
Modeling and enactment support for
early detection of inconsistencies in engineering processes

István Dávid
University of Antwerp, Belgium

Flanders’ Make, Belgium
(istvan.david@uantwerpen.be

Bart Meyers
University of Antwerp, Belgium

Flanders’ Make, Belgium
bart.meyers@uantwerpen.be

Ken Vanherpen
University of Antwerp, Belgium

Flanders’ Make, Belgium
ken.vanherpen@uantwerpen.be

Yentl Van Tendeloo
University of Antwerp, Belgium

yentl.vantendeloo@uantwerpen.be

Kristof Berx
Flanders’ Make, Belgium

kristof.berx@flandersmake.be

Hans Vangheluwe
University of Antwerp, Belgium

Flanders’ Make, Belgium
McGill University, Montréal, Canada
hans.vangheluwe@uantwerpen.be

ABSTRACT

Managing inconsistencies between models is a key challenge in
engineering processes of complex systems. Early detection of incon-
sistencies results in more efficient processes, because it can reduce
the amount of re-execution of costly engineering activities.

In this paper, we propose an approach for early inconsistency de-
tection in engineering processes. In our approach, the engineering
process is explicitly modeled, along with the important character-
istics and constraints of the system, imposed by the requirements
and system specifications. This information is then used to enact
the process and augment it with a run-time consistency monitoring
service. Inconsistencies are expressed as a satisfiability problem of
the constraints. Early detection of inconsistencies is achieved by
monitoring the constraints, that is, checking their satisfiability at
specific points of the process. Our approach is supported with a
framework which includes a visual process modeling tool, a process
enactment engine and a state-of-the-art symbolic solver for early
inconsistency detection.

KEYWORDS

inconsistencymanagement, processmodeling, multi-paradigmmod-
eling, cyber-physical systems, mechatronics
ACM Reference format:

István Dávid, Bart Meyers, Ken Vanherpen, Yentl Van Tendeloo, Kristof
Berx, and Hans Vangheluwe. 2017. Modeling and enactment support for
early detection of inconsistencies in engineering processes. In Proceedings
of Second International Workshop on Collaborative Modelling in MDE, Austin,
TX, USA, September 18, 2017 (COMMitMDE 2017), 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Engineering complex heterogeneous systems requires a collabora-
tion between stakeholders of various domains. These stakeholders
have different views [1] on the system and reason only about the
system characteristics relevant to their respective views. Some char-
acteristics of the system, however, cannot be related to only one
view or domain. Such cases result in overlaps between specific

COMMitMDE 2017, September 18, 2017, Austin, TX, USA
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

views and give rise to inconsistencies between those views. For
example, selecting a battery for an autonomous vehicle will have
an impact to the mechanical view of the system (which reasons
about the mass of the battery), and to the electrical view (which
reasons about the capacity of the battery).

As proposed by Finkelstein et al [2], instead of simply just re-
moving inconsistencies from the design, we need to think about
“managing consistency”. One of the core activities of (in)consistency
management is the detection of inconsistencies. It is preferred that
inconsistency detection is achieved as early as possible, because
the earlier the inconsistencies are detected, the lower the costs of
resolving them are. Early detection of inconsistencies also provides
more freedom in choosing the appropriate resolution or tolerance
techniques [3] [4].

To support the understanding of the origins and root causes
of inconsistencies, we reuse one of the main guidelines of multi-
paradigm modeling (MPM) [5] and we place the process manipu-
lating the models of the system into the center of our work. Incon-
sistencies are defined, detected and analyzed with respect to the
process.

Inconsistencies

The presence of a process enables richer semantics to reason about
the various types of inconsistencies. The traditional interpretation
of inconsistencies comes from the area of multi-view modeling,
where the notion of the process is not necessarily present, e.g. in [6].
In such settings, inconsistencies are caused bymultiple stakeholders
modifying the system design in a parallel fashion and introducing
discrepancies between the views of the system, in specific attributes,
values, properties. The strong notion of a process, however, allows
to reason about more “stateful” types of inconsistencies, i.e. the
ones that are caused by a sequence of modifications. Discrepancies
are not necessarily introduced between various views, but typically
in constraints regarding the system, as the design decisions shape
the system more and more specific.

In our previous work [7], we proposed the foundations of a for-
malism to reason about inconsistencies in the presence of a strongly
typed process model, based on the Ftg+Pm formalism [8]. The for-
malism enables modeling system characteristics as (ontological

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


COMMitMDE 2017, September 18, 2017, Austin, TX, USA István Dávid et al.

Figure 1: The main focus areas of our research, with the scope of the current paper (Run-time inconsistency management)
highlighted. For this, we revise the previously addressed formalism for Process modeling. Specification-time inconsistency
management is covered in [7]. Inconsistency resolution is a future work.

and linguistic) properties in conjunction with the engineering pro-
cess. The process is analyzed and various management patterns are
applied to prevent potential inconsistencies to occur. That is, the
process is transformed in a way that no inconsistency remain un-
noticed when the process is enacted. (Referred as Specification-time
inconsistency management in Figure 1.) In these cases, one typically
addresses inconsistencies due to the parallel activities.

Scope of the paper

In this paper, we focus on early detection of inconsistencies during
the enactment phase of the engineering processes, i.e. at run-time
(Figure 1). Such scenarios necessitate more precise modeling of the
properties of the system with respect to the engineering process.
To this end, we revise our original process modeling formalism
and introduce the notion of attributes (in models) and capabilities
(in formalisms) in the Ftg+Pm. Additionally, we provide a state-
of-the-art symbolic solver for detecting inconsistencies in actual,
real modeling artifacts. The contributions are presented through
an industry level early design example of a complex mechatronic
system, an automated guided vehicle (AGV), coming from one of
our partners.

