
Code Synthesis for Reactive Systems Using Class

Diagrams & Statecharts

David Meunier

Supervised By: Hans Vangheluwe

April 29, 2006

1 Introduction

This paper describes the implementation and design of a code generator for
reactive systems modeled using Class Diagrams and Statecharts. First, opera-
tional semantics of these two formalisms will be given up to the extent to which
their features are implemented. For example, details on Statecharts’ orthogonal
components are omitted, since these are not supported by the current version
of the compiler. Inter-object communication will then be considered and a de-
scription of reactivity to synchronous and asynchronous messages is given. This
is followed by an overview of the event dispatching system required to handle
asynchronous communication and the timing mechanism that governs object
instances. Examples showing how to model reactive components are provided
towards the end of this paper in the form of a case study. For the most part, the
semantics adhered to follow those adopted by I-logix’s Rhapsody tool, which
are described in [3].

The environment used to build models using this combination of Class Dia-
grams and Statecharts was the AToM3 (A Tool for Multi-Formalism and Meta
Modelling) tool developped at McGill University’s Modelling, Simultaion and
Design lab. The formalisms used to model Class Diagrams and Statecharts
within AToM3 were CD classDiagramsV3 and DCharts respectively. The im-
plementation of the code generator is written in Python. Currently, the only
supported target language is Python, and consequently all details in this paper
that refer to the compilation of models into code concern themselves only with
that language.

2 Class Diagrams

Class Diagrams are used to describe the structure of an object as well as that of
a system of objects. This modeling formalism typically provides a rich panoply
of features that can be used to extensively describe object structure, the overall

1

interconnection of objects within the system, object cardinalities, role names,
etc.

The current implementation, however, only supports code compiltation from
class entities and associations. A class entity may inlcude an arbitrary amount of
attributes and operations and it may be linked to another class entity in order
to depict an associtaion from one object to another. Figure 1 shows a Class
Diagram model composed of two class entities and an association between them.
Due to limitations on the formalism used to model Class Diagrams, operations

Attributes:
 - pi :: Float
 - s :: String
Cardinalities:
 - From Assn0: 0 to N

Class0

Attributes:
 - b :: Boolean
 - i :: Integer
Cardinalities:
 - To Assn0: 0 to N

Class1

Figure 1: A Class Diagram in AToM3

are emulated by a special attribute of type “Text” whose initial value is the
operation’s formal argument list. Optionally, a newline followed by statements
implementing an operation may be added after the argument list and they will
be executed whenever this operation is called. These statements, however, are
executed before any action resulting from a state transition. Figure 2 shows
the definition of an operation as a Text attribute. Statecharts are associated to

Figure 2: Adding an operation to a class entity

2

class entities by a giving them a special attribute of type CDV3 DChart TYPE
and setting its initial value to be the path of the statechart model.

The compiler interprets Class Diagrams by compiling them into code having
the following structure. For each class entity fond in the Class Diagram, a
corresponding class with the same name is generated. This class contains a
function definition corresponding to each operation listed in the class entity.
That is, the function’s name, the specified argument list, and any accompanying
code are written to the generated class.

If the class entity does not contain an __init__ function, then one is cre-
ated by the compiler. This default __init__ function takes a single argument
(in addition to the first argument, commonly named self, which is an im-
plicitly passed reference to the called object) as a reference to the system’s
Dispatcher object. Otherwise, the __init__ function is treated like any other
operation defined in the class entity. Additionally, if the object had an associ-
ated statechart, its __init__ function declares and initializes self.CUR_TIME,
self.CURRENTSTATE, self.TIMERS, self.DISPATCHER, and self.HISTORY. It
is important to note that if the modeler wishes to specify herself the __init__

operation, then it must take the named argument, dispatcher, as it will be
used in the initialization of self.DISPATCHER.

If the class entity has an associated statechart, then the __init__ func-
tion also contains all the code resulting from actions entailed by entering the
statechart’s initial default state.

