@cs.mcgill.ca 39

5 New Programmers after 100 days

Hans Vangheluwe hv@cs.mcgill.ca 40

5 New Programmers after 100 days

Hans Vangheluwe hv@cs.mcgill.ca 41

0 . . . 6 New Programmers after 100 days

Hans Vangheluwe hv@cs.mcgill.ca 42