The core contribution of this paper is a methodology for explicit
modeling of the characteristic attributes of the system and allow
defining constraints upon them to express (in)consistency rules in
order to monitor the process for inconsistencies at runtime. The
process is augmented with consistency checks during the enact-
ment, which, conceptually, can be viewed as special activities of
the process. These activities are not explicitly modeled and do not
carry relevant information from the engineering point of view and
therefore, they remain hidden.

The explicit modeling of attributes and constraints means that
the information relevant to inconsistency management is being con-
ceptually “lifted” from the models containing those attributes and
constraints. (Although, they are still present in the models them-
selves.) This modeling step may be expensive for larger processes,
but it has to be done only once for a process. Attributes and con-
straints operate on multiple meta-levels, which enables reasoning

about capabilities of certain modeling formalisms. This, due to the
strongly typed process model, provides additional vital information
regarding potential inconsistencies along the process. This combi-
nation of modeling paradigms (i.e. multi-level, multi-abstraction,
process-oriented) is novel in the state-of-the-art.

To support our ideas, we provide a tooling, which supports (i)
specification of the above mentioned aspects of the engineering
process, and (ii) execution of the modeled process in a managed
way, i.e. by monitoring the (in)consistency of the modeling artifacts.
The tool is built on top of Eclipse and Python libraries, such as EMF
[9], Sirius [10], VIATRA [11], and SymPy [12], respectively.1

The rest of the document is structured as follows. In Section 2,
we present a motivating example of the engineering of a complex
heterogeneous system. Using the example, we propose a modeling
formalism in Section 3 to capture various system characteristics and
constraints, which serve as (in)consistency rules for the process.
In Section 4, we present the enactment aspects of the previously
specified process, including (i) the execution of the process addition-
ally supported with tool interoperability, and (ii) the monitoring
and detection of inconsistencies. Finally, we conclude our work
by giving an overview on the state of the art in Section 5 and by
wrapping up the paper in Section 6.

2 MOTIVATING EXAMPLE

To motivate our work, we use a case study of the design of an auto-
mated guided vehicle (AGV), shown in Figure 2a. The goal of the
AGV is to carry out a mission of transporting a payload on a specific
trajectory between two locations. Being a complex mechatronic
system, the requirements of the AGV are refined into specifica-
tions by stakeholders of the different involved domains, such as (i)
mechanical specifications: sufficient room on the vehicle to place
payload; (ii) control specifications: following the defined trajectory
with a given maximal tracking error; (iii) electrical specifications:
autonomous behavior, defined as the number of times that it needs
to be able to perform the movement before needing to recharge; (iv)
product quality specifications: the previous specifications should

1The tool can be installed form here: http://istvandavid.com/icm.

http://istvandavid.com/icm


Modeling and enactment support for
early detection of inconsistencies in engineering processes COMMitMDE 2017, September 18, 2017, Austin, TX, USA

(a) The automated guided vehicle of the case study. (b) Schematic overviews of the AGV: front and top, respectively.

Figure 2: The automated guided vehicle (AGV).

be achieved at a minimal cost. Figure 2b shows the conceptual
geometric design of the AGV. A platform of a circular shape was
chosen in the early concept design phase, with two driven wheels
on the sides, and two omniwheels in addition. The drivetrain is
fully electrical, using a battery for energy storage and two electric
motors driving two wheels.

The design process needs to determine the sizing of the different
components (motors, battery, platform) and tune the controller.
The process requires a collaboration between different stakeholders
and their domain-specific engineering tools, such as CAD tools for
platform design, Simulink and Virtual.Lab Motion for multi-body
simulations, AMESim for multi-physical simulations during drive-
train design. Motor and battery selection activities use databases
maintained in Excel files. Since these tools work with different
modeling formalisms, reasoning over the consistency of the system
as a whole properties poses a complex problem to overcome. By
explicitly modeling attributes and constraints of the system and
associating them with the engineering activities, the engineering
process can be augmented with automated consistency monitoring
techniques.

Running example

The total mass of the AGV (mT ) is a sum of the mass of the battery
(mB ), the mass of the motor (mM ) and the mass of the platform
(mP ):

mT =mP +mM +mB . (1)

During the engineering process, and specifically: during the re-
quirements analysis, constraints are applied on the attributes:

mT ≤ 150 [kд],
mP ≤ 100 [kд],
mM ≤ 50 [kд],
mB ≤ 10 [kд].

(2)

These constraints have to be respected throughout the whole pro-
cess, otherwise the model of the system becomes inconsistent.

Additionally, all the masses must be positive numbers, as con-
strained by the laws of physics.

mass > 0 [kд]. (3)

Obviously, the notion of masses specific to the system, i.e.mT ,mB ,
mM andmP , are of a different nature than the generalmass concept,
asmass is not related to a specific part of the system, but is more
abstract. The concept of mass , in fact, can be viewed as type to
the system-specific masses: mT , mB , mM and mP are all masses
and therefore, a constraint onmass imposes a constraint on each
system-specific mass. This means the constraint in Equation 3 must
hold for each system-specific mass.

Inconsistencies. An inconsistency can occur, for example, in the
following scenario.

Step 1 A platform is selected with a mass of 100 kg. (mP =

100 [kд])
Step 2 Amotor is selected with a mass of 50 kg. (mM = 50 [kд])
Step 3 A battery is selected with a mass of 10 kg. (mB =

10 [kд])

At this point, an inconsistency can be detected. Even though the
selected components satisfy their respective constraints imposed in
Equation 2, the total mass now becomes 160 kgs (due to Equation 1),
which leads to a violation of a constraint in Equation 2 and therefore:
the design is considered inconsistent.

Factoring in Equation 3, however, allows an earlier detection of
inconsistencies. Already in Step 2, Equation 1 can be rewritten as
follows:

mT = 150 +mB .

Since Equation 3 holds for any mass, and consequently formB as
well, it can be inferred that after selecting a battery (and thus filling



COMMitMDE 2017, September 18, 2017, Austin, TX, USA István Dávid et al.