Each of these classes also contains a function, process(self, evtList),
that is used by the event processing mechanism. This and the aforementionned
variables are considered to be reserved words; using them explicitely will most
likely result in undesired behaviour from the generated code.

As for associations, they are used at the model level to denote that one object
has a reference to another. This is, however, the extent of their significance.
Associations do not enforce the navigational constraints they represent, and no
restrictions get compiled in the generated code regarding message passing. They
are merely used as a visual aid in understanding the structure of the software
system.

3 Statecharts

Statecharts are used to model the reactive behavior of a system. They were first
introduced in 1987 by Harel [1] but a formal definition of their semantics was
not given until 1996 in [2]. These will henceforth be refered to as Statemate

semantics, and those detailed in [3] will be refered to as the Rhapsody semantics
of Statecharts. Though the differences between Rhapsody, Statemate and
other existing semantics are not overwhelming,1 this compiler tends to adhere
to the former one with some variations.

Whereas Class Diagrams are used solely for their contribution to the struc-
ture of the generated classes, Statecharts are in fact the essence of practically all

1A comparative overview of these differences can be found in [4]

3

the behavior expected from the system. As a result, much of this paper is dedi-
cated to explaining the syntax and semantics of statecharts and a great deal of
attention is given to all of the thinkable ambiguous cases that may arise in their
interpretation. This section deals mainly with syntax and basic terminology.
The next sections tackle semantics and implementation issues.

3.1 States

States are the building blocks of statecharts. They represent a discrete mode
an object may reside in at a given time. States come in two flavors,2 Basic and
Composite. Basic states are used to denote possible active configurations
the object can occupy during runtime, while composite states, also known as
OR-states, are used to group other states together thereby giving Statecharts a
hierarchical structure. An object cannot be in a composite state without being
in one of its basic substates. Also, substates within a composite are related
to each other by exclusive-or, thus an object resides in either one substate or
another. The states at the topmost level in the hierarchy are also related to each
other in this manner. The question of which substate is chosen to become active
if a transition leads to a composite is settled by introducing default states. Any
state may be marked as default and any transition whose target is a composite
will implicitly lead to that composite’s default state, and this notion applies
itself recursively until a default basic state is reached. If a composite contains
more than one default state, then one is arbitrarily chosen by the compiler.

3.2 Transitions

Transitions are depicted by arrows leading from one state to another (or itself)
and are the means by which an object changes its active state. For a transition
to be taken (i.e. fire), up to three conditions must hold at the same time.
Firstly and quite obviously, the object must reside in the state (or a substate of
the state) that is the source of the transition. Secondly, the transition’s trigger

must be received by the object and lastly, the transition may have a condition,
known as a guard, which prevents the transition from firing unless it evaluates
to true. The two last requirements are optional. Transitions that do not have a
trigger are called null transitions.

Triggers are strings that represent messages the object can receive. More on
the different types of triggers and their meaning is given in a separate section.
Guards, on the other hand, are boolean expressions written in the target lan-
guage. It is common practice to label transitions trigger(parameter list)[guard]
/ action, where action is a set of statements carried out upon taking that tran-
sition, but this tends to severly clutter the model.

2This is not entirely true. Statecharts also have Orthogonal Components, also known as
AND-states, which are not supported by this compiler. See the section on Future Work for
more information.

4

3.3 History Connectors

History connectors are pseudostates located within a composite. They hold a
reference to the last active basic state within their composite parent. When a
transition whose target is a history connector is taken, the result is exactly as
if the transition led directly to the referenced basic state. Although it is legal
to have a history connector that is not contained within any composite state, it
does not make much sense to do so since any transition leading to it ultimately
results in a self-loop leading back to the source.

4 Transition Scope

Basic and composites states can have actions associated with them that are
executed when they are entered (entry action) or exited (exit action). Tran-
sitions may also have an associated action that is performed when it is fired.
All actions are written in the target language. When a transition is taken, the
exit actions of all the exited states from the lowest to the highest are performed,
followed by the transition’s action, and lastly the entry actions of each entered
state, from the highest to the lowest, are performed.