Figure 3: Excerpt from the extended Ftg+Pmmetamodel used in our work.

inmB in this equation), the total mass will be greater than 150, thus
violating the constraint in Equation 2.

Such an early detection of inconsistencies may save significant
costs in the specific engineering process, because it reduces the
amount of iterations over complex engineering activities if the
design is detected to be inconsistent. Early detection of inconsisten-
cies requires (i) reasoning over constraints on different meta-levels
(in this case: factoring Equation 3 into Equation 1); and (ii) efficient
constraint solving algorithms. In Section 3, we provide a formalism
for the former requirement, and in Section 4 we discuss the latter
requirement.

3 MODELING SYSTEM CHARACTERISTICS

In this section, we present a formalism (i.e. a language with se-
mantics) to model the engineering process and its consistency
constraints discussed in Section 2. The formalism builds on the
Ftg+Pm formalism [8], and its foundations have been presented in
our previous work [7].

3.1 Ftg+Pm: A brief overview

The Ftg+Pm formalism enables the usage of process models (Pm) in
conjunction with the model of formalisms and the transformations
between those (the formalism-transformation graph - Ftg). As
shown in Figure 3, Formalisms and Transformations serve as a type
system to the Objects (models) and the Activities of the process,
respectively.

The strong type system of the formalism fits well with the prob-
lem sketched in Section 2 as it supports reasoning on different
meta-levels. To enable modeling the problem at hand, we introduce
new elements to the formalism. In the following, we elaborate on
these new elements in greater details.

As shown in Figure 3, the original Ftg+Pm metamodel is ex-
tended by a third typing relationship: between Capabilities and
Attributes. Furthermore, Constraints can be defined for both of
these elements to capture consistent states of the models in the pro-
cess. These added elements are the foundations to the inconsistency
monitoring approach we are about to present.

3.2 Attributes and capabilities

Attributes represent characteristic values of the system. These val-
ues can be persisted in an object (of a model) and queried directly;
or can be derived by a complex query.

Definition 3.1 (Attribute). An attribute is defined as a result of
a query over a model, which query is composed of (potentially
multiple instances of) projection and aggregation operations.

In the example in Section 2, the mass of the platform (mP ), the mass
of the battery (mB ) and the mass of the motor (mM ), are attributes
that are directly persisted in a mechanical model, thus are directly
queried from the mechanical model (each by a respective projec-
tion); while the total mass (mT ) is an aggregation of the previous
three masses and is not necessarily persisted in the model. (We
assume querying does not take time, or at least the time required
for executing the query is negligible compared to the length of a
real life engineering process.) After obtainingmB ,mM andmP ,mT
is obtained as the sum aggregation of the former three attributes, as
shown in Equation 1. Consequently, as shown in Figure 3, attributes
are situated on the Pm side of the Ftg+Pm, i.e. on the instance level.

As discussed in Section 2, the concept ofmass is different from
the concept of the masses specific to the system:mT ,mB ,mM and
mP are related to the notion ofmass by a typing relationship. In
our framework, we call these meta-attributes capabilities.

Definition 3.2 (Capability). Capability c of formalism F expresses
the ability of a modelM corresponding to a formalism F to reason
about attributes inM typed by c .

In the running example, Matlab is used for defining the (simplified)
mechanical model of the AGV. The Matlab language, in this sense,
is able to reason about masses. (Although, mass-like attributes are
just ordinary data structures from Matlab’s point of view.)

3.3 Constraints

To make use of attributes and capabilities for consistency manage-
ment purposes, constraints are imposed on these to define consis-
tent states of the engineering process.



Modeling and enactment support for
early detection of inconsistencies in engineering processes COMMitMDE 2017, September 18, 2017, Austin, TX, USA

Definition 3.3 (Constraint). A constraint defines the desired char-
acteristics of the system, i.e. it is a selection of an interval over the
domain of the previously obtained attribute.

In a typical engineering process, algebraic (Equation 1), arithmetical
(Equations 2 and 3) and logical formulas are used as constraints. As
shown in Figure 3, constraints can be applied on both the Pm and
the Ftg side.

Definition 3.4 (Consistent design). The design of the system is
considered to be consistent at a given point of the process iff there
are no violated constraints.

The detection of the violated constraints is discussed in Section 4.

3.4 Modeling the example

After defining the core concepts, we use our prototype tool to
model the attributes, capabilities and constraints of the engineering
process. The tool provides a visual interface for modeling. It was
built on top of the Eclipse platform, implemented using the Sirius
framework [10], and it is available as an open-source software.

Attributes and their constraints

Figure 4 shows an excerpt from the full model of the example,
with the attributes of the running example and their constraints
modeled.

Figure 4: Attributes and constraints.

Attributes are denoted by light red rectangles, and constraints by
darker red rectangles. There are four attributes in the figure, one
for each of the masses in Section 2. Apart from the totalMass, the
three other masses are persisted in the mechanicalModel, as shown
by the prefix in the names of the attributes.

The total mass is not persisted in the mechanical model, but it is
a result of an aggregation of the other three masses (Equation 1).
This equation is captured in the rightmost constraint, as shown

by the formula. The other four constraints correspond to the four
sub-equations of Equation 2.

The header of the constraint contains its level of precision. In
this example, all of the constraints are of level L3. As defined in our
previous work [13], the level of precision reflects what information
a constraints carries:
• L1: the fact of influence is known, its extent is not;
• L2: sensitivity information between two values is known,
expressed, e.g. by Forrester system dynamics [14];
• L3: the constraint can be expressed using an exactmathe-

matical relationship.
In this work, we assume L3 relationships, but the framework can
be easily extended to deal with lower levels of precision as well.