With this in mind, it becomes important to formally specify which states are
exited and which are entered as the result of a firing transition. These states are
the ones within the scope of the transition. The definition of scope used here is
the same as the one given in [2] and states that it is the lowest OR-state in the
hierarchy of states that is a proper common ancestor of the source and target
states. When a transition is taken, the states exited are those that were proper
descendants of its scope and in which the system resided at the beginning of
the transition. The states entered are those that are proper descendants of that
scope and in which the system will reside after that transtition is taken. For
example, in Figure 3, the scope of transition t is Composite2. If t fires, Basic0
and Composite0 will be exited, and the entered states will be Composite1 and
Basic1, since it is the default state of Composite1. It is important to realize that

Composite0 Composite1

Composite2

Basic0 Basic1

t

Figure 3: The scope of t is Composite2

it is the immediate source and target of a transition that determine its scope.
This detail may affect the entered and exited states in models such as the one
shown in Figure 4. Here the basic state Basic0 is active and Basic1 is marked as
default. If f ’s scope was computed using the active state of the system (Basic0)

5

and the state in which the system will reside after taking f (Basic1), as the source
and target of f, respectively, then f ’s scope would have been Composite0. In
reality, the scope is the entire model, i.e. the Statechart’s root.

Composite0

Basic0 Basic1

f

Figure 4: The scope of f is the entire model

5 Semantics of History Connectors

The syntax surrounding basic states bears similarities to that of history connec-
tors: their graphical appearance is comparable, they may be marked as default,
and they can serve as the source or target of a transition. Their semantics,
however, express blatant differences. Most notably, history connectors do not
represent a possible active configuration achievable by some object. They are
merely a shorthand notation for what would otherwise become a combinatorial
expansion in the size of a statechart’s graphical layout.

Before looking at how they function, it is helpful to define the scope of
a history connector. Quite simply, if C is a composite state containing the
history connector H, then all of C ’s descendants are within H ’s scope, and H ’s
scope encompasses no more than these states. This type of history is known
to Statemate semantics as “deep history”. Statemate also supports “shallow
history” connectors, whose scope includes only the immediate children of the
composite in which it resides. No further attention is given to shallow history
connectors as they are currently not supported by this implementation, nor by
Rhapsody.

When a transaction fires, any history connector that has the object’s active
basic state within its scope is updated to hold a reference to that state. Con-
versely, when a transition leads to a history connector, it must first be resolved
to a basic state, and only afterwards can the scope of the transition be com-
puted.3 The process of resolving a history connector is detailed in the following
algorithm.

The bulk of the procedure worries itself about what goes on when a history
connector does not yet have a reference to another state in memory. The idea

3This may appear to contradict what was said in the previous section, but keep in mind
that history connectors are not real states!

6

Algorithm: resolve-history(H, S)
Input: A history connector, H, the active basic
state, S.
Output: The actual target of a transition lead-
ing to H.

if H is not contained or S is in the scope of H
return S

else
C=composite containing H

if ref(H) is None
if tr is a null, guardless transtion leaving H

T=final target of tr
if H is a history connector

return resolve-history(T, S)
else

return T
else

for all null transitions, tr, leaving H
if tr’s guard evaluates to True

T=final target of tr
if T is a history connector

return resolve-history(T, S)
else

return T
return the default basic state of C

else
return the basic state referenced by H

then is to pick some null transition leaving H and to use its target instead.
If such a transtition exists, and does not have a guard, then it is chosen. If
not, then other null transitions are considered and the first one found whose
guard evaluates to true is chosen. If there are no null tansitions leaving it then
the target is defined to be the default basic state of the history connector’s
composite parent. The reason that only null transitions are considered is that
it does not make sense to wait for a trigger to be received by the object because
this would imply the object’s active state at that point is the history connector,
which is not allowed. If the chosen transition has associated actions, then they
will be performed after those of the transition that led to the history connector
in the first place.

Figure 5 shows a statechart model involving a history connector. The system
is in state Basic0 and when the transition e fires, its target will be Basic1
because History0 does not yet have a state reference in memory, and there are
no null transitions leaving it so the default basic state of Composite1 is used.
Afterwards, if f fires, followed by g, the system’s active state will be Basic2,

7

since it was the last active state in History0’s scope.

Composite0

Composite1

Basic0

Basic1 Basic2

H

History0

e

g

f

Figure 5: A history connector, History0

6 Object Reactivity

Up to now we have seen that an object may change its active state by means of
a transition and we know precisely what effects it will have. That is, the task
of computing the set of states that will be exited and entered, as well as the
order of execution of their associated actions is well understood. This section
investigates what causes a transtition to fire, more specifically, the types of
messages that can be sent to objects as triggers.

6.1 Synchronous Messages

A message may be sent to an object in a synchronous manner simply by calling
an operation defined in its class entity. There is no special syntax to be used by
the caller. The modeler, for example, would simply write a method call within
some action code as she would do so if she were programming directly in the
target language.

The receiving object may use this operation to induce a state change by using
the operation’s name as a trigger. This is known as a triggered operation.
The operational semantics applied when an object’s triggered operation is called
is to first execute the initial code, if any, specified in its definition (from its class
entity). The exectution then follows with all of the actions resulting from the
transition that gets fired as a consequence of the triggered operation. If a
triggered operation is called on an object but its active state does not react to
it, then the operation’s initial code, if any, will still be executed, but no further
actions will be taken and no state change will ensue.

If a triggered operation is to return a value, say x, then it must do so within
the action code of the transition by using REPLY(x). Using the target lan-
guage’s return statement will pre-empt the operation before it can perform the
necessary entry actions and internally update the active state. The statement

8

REPLY(x) gets translated by the compiler into RETVAL=x, which simply stores
the return value into a variable that is local to the function. This value is then
returned to the calling object after the appropriate actions are performed. This
detail is important to keep in mind when writing the actions implementing a
triggered operation. For example,

x=5

if x==5:

return True

return False

will return True whereas

x=5

if x==5:

REPLY(True)

REPLY(False)

will return False.
In order to avoid confusion, it is worthwhile to mention that not all oper-

ations listed in an object’s class entity need be used as triggered operations in
the object’s statechart. An operation’s implementation may be contained en-
tirely in the code found in the class entity’s definition for that operation. Such
operations are referred to in [3] as primitive operations. When the mod-
eler choses to write a primitive operation, she makes the design decision that
invoking this operation should not influence the object’s state. Because prim-
itive operations have no connection with the object’s statechart, the compiler
does not bother with REPLY() statements and these should not be used in this
context. Primitive operations that must return a value do so using the return
statement provided by the target language.

6.2 Asynchronous Messages

The second type of trigger a transition can respond to is called an event.
Events are sent as asynchronous messages by an object through the use of the
GEN(targetObj, e, p1, p2) statement. This sends the event e with parameters
p1 and p2 to the object referred to as targetObj. In this example, two parame-
ters were sent with the event but there may be an arbitrary number of them (or
none). This statement gets compiled as a command that adds the event (as a
string) along with any parameter to an event queue specific to the target object.
These event queues are held and maintaned by a Dispatcher object, which will
be the focus of a separate section.

6.3 Timed Transitions

It is possible to schedule a transition to fire after a certain timeout. This so-
called timed transition is achieved by giving it a special trigger named AF-
TER(dt). This transtion will then fire on its own provided the object remains

9

in the source state for at least dt seconds. If the source of a timed transition
happens to be a composite state, then the transition will fire after the specified
time as long as it has not exited that composite prior to the timeout. That is
to say, state changes that keep one of this composite’s substates active will not
cancel or otherwise affect the countdown of the timed transition.