Capabilities and their constraints

Figure 5 shows an excerpt from the full model of the example, with
the mass capability, its constraint, alongside the related part of
the Ftg. Matlab is used as a formalism for defining the mechani-
cal model of the system and has a capability of expressing mass.
(That is, models being conform to the Matlab formalism, can have
attributes of type mass.) Figure 5 shows how this aspect of the
running example is modeled, with Equation 3 captured in a similar
fashion as the other constraints were in Figure 4.

Figure 5: A capability and its constraint in the Ftg.

The evaluation of such constraints, however, differs from the ones
shown in Figure 4, as the constraints on mass are stemming from
the universal laws of physics, whilemT ,mP ,mB ,mM are specific
to the system. To evaluate constraints of capabilities, we use the
following rule.

Definition 3.5 (Evaluation of capability constraints). Any con-
straint applied on a capability imposes a constraint on every at-
tribute typed by that capability.

This means, that based on the typing relationship between the
mass capability and the system-specific massesmT ,mP ,mB ,mM ,
Equation 2 can be unfolded as follows:

0 [kд] < mT ≤ 150 [kд],
0 [kд] < mP ≤ 100 [kд],
0 [kд] < mM ≤ 50 [kд],
0 [kд] < mB ≤ 10 [kд].

(4)

3.5 Properties

As presented in [15] and [16], ontologies can be efficient enablers
for inconsistency management in heterogeneous settings. During



COMMitMDE 2017, September 18, 2017, Austin, TX, USA István Dávid et al.

Figure 6: The Ftg+Pm based process model with the capabilities (left) and the attributes (right).

the translation of requirements to view-specific properties, each
stakeholder keeps in mind certain domain properties, i.e. ontologi-
cal properties. For example, an electrical engineer implicitly thinks
about the capacity of the battery, a mechanical engineer reasons
about how a battery would fit the frame of the AGV. Due to over-
lap in requirements, some ontological properties will be shared
and/or will influence each other such that the related view-specific
properties will be shared or influenced as well.

Figure 7: Excerpt from the example: the property validMass.

Properties capture system characteristics in terms of satisfaction
relationships, and enable ontological reasoning. Our framework
allows defining property satisfaction relationships in terms of at-
tributes. Whether or not a property is satisfied, can be inferred by
checking the single constraints imposed on the specific attributes.

Figure 7 shows the property validMass. The satisfaction of the
property is evaluated from the totalMass attribute, using the same
constraint as the one shown in Figure 4 (i.e. the constraint on
attributemT in Equation 4), while the bottom right element, labeled
with the name of the property, holds the boolean value of the
satisfaction relationship.

This notion of properties allows various scenarios aiding incon-
sistency management, such as reusing domain knowledge from
existing domain ontologies [17], using ontological reasoning [15]
in conjunction with our techniques, and using contract-based de-
sign [18] [19] to aim co-design scenarios, i.e. parallel branches of
the engineering process.

3.6 Putting it all together: the process

Figure 6 shows the final model of the running example. In the
middle, the yellow rectangles denote the activities of the Pm with
control flows in between them denoting the precedence relation-
ship between the activities. On the right side, the attributes and
constraints are shown. Activities and attributes are linked by in-
tents, which express the purpose of the activity accessing a given
attribute. The first three activities access attributes in order to mod-
ify them, while the last activity attempts to resolve a constraint
wrt totalMass. Other types of intents include: reading the value of
an attribute, imposing a constraint, locking/releasing an attribute
in a parallel process branch, etc. This latter step is built into the
process as an actual engineering step, but as shown in Section 4, in
case of an inconsistency, the consistency monitoring service can
stop the process before this point. In our previous work [7] we used
read-modify pairs of intents to identify potential inconsistencies
at the optimization phase. In this work, however, we leverage the
notion of intents at run-time to narrow the scope of the consistency
checking algorithm, i.e. to consider only the attributes which have
been explicitly linked with an activity using a modify intent.

On the left side, the Ftg and the only associated capability is
shown. The typing relationships correspond to Figure 3:
• the mechanical model in the Pm is an Object and it is typed
by the Formalism Matlab in the Ftg;
• the Activities are typed by the transformation assignMass;
• finally, the mass capability types all the masses on the right
side, but this relationship is not visualized in the graphical
view. (It is shown in a property view of the tool, however.)

Masses are assigned to the design when the respective activities
are executed. Conceptually, this assignment can be viewed as a
transformation of the model, and as such, the actual transforma-
tion logic is captured in the transformation typing the activities. In
this case, assignMass holds the specification of the transformation.
The activities operate on models. To check the consistency of the
attributes, the attribute values are obtained by querying the appro-
priate models, i.e. the ones the specific attributes are persisted in.
As Figure 6 shows, the name of the attribute is prefixed with the
name of the model persisting the attribute. The first three attributes
are all persisted in the mechanicalModel, which is a Matlab type of
a model. Using this information, the querying is executed in the



Modeling and enactment support for
early detection of inconsistencies in engineering processes COMMitMDE 2017, September 18, 2017, Austin, TX, USA

background by our tool via the Matlab API, without requiring the
user to submit any extra information for this.

4 MANAGING INCONSISTENCIES

In this section, we briefly present how the enactment of the previ-
ously modeled process (Section 3) is carried out while enforcing a
consistent state across the models. Our custom process enactment
engine with fully modeled execution semantics is presented, as
well the algorithm used for detecting inconsistencies during the
enactment of the process. To facilitate the interplay in real engi-
neering settings, we provide integration with multiple tools and
frameworks, which will be discussed briefly as well.

4.1 Architecture

Figure 8 shows the architecture of the process enactment engine.
The engine is initialized by the Process model, defined previously in
Section 3. An explicit Enactment model augments the Process model
with the notion of tokens and activity states (Figure 9), to be able
to define the execution semantics. Execution semantics are defined
by explicitly modeled Transformation rules.

Figure 8: Architectural overview of the enactment engine.

The architecture has been implemented on top of the Eclipse
platform. The Eclipse Modeling Framework (EMF) [9] is used for
modeling purposes, while the model transformations have been
realized using the VIATRA model transformation framework [11].