The generated code internally maintains a list of special events named _iafter

where i is an integer. Each of these events are associated with a single timed
transition within a statechart. When an object’s active state remains the source
of a timed transition for the required time, the object generates the appropriate
special event to be dispatched to itself.

7 Event Processing

The following algorithm describes the steps taken by the process(self,evtList)
function defined in each object. This function is invoked by the Dispatcher on
each object at roughly regular time intervals. The argument evtList is a list
of all the events and their parameters accumulated by the Dispatcher for a par-
ticular object. One thing to note is that when an event is sent to an object,

Algorithm: process(evtList)
Input: The list of events to be processed evtList.
Output: None.

C=current active state
generate events resulting from a timeout
while evtList not empty

evt=evtList.pop()
bind evt’s actual parameters to local variables
if active state reacts to evt

t=transition reacting to evt whose guard
evaluates to true

S=scope of t
update all appropriate history connector

references to S
if t leads to a history connector, H

T=history-resolve(H, S)
S=lowest common ancestor of {C, T}

N=last (basic) state in S to be entered
execute required exit actions
execute required transition actions
execute required entry actions
update active state to N
if N has an outgoing null transtion

process([None])

10

it is effectively consumed regardless of whether or not the object is in a state
reacting to it. Events are not “remembered” throughout the execution of the
processing function or any time afterwards in the life of the object.

Though this procedure applies to processing events, the same steps are taken
in the case of a triggered operation. Obvious exceptions being that there is no
list of events to deal with and the triggered operations’ variables are already
bound by the target language.

7.1 Nondeterminism

In order to decide whether a transition can react to the event being processed or
the invoked triggered operation, that is, whether it is enabled, its name alone
(i.e. the type or amount of parameters or arguments passed along are not used)
is compared to the triggers of the transitions leaving the active state and all its
composite ancestors. The reacting transition is then chosen among those with
matching triggers provided its guard evaluates to true if it has one. It may be
possible that multiple transitions are enabled at a given time. There are two such
types of situations. First, there is the case where the enabled transitions have
different sources. This is resolved by prioritizing the “innermost” transition, i.e.
the transition whose source is the closest ancestor to the active basic state. The
second case occurs when there are multiple enabled transitions, none of which
are closest to the active basic state. This results in nondeterminism and the code
generator deals with this by taking the first transtion it comes across. These
two cases are depicted in figures 6 and 7, where the labels on the transtions
represent their triggers.

Basic0

Composite0

Basic1 Basic2

e e

Figure 6: The transition to Basic1 is prioritized.

Composite0

Basic0

Basic1

e

Basic2e

Figure 7: A nondeterministic situation.

11

7.2 Dealing With Null Transitions

Null transitions are always taken instantaneously. The last lines of the above
algorithm accomplish this by recursively invoking the process function with a
list containing only the event None as its argument. Null transitions have no
triggers and thus are not compared to the event popped from the list. Thus
the transtion is taken immediately if there is no guard or if it evalutates to
true. The issue of loops of null transitions arises, and at a first glance it may
seem that any compiler allowing this is badly designed. However, the generated
code’s behavior does indeed remain faithful to the model being compiled. It is,
in this case, the statechart model that is flawed.

8 Event Dispatching

In order to achieve asynchronous messaging by means of events, a mechanism is
needed that will allow one object to process an event while another one proceeds
with its regular execution. The design adopted was to have the compiler produce
a special Dispatcher class of which a single instance would exist throughout the
system. All objects receive a reference to the Dispatcher upon instantiation
and the creation of the Dispatcher object itself is intended to be done by the
application using the classes generated from the model. The Dispatcher provides
an interface allowing objects to be attached and detached to it in order to
maintain distinct event queues for each respective object instance in the system.
When the GEN(targetObj, e, p1, p2) statement appears in some action code,
it gets compiled into a command that invokes the Dispatcher and appends the
event and its parameters to the appropriate queue.

The Dispatcher emulates concurrency among object instances much like an
operating system allocates computing resources to various running processes.
The event queues are considered one at a time, treating each object instance
in a round-robin fashion. The Dispatcher invokes process(evtList) on each
instance and passes its queue of accumulated events as the argument. It is
also the invokation of the process function that allows objects to examine the
current system time and possibly generate special events in order to fire timed
transitions. These special events are immediately appended to the list to be
processed in order to avoid delays incurred by having to wait until the next
time the Dispatcher calls process for the transition to fire.

9 Timing

Intimately linked to dispatching and also necessary to achieve asynchronous
communication between objects is a timing mechanism governing the entire
system. The approach taken here was to use a time-slicing technique that would
give the Dispatcher a fixed amount of time for it to dispatch events to objects and
have them process them accordingly. This approach is one commonly taken in

12

embedded systems and computer games, the latter’s computations being driven
by the need to execute within a somewhat fixed frame rate.

This timing scheme can be implemented as part of the Dispatcher class.
The following algorithm covers this functionality. Essentially all object queues

Algorithm: processAllLoop()
Input: None.
Output: None.

while there exist non empty event queues
O=next object with non empty queue
Q=event queue of O
O.process(Q)

reschedule processAllLoop after 2ms

are processed until they are all empty at which point the function reschedules
itself after a fixed amount of time. It is this self-rescheduling that creates the
time-sliced behaviour of the system. The function itself will typically take much
less than 2ms to consume all the event queues. The time gap between the end
of the processAllLoop function and its next scheduled execution is intended to
give other processes the chance to take control of the CPU. This relinquishment
of system resources has proven to be much more efficient than keeping the
Dispatcher in a busy loop.

The processAllLoop function also has another important role. It emulates
the system’s main loop. The application using the generated code is intended to
instantiate a Dispatcher object along with any other object it requires, and then
make a single call to processAllLoop, which then takes control of the system and
acts on its own.

The development of a time-sliced environment avoids the complications and
potential errors related to threading. In some cases it is more efficient to im-
plement the timing-slicing directly within the application. For this reason, the
Dispatcher also provides a function named processAll that is identical to proces-
sAllLoop except that it does not reschedule itself automatically. For example,
the case study presented next uses Tkinter primitives to schedule calls to pro-
cessAll at fixed time intervals. This achieves significantly greater overall CPU
efficiency.

10 Case Study: A Wristwatch Application

In order to demonstrate the compiler’s correctness and to illustrate the concept
of modeling a reactive system, it was used to generate the code implementing
the behavior of a wristwatch.

13

10.1 Requirements

Given is the GUI (figure 8) for a wristwatch and the interface it provides. The
task is to the part of its backend describing its behavior such that the following
requirements are met.

• The time value should be updated every second, even when it is not dis-
played (as for example, when the chrono is running). However, time is not
updated when it is being edited.

• Pressing the top right button turns on the Indiglo light. The light stays on
for as long as the button remains pressed. From the moment the button
is released, the light stays on for 2 more seconds, after which it is turned
off.

• Pressing the top left button alternates between the chrono and the time
display modes. The system starts in the time display mode. In this mode,
the time (HH:MM:SS) and date (MM/DD/YY) are displayed.

• When in chrono display mode, the elapsed time is displayed MM:SS:FF
(with FF hundreths of a second). Initially, the chrono starts at 00:00:00.
The bottom right button is used to start the chrono. The running chrono
updates in 1/100 second increments. Subsequently pressing the bottom
right button will pause/resume the chrono. Pressing the bottom left but-
ton resets the chrono to 00:00:00. The chrono will keep running (when
in running mode) or keep its value (when in paused mode), even when
the watch is in a different display mode (for example, when the time is
displayed).

• When in time display mode, the watch will go into time editing mode
when the bottom right button is held pressed for at least 1.5 seconds.