Activities of the process, especially the automated ones, often ex-
ecute simulations and calculations over models on external storages
by using external tools. For that, interoperability with a represen-
tative set of services is provided (External service integration). Our
framework currently provides scripting support for Matlab and
Simulink of the MathWorks2, both in headless and GUI mode (by
using the Matlabcontrol3 library), and Amesim4 of Siemens/LMS
through its native API. Executable pieces of Java code or Python
scripts are supported and executed during the appropriate phases
of the enactment.

A vital contribution of the stack is the Consistency manager,
which features a symbolic solver for detecting inconsistencies. For
this purpose, the SymPy [12] framework for symbolic mathematics
is used. In Section 4.3, the algorithm of the solver is discussed in
greater detail.
2https://mathworks.com
3https://github.com/jakaplan/matlabcontrol
4https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/

4.2 Execution semantics

The execution semantics of the Ftg+Pm have been discussed previ-
ously in [20]. Here, we give a brief overview and focus on the main
specificities in our current framework.

Since the core of enactment engine is fully modeled, the execu-
tion semantics are given by reactive live model transformations.
Figure 9 shows the metamodel of the enactment engine. A Process-
Model (i.e. a full Ftg+Pm) is given to the compiler which creates an
instance of the elements shown in green. During the enactment, a
set of Tokens define the marking of the process, i.e. the active Nodes
at a given moment.

Figure 9: Metamodel for the enactment (green) along with

the characteristic parts of the process metamodel.

A Token also equips Activities of the process with additional
semantics regarding the state of their execution, modeled by Activ-
ityState. This is required because the execution of Activities is not
instantaneous.
• When a Token is moved to a new Activity, the Activity be-
comes Ready. The stakeholders and tools required to execute
the Activity can be notified, the required models can be
loaded into the tools.
• When the actual work in the Activity begins, the Activity
becomes Running. This state can last for longer periods, espe-
cially in resource-intensive simulations or manual modeling
activities, which may take days or weeks.
• When the actual work in the Activity is finished, the Activity
becomes Done and the process can move on.

Transformation rules of the execution semantics

Definition 4.1 (Marking of the process). By marking M of the
process we mean the function M : N → Z, where N denotes the
set of the Nodes of the process with an integer number Z of Tokens
in it. A process is considered to be unmarked if there are no tokens
present in it.

Initialization is a transformation which takes an unmarked
process and transforms it into a process with an initial marking, i.e.
with one token in its initial node.

Finishing is a transformation which takes a process with a final
marking (i.e. every token in the final node) and transforms it into
an unmarked process.

https://mathworks.com
https://github.com/jakaplan/matlabcontrol
https://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/


COMMitMDE 2017, September 18, 2017, Austin, TX, USA István Dávid et al.

Fork is a transformation which takes exactly one token and
produces a token for each parallel branch starting from that fork
node. The input token is marked abstract (see Figure 9) and kept
(hidden) in the model, while the newly created tokens are defined
as subtokens of the input token, so that they can be identified once
they have to be joined at the end of the parallel branches.

Join is a transformation which takes a token from each of its
incoming parallel branches and joins those tokens. In a valid process
model, the tokens to be joined must be the subtokens of the same
(now abstract) parent token. The join is achieved by locating the
parent token, placing it into the join node, marking it as not abstract,
and removing the subtokens.

Step is a transformation which moves a token from a node to a
consecutive node, while respecting the previous rules of forking
and joining.

4.3 Algorithm for early inconsistency detection

Early detection of inconsistencies requires computing the satisfia-
bility of the system of constraints at certain points of the process.
These computations are carried out on each Step in the process,
based on Algorithm 1.

Algorithm 1 Handling attribute modifications.
1: procedure Step(token, nextActivity)
2: token .currentActivity ← nextActivity ▷ Move the token to the next activity
3: for all i :Intent, a:Attribute: i (token .currentActivity , modify, a, v ) do
4: UpdateAttributeValue(a, v ) ▷ Assign value v to attribute a
5: end for

6: end procedure

On each Step in the process, the token is moved to the next activ-
ity (Line 2). As discussed in Section 3.6, intents between activities
and attributes help identifying the cases when an activity modi-
fies the value of a property. For each of such intents (Lines 3-5),
the attribute is updated and the change is propagated through the
whole system of constraints. This latter step is being taken care of
by Algorithm 2.

Symbolic computation of constraints

The updates to the system of constraints require introducing the
new values of attributes and computing whether the constraints can
be still satisfied later on in the process or not. Such a computation
requires factoring in the potential impacts of the future attribute
changes (explicitly modeled in the process). To execute these com-
putations, we opted for the techniques of symbolic computation.
Our main concern is the maintenance of a system of constraints
by gradually simplifying them as attributes get updated, to the
point, where contradictions appear in the equations, i.e. the set of
potential solutions is empty, thus denoting an inconsistency in the
system design. Alternative approaches include simulation of the
process and abstract interpretation.

Algorithm 2 shows the steps taken in our symbolic computation
approach. The algorithm is invoked by Algorithm 1 with the name
and the new value of the attribute to be updated passed along as
parameters. In Phase 1 of the algorithm, the attribute-value assign-
ment is translated to an equality constraint and added to the system
of constraints (Line 2). In Phase 2, the algorithm propagates this
change and attempts to simplify every constraint. This is achieved

by iterating through the system of constraints (Lines 3-4) and fac-
toring equation constraints (Line 5-6) into the rest of the constraints
by trying to solve (simplify) the constraint (Line 7).

We use the SymPy [12] symbolicmathematics library to solve/sim-
plify the constraints, thus the semantics is provided by the library.
Constraints imposed by capabilities are calculated based on Defini-
tion 3.5 and applied on attributes.

Finally, in case an empty set is produced as a set of potential
solutions for a constraint, we interpret it as an inconsistency and
notify the user about this fact.

Algorithm 2 Maintenance of the system of constraints.
1: procedure UpdateAttributeValue(attr ibute , value )

Phase 1 – Impose a new constraint with equality

2: model .constraints ← Eq (attr ibute, value )

Phase 2 – Propagation and simplification: substitute equality constraints into the rest of the con-
straints

3: for all constraint1 inmodel .constraints do

4: for all constraint2 inmodel .constraints do

5: if constraint2 is Eq then

6: constraint1← constraint2
7: solution = solve (constraint1) ▷ Try to solve the constraint
8: if solution = ∅ then
9: notify inconsistency
10: end if

11: end if

12: end for

13: end for

14: end procedure

When an inconsistency is detected, the process is halted and cannot
proceed until the inconsistency is not fixed. Resolving inconsisten-
cies is outside the scope of the paper. A simple undo/redo function-
ality is provided by the framework, but more detailed research have
been carried out by other authors, briefly discussed in Section 5.

Execution of the example

We follow the process in Figure 6. During the execution, Equations
1 and 2 are maintained: whenever a value is assigned to an attribute
present in one of the equations, the equations are simplified with
that attribute. This means
• substituting the newly assigned value of the attribute to
every occurrence of the attribute in every equation; and
• removing constraints without free attributes.
Step 1: The platform mass is set to 100 kgs. ActivityDesign-

Platform is executed and the mass of the platform is set in
the mechanical model. Since the attribute is persisted in a
Matlab model, the model is queried via theMatlab API for the
value of the platformMass variable. The consistency manager
uses this information to update the constraints with. The
related constraint of Equation 2 (0 [kд] < mP ≤ 100 [kд]) is
satisfied, and therefore the system can be simplified with it:

mT = 100 +mM +mB [kд]

0 [kд] < mT ≤ 150 [kд]
0 [kд] < mM ≤ 50 [kд]
0 [kд] < mB ≤ 10 [kд]



Modeling and enactment support for
early detection of inconsistencies in engineering processes COMMitMDE 2017, September 18, 2017, Austin, TX, USA

Solving the constraints formT results in a non-empty set of
solutions:

100 [kд] < mT ≤ 150 [kд]

No inconsistency is detected, the process proceeds normally.
Step 2: The motor mass is set to 50 kgs. The SelectMotor ac-

tivity is executed which sets the mass of the motor to 50 kgs.

mT = 150 +mB [kд]

0 [kд] < mT ≤ 150 [kд]
0 [kд] < mB ≤ 10 [kд]

At this point, Algorithm 2 detects the inconsistency sketched
in Section 2. Solving the constraints for mT results in an
empty set of solutions:

150 [kд] < mT ≤ 150 [kд]

Since 0 < mB , it can be inferred, that after executing the next
activity of the process,mT > 150 will hold, which violates
the constraint on the total mass. The process is halted and a
notification is raised to the user to resolve the inconsistency.

5 RELATEDWORK

Model inconsistency is one of the main challenges in any engineer-
ing setting where more than one stakeholder is present. Di Ruscio
et al [21] identify the research directions, challenges, and oppor-
tunities of collaborative MDSE and conclude, that inconsistency
management is one of the main enablers of efficient collaboration.
This challenge is exacerbated in scenarios of engineering systems
of a heterogeneous nature, i.e. when the stakeholders come from
different domains, work with different views on the system with
their domain-specific formalisms and tools.

Multiple authors point out, managing inconsistencies should
be carried out with processes in mind as well. Persson et al [22]
argue that consistency between the various views of cyber-physical
system design as one of the main challenges in design of such com-
plex systems. This is due to relations between views, with respect
to their semantic relations, process and operations which often
overlap. Multi-paradigm modeling [5] advocates using the most
appropriate formalisms, on the most appropriate level of abstrac-
tion, while also factoring in the processes manipulating the models.
The framework presented in this paper, aims at the problem of
inconsistencies with the processes in the focus.

In our work, we opted for the Ftg+Pm formalism for model-
ing processes. As compared to the widely used BPMN2.0 [23] or
BPEL [24] based process modeling frameworks (e.g. jBPM [25]), our
formalism allows modeling details more relevant to engineering
scenarios in MDE settings. Models and transformations are first-
class citizens in the Ftg+Pm, which enables deeper understanding
of inconsistencies and more control over the enacted process.

Our methodology advocates making crucial attributes and con-
straints of the system explicitly modeled. Qamar et al [26] use a
similar approach for inconsistency management by making model
dependencies explicit. As opposed to our approach, the authors do
not go as far as providing constraints for inconsistencymanagement

purposes, but use dependency links to notify stakeholders about pos-
sible inconsistencies when dependent properties/attributes change.
It is a task of a stakeholder to verify the consistency of the models.
In our approach, this is carried out in an automated way.

In the current paper, we do not focus on resolving inconsisten-
cies of the models, but we provide undo/redo actions to revert to the
latest consistent state. Eramo et al [27] present an approach where
each of the consistent alternatives are maintained throughout the
process and pruned when a decision is made and an alternative
becomes infeasible. Such an approach can be viewed as a natural ex-
tension of our work, especially of the solver presented in Section 4.3.
Mens et al [28] propose expressing the steps of inconsistency de-
tection and resolution as graph transformation rules. Critical pair
analysis is used to analyse potential dependencies between the de-
tection and resolution of inconsistencies. The approach is efficiently
handles cyclic inconsistencies, which is paramount in real system
engineering scenarios and complements our work presented here.
Almeida da Silva et al [29] investigate the possibilities of managing
deviations of enacted processes from their respective specifications.
It is not the scope of our work, but indeed, deviations from the spec-
ified process are big threat to the validity of any process-oriented
engineering approach. The efforts put into analyzing and optimiz-
ing a process model can be easily demolished by deviating from
(and sometimes even completely abandoning) the specification of
the process. Egyed et al [30] investigate the impact of single incon-
sistency instances to the whole system by introducing the notion of
change impact based scopes. Scopes are used to carry out resolution
steps on the required regions of the models and thus enhancing
the efficiency of the inconsistency management framework. Our
formalism also supports the implementation of such scoping mech-
anisms, with the added potential of enriching the definitions of
scopes with semantic information [15].