• When in time display mode, the alarm can be displayed and set on or off
by pressing the bottom left button. If the bottom left button is held for
1.5 seconds or more, the watch goes into alarm editing mode. Initially, the
alarm time is set to 12:00:00. The alarm is activated when the alarm time
is equal to the time in display mode. When it is activated, the screen will
blink for 4 seconds, then the alarm turns off. Blinking means switching
to/from highlighted background (Indiglo) twice per second.The alarm can
be turned-off before the elapsed 4 seconds by a user interrupt (i.e.: if any
button is pressed). After the alarm is turned off, activity continues exactly
where it was left-off.

• When in (either time or alarm) editing mode, briefly pressing the bottom
left button will increase the current selection. Note that it is only possible
to increase the current selection, there is no way to decrease or reset the
current selection. If the bottom left button is held down, the current
selection is incremented automatically every 0.3 seconds. Editing mode
should be exited if no editing event occurs for 5 seconds. Holding the

14

bottom right button down for 2 seconds will also exit the editing mode.
Pressing the bottom right button for less than 2 seconds will move to the
next selection (for example, from editing hours to editing minutes).

The interface provided by the GUI has the following functions.

• getTime() Returns the current clock time.

• getAlarm() Returns the alarm time set.

• refreshTimeDisplay() Redraws the time with the current internal time
value. The display does not need to be cleaned before calling this function.
For instance, if the alarm is currently displayed, it will be deleted before
drawing the time.

• refreshChronoDisplay See refreshTimeDisplay()

• refreshDateDisplay() See refreshTimeDisplay()

• refreshAlarmDisplay() See refreshTimeDisplay()

• resetChrono() Resets the internal chrono to 00:00:00.

• startSelection() Selects the leftmost digit group currently displayed on the
screen.

• increaseSelection() Increases the currently selected digit group’s value by
one.

• selectNext() Selects the next digit group, looping back to the leftmost
digit group when the rightmost digit group is currently selected. If the
time is currently displayed on the screen, selects also the date digits. If
the alarm is displayed on the screen, doesn’t select the date digits.

• stopSelection() Turns off selection.

• increaseTimeByOne() Increase the time by one second. Note how minutes,
hours, days, month and year will be modified appropriately, if needed (for
example, when increaseTimeByOne() is called at time 11:59:59, the new
time will be 12:00:00).

• increaseChronoByOne() Increase the chrono by 1/100 second.

• setIndiglo() Turn on the display background light

• unsetIndiglo() Turn off the display background light

• setAlarm() Flag the alarm to be on or off.

When a button is pressed or released, one of the following events is set
to the statechart (as strings): topRightPressed, topRightReleased, topLeft-
Pressed, topLeftReleased, bottomRightPressed, bottomRightReleased, bottom-
LeftPressed, bottomRightReleased, alarmStart.

15

10.2 Design

The design was chosen to consist of a Watch class associated to TimeDisplay,
ChronoDisplay, AlarmDisplay and Indiglo components. An instance of each
object is created and the instance of the Watch class serves to receive events
from the GUI and send them to the appropriate component. The resulting Class
Diagrams and Statecharts are shown in the following figures.

Figure 8: The wristwatch GUI.

Figure 9: Class Diagram for behavioral components.

16

waitstart

TopRight
TopLeft

BottomRightBottomLeft

bottomLeftPressed / GEN(s

bottomRightReleased / GEN

topLeftPressed / alternat

topRightPressed / GEN(sel

bottomRightPressed / GEN(

topRightReleased / GEN(se

bottomLeftReleased / GEN(

topLeftReleased

Figure 10: Statechart for the Watch class.

Select_Next
Incrementing

Edit

Edit_Soon
Running

start

AFTER(5)

bottomRightPressed

AFTER(1.5) / startSelecti

bottomRightPressed

bottomLeftReleased

bottomRightReleased / sel

bottomLeftPressed

AFTER(1) / incrementTimeB

AFTER(2)

AFTER(1)/incrementTimeByO

AFTER(0.3)

Figure 11: Statechart for the TimeDisplay class.