To implement our solver, we opted for the Python-based library
SymPy. We briefly considered and researched two other libraries as
well. SymJava5 is a Java-porting of SymPy, but with a limited set of
capabilities, which would have prevented us from implementing
the second algorithm shown in Section 4.3. exp4j6 is a library for
evaluating expressions and functions in the real domain. Its main
limitation is the inability of solving partial equations and inferring
the (in)consistency based on that.

6 CONCLUSIONS

In this paper, we presented an approach for early detection of
inconsistencies in complex engineering processes. The approach
fits into a bigger inconsistency management framework, partially
presented in our previous works [7][4][15].

The approach relies onmodeling the characteristics of the system
being developed, and using this information during the engineering
phase to detect inconsistencies across the various engineering mod-
els of the system. The approach is process-oriented in a sense that
attributes and capabilities of the system’s models are modeled in
conjunction with the actual engineering process, which then gets
enacted. The enacted process is augmented with smart consistency
checking algorithms, enforcing the consistent state of the design.

5https://github.com/yuemingl/SymJava
6http://www.objecthunter.net/exp4j/

https://github.com/yuemingl/SymJava
http://www.objecthunter.net/exp4j/


COMMitMDE 2017, September 18, 2017, Austin, TX, USA István Dávid et al.

As presented in Section 3, the modeling formalism enables lift-
ing information relevant to inconsistency management purposes
regarding the given process. Explicit modeling of such information
is an enabler of improving the quality and efficiency of the process
once enacted. Although the thorough modeling requires signifi-
cant efforts from the stakeholders, it is needed to be done only
once, before the actual design of the system commences. Such a
front-loaded approach can be typically expected from companies on
CMMI levels 3 and above [31]. As a consequence, our approach suits
best the domain of very complex heterogeneous systems, where the
costs of dealing with inconsistencies is often in a different order of
magnitude than the costs of modeling and optimizing the process.

The main advantage of our approach is its support for uniformly
handle instance- and meta-level constraints to facilitate early de-
tection of inconsistencies, as presented in Section 3.4 and later at
the end of Section 4.

A limitation of the framework may be its scalability, both from
the user experience point of view (i.e. how efficient is it to model
larger processes), and from the tooling point of view (i.e. how effi-
cient is it to execute the optimization and monitoring of the enacted
process). These concerns will be addressed in future work. An ad-
ditional limitation is the number of external tools and services
our tool currently supports. Matlab and Amesim are two external
services supported by our tool, which have been sufficient for eval-
uating our approach, but fall short to efficiently handle real-life
cases. The API of our framework, however, is extensible and allows
integration with custom tools.

As a future work, we plan to combine the approach presented
in this paper with our previous work [7]. This will enable explicit
reasoning about the trade-off between managing inconsistencies
in the process optimization phase and during the enactment. An-
other direction in our research is to support our approach with
inconsistency resolution techniques. We aim for developing a semi-
automated selection of resolution methods, which will require de-
tailed cost models of the process and all of its aspects. Finally, the
current framework serves as an enabler for our future research on
inconsistency tolerance [4].

ACKNOWLEDGMENTS

Thiswork has been partially carried outwithin the framework of the
Flanders Make project MBSE4Mechatronics (grant nr. 130013) of the
agency for Innovation by Science and Technology in Flanders (IWT-
Vlaanderen). This work was partly funded with a PhD fellowship
grant from the Research Foundation - Flanders (FWO).

The authors would like to thank the valuable insights and advices
of Joachim Denil and Vera Farkas.

REFERENCES

[1] International Organization for Standardization, “ISO/IEC/IEEE 42010:2011, Sys-
tems and software engineering – Architecture description.” https://www.iso.org/
standard/50508.html. Acc.: 2017-07-07.

[2] A. Finkelstein, “A foolish consistency: Technical challenges in consistency man-
agement,” in Database and Expert Systems Applications, vol. 1873 of LNCS, pp. 1–5,
Springer, 2000.

[3] R. Van Der Straeten, “Inconsistency management in model-driven engineering,”
An Approach Using Description Logics (Ph. D. thesis), Vrije Universiteit Brussel,
Brussels, Belgium, 2005.

[4] I. Dávid, E. Syriani, C. Verbrugge, D. Buchs, D. Blouin, A. Cicchetti, and K. Van-
herpen, “Towards Inconsistency Tolerance by Quantification of Semantic Incon-
sistencies,” in COMMitMDE@ MoDELS, pp. 35–44, 2016.

[5] H. Vangheluwe, J. De Lara, and P. J. Mosterman, “An introduction to multi-
paradigm modelling and simulation,” in Proc. of the AIS’2002 conf. (AI, Simulation
and Planning in High Autonomy Systems), Lisboa, Portugal, pp. 9–20, 2002.

[6] J. Corley, E. Syriani, H. Ergin, and S. Van Mierlo, “Cloud-based Multi-View Mod-
eling Environments,” in Modern Software Engineering Methodologies for Mobile
and Cloud Environments, IGI Global, 2015.

[7] I. Dávid, J. Denil, K. Gadeyne, and H. Vangheluwe, “Engineering Process Trans-
formation to Manage (In)consistency,” in Proceedings of the 1st International
Workshop on Collaborative Modelling in MDE (COMMitMDE 2016), pp. 7–16,
http://ceur-ws.org/Vol-1717/, 2016.

[8] L. Lúcio, S. Mustafiz, J. Denil, H. Vangheluwe, and M. Jukss, “FTG+PM: An
Integrated Framework for Investigating Model Transformation Chains,” in SDL
2013: Model-Driven Dependability Engineering, vol. 7916 of LNCS, pp. 182–202,
Springer, 2013.

[9] Eclipse Foundation, “Eclipse Modeling Framework (EMF)Website.” https://eclipse.
org/modeling/emf/. Acc: 2017-08-17.

[10] Eclipse Foundation, “Sirius Website.” https://eclipse.org/sirius/. Acc: 2017-07-07.
[11] G. Bergmann, I. Dávid, Á. Hegedüs, Á. Horváth, I. Ráth, Z. Ujhelyi, and D. Varró,

“VIATRA 3: A Reactive Model Transformation Platform,” in Theory and Practice
of Model Transformations, pp. 101–110, Springer, 2015.

[12] SymPy Development Team, “SymPy Website.” http://www.sympy.org/. Acc:
2017-08-17.

[13] I. Dávid, J. Denil, and H. Vangheluwe, “Towards Inconsistency Management
by Process-Oriented Dependency Modeling,” in Proc. of 9th Int. Workshop on
Multi-Paradigm Modeling, pp. 32–41, 2015.

[14] J. W. Forrester, Principles of Systems. Productivity Press, 1968.
[15] K. Vanherpen, J. Denil, I. Dávid, P. De Meulenaere, P. Mosterman, M. Törngren,

A. Qamar, and H. Vangheluwe, “Ontological Reasoning for Consistency in the
Design of Cyber-Physical Systems,” in CPSWeek workshop proceedings, 2016.

[16] O. Kovalenko, E. Serral, M. Sabou, F. J. Ekaputra, D. Winkler, and S. Biffl, “Au-
tomating Cross-Disciplinary Defect Detection in Multi-Disciplinary Engineering
Environments,” in Knowledge Engineering and Knowledge Management, pp. 238–
249, Springer, 2014.

[17] S. Feldmann, K. Kernschmidt, and B. Vogel-Heuser, “Combining a SysML-based
Modeling Approach and Semantic Technologies for Analyzing Change Influences
in Manufacturing Plant Models,” Procedia {CIRP}, vol. 17, pp. 451 – 456, 2014.

[18] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone, “Taming Dr. Franken-
stein: Contract-Based Design for Cyber-Physical Systems,” European Journal of
Control, vol. 18, no. 3, pp. 217 – 238, 2012.

[19] K. Vanherpen, J. Denil, P. De Meulenaere, and H. Vangheluwe, “Ontological
Reasoning as an Enabler of Contract-Based Co-design,” in International Workshop
on Design, Modeling, and Evaluation of Cyber Physical Systems, pp. 101–115,
Springer, Cham, 2016.

[20] Denil, Joachim, “Design, verification and deployment of software-intensive sys-
tems: a multi-paradigm modelling approach,” University Antwerp, 2013.

[21] D. Di Ruscio, M. Franzago, H. Muccini, and I. Malavolta, “Envisioning the future
of collaborative model-driven software engineering,” in Proceedings of the 39th
International Conference on Software Engineering Companion, pp. 219–221, IEEE
Press, 2017.

[22] M. Persson, M. Törngren, A. Qamar, J. Westman, M. Biehl, S. Tripakis,
H. Vangheluwe, and J. Denil, “A Characterization of Integrated Multi-View Mod-
eling in the Context of Embedded and Cyber-Physical Systems,” in EMSOFT,
pp. 1–10, IEEE, 2013.

[23] Object Management Group (OMG), “BPMN 2.0 Specification.” http://www.bpmn.
org/. Acc: 2017-08-17.

[24] OASIS, “WS-BPEL 2.0 Specification.” http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html. Acc: 2017-08-17.

[25] RedHat, “jBPM Website.” https://www.jbpm.org. Acc: 2017-08-17.
[26] A. Qamar, C. J. Paredis, J. Wikander, and C. During, “Dependency modeling and

model management in mechatronic design,” Journal of Computing and Inf. Science
in Engineering, vol. 12, no. 4, p. 041009, 2012.

[27] R. Eramo, A. Pierantonio, and G. Rosa, “Approaching Collaborative Modeling as
an Uncertainty Reduction Process,” in COMMitMDE@ MoDELS, pp. 27–34, 2016.

[28] T. Mens, R. Van Der Straeten, and M. D’Hondt, “Detecting and resolving model
inconsistencies using transformation dependency analysis,” in International Con-
ference onModel Driven Engineering Languages and Systems, pp. 200–214, Springer
Berlin Heidelberg, 2006.

[29] M. A. Almeida da Silva, R. Bendraou, X. Blanc, and M.-P. Gervais, Early Deviation
Detection in Modeling Activities of MDE Processes, pp. 303–317. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010.

[30] A. Egyed, “Automatically Detecting and Tracking Inconsistencies in Software
Design Models,” IEEE Trans. on Sw. Engineering, vol. 37, no. 2, pp. 188–204, 2011.

[31] CMMI Product Team, “CMMI for Development, Version 1.3, Tech. Rep. CMU/SEI-
2010-TR-033,” 2010.

https://www.iso.org/standard/50508.html
https://www.iso.org/standard/50508.html
https://eclipse.org/modeling/emf/
https://eclipse.org/modeling/emf/
https://eclipse.org/sirius/
http://www.sympy.org/
http://www.bpmn.org/
http://www.bpmn.org/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://www.jbpm.org

	Abstract
	1 Introduction
	2 Motivating example
	3 Modeling system characteristics
	3.1 Ftg+Pm: A brief overview
	3.2 Attributes and capabilities
	3.3 Constraints
	3.4 Modeling the example
	3.5 Properties
	3.6 Putting it all together: the process

	4 Managing inconsistencies
	4.1 Architecture
	4.2 Execution semantics
	4.3 Algorithm for early inconsistency detection

	5 Related work
	6 Conclusions
	Acknowledgments
	References