Setup

Stopped

Running

AFTER(0.01) / increase

bottomRightPressed

bottomLeftPressed / reset

bottomRightPressed

Figure 12: Statechart for the ChronoDisplay class.

17

Setup

Wait Show

Edit

IncSelection
SelectNext

bottomRightPressed

bottomLeftPressed / setAl

bottomRightReleased

AFTER(2)

AFTER(1.5) / startSelecti

bottomLeftReleased

bottomLeftReleased

bottomLeftPressed

AFTER(0.3)

Figure 13: Statechart for the AlarmDisplay class.

Setup

Off On

Off_Soon

lightup / setIndiglo

AFTER(2) / unsetIndiglo

turnoff

lightup / setIndiglo

Figure 14: Statechart for the Indiglo class.

11 Future Work

This section contains various implementation details, variations on the Rhap-

sody semantics, design decisions, and suggests alternate possibilites or potential
extensions to this compiler.

Orthogonal Components are a feature of Statecharts that allow the system
to be in multiple orthogonal states at once. This enables concurrency within
one Statechart. This compiler achieves orthogonality between object instances
but not within an object itself. It is therefore possible to emulate each orthog-
onal component by an object instance. However, in practice this is not only

18

cumbersome but leads to unintuitive segregation of software components that
really belong in the same class. This alone is enough reason to add support for
orthogonal components.

History is accompished by keeping a variable for each history connector to
hold the name of the last active state in its scope. For each transition ul-
timately leading to a history connector, the compiler generates the code for
necessary exit, entry, and transition actions for every possible state referenced.
Although this causes the generated code to be extremely efficient, it can easily
explode in length and be difficult to read. Another solution would be to have
the model itself stored in the generated code. Then actions associated with
states and transitions could be stored as attributes of the model and accessed
the same way regardless of what state is in the memory of the history connector.
This would abstract away the details of what actions get executed depending
on what state is referenced.

Loop detection is another important feature that is worth adding. It is ac-
ceptable (and indeed a requirement) for the generated code to contain infinite
loops if it was intended by the model. However, loops caused by null transitions
or AFTER(0) triggers are usually unintentional errors or simply bad design and
can be easily detected and reported by the compiler.

Static Reactions are supported by the Rhapsody tool but not by this com-
piler. They are similar to transitions in that they react to triggers and can
produce actions. The difference is that they are associated with a state and do
not cause the active configuration of the object to change. Static reactions can
easily be emulated with orthogonal components, but their support can easily be
implemented within the compiler.

A new formalism for Class Diagrams is definitely needed. This would
allow for many features such as class attributes, templates, role names, etc.
to be used. Also, enforcing navigational constraints expressed by associations
would be tremendously beneficial.

Support for other languages would also, naturally, be a great thing to have.

12 Acknowledgments

I would like to thank my supervisor, Prof. Hans Vangheluwe, for his contin-
ued support and great advice, and also Denis Dubé for creating the CDV3 -
DCHART TYPE attribute type and for his help on adding it to the CD Class-
Diagrams V3 formalism.

19

References

[1] David Harel.Statecharts: A Visual Formalism for Complex Systems. Science
of Computer Programming, volume 8. 1987. pp.231-274.

[2] David Harel and Amnon Naamad. The STATEMATE semantics of stat-
echarts. ACM Transactions on Software Enginneering and Methodology
(TOSEM), volume 5, issue 4 (October 1996). pp.293-333

[3] David Harel and Hillel Kugler. The Rhapsody Semantics of Statecharts (or,
On the Executable Core of the UML). Lecture Notes in Computer Science,
volume 3147, January 2004. pp.325-354.

[4] Michelle L. Crane and Juergen Dingel. UML Vs. Classical Vs. Rhapsody
Statecharts: Not All Models Are Created Equal.Lecture Notes in Computer
Science, volume 3713, November 2005. pp.97 - 112.

20

