
Process-oriented Inconsistency Management
in Collaborative Systems Modeling

István Dávid1,2 Joachim Denil1,2 Hans Vangheluwe1,2,3

1University of Antwerp, Belgium
2Flanders Make, Belgium

3McGill University, Montréal, Canada
{istvan.david, joachim.denil, hans.vangheluwe}@uantwerpen.be

KEYWORDS
Concurrent engineering, model-based systems engineer-
ing, heterogeneous systems, model consistency

ABSTRACT

Engineered products have reached a complexity which
requires explicit modeling and analysis of various as-
pects such as performance, safety, and energy-efficiency,
before system realization. This allows stakeholders
in various domains to collaborate on a “virtual prod-
uct”, using their domain-specific modeling languages
and tools. This variety of modeling languages and tools,
if not managed properly, can give rise to inconsistencies
between stakeholder models, resulting in an incorrect
product. Managing inconsistencies, therefore, is a key
enabler to efficient collaborative engineering. Explicitly
modeling the engineering process in which the virtual
product models are manipulated allows for a detailed
analysis of the root causes of inconsistencies and of the
impact of applying various (in-)consistency management
techniques on the process.

INTRODUCTION

The complexity of currently engineered systems has in-
creased drastically over the last decades. To tackle this
complexity, a virtual product can be designed before re-
alizing the real product. The design of the virtual prod-
uct is achieved by model-based techniques, and typically
in heterogeneous collaborative settings. This means
stakeholders of different domains interact with the vir-
tual product through the models in their own views and
viewpoints (Corley et al., 2016). Pertinent examples in-
clude the engineering of mechatronic and cyber-physical
systems (CPS), and Internet-of-Things (IoT) systems,
in which the hardware and software elements have to be
modeled, simulated and verified together.
Such collaborative endeavors are, however, severely hin-
dered by inconsistencies between the engineering arti-
facts such as domain-specific models, requirement spec-
ifications and other documents.
According to Herzig et al. (2014), an inconsistency is

present if two or more statements are made that are
not jointly satisfiable. Note, that this definition is not
limited to models in a pure software settings, but is valid
in multi-disciplinary engineering as well. Spanoudakis
and Zisman (2001) also characterize the notion of an
inconsistency using the joint non-satisfiability criterion,
but in addition, they shed more light on the origin of
inconsistencies by relating inconsistencies to overlapping
elements of different software models.
In our view as well, inconsistencies stem from the joint
non-satisfiability of statements. In our view, however, it
is the ontological and linguistic properties (Vanherpen
et al., 2016) of the system that cannot be the jointly
satisfied. The link between the aforementioned overlaps
and system properties has been first identified in previ-
ous work by Persson et.al. (Persson et al., 2013).
The problem of inconsistencies is exacerbated by the dis-
parity of the domain-specific modeling languages and
modeling tools involved in the flow of the engineer-
ing work. Stakeholders, quite often, do not use the
same vocabulary when describing the various aspects of
the system, resulting in overlaps between terminologies,
and consequently, in their models. Because these inter-
domain overlaps are not easy to identify, inconsistencies
spanning the various involved domains are harder to de-
tect.
Inconsistencies, if not managed properly, may lead to an
incorrect product, which does not satisfy the properties
required by the specifications. In extreme cases this may
for example lead to safety breaches in mission critical
systems.
Managing inconsistencies, therefore, is a must in every
engineering process, especially in the collaborative ones.
Wrongly executed inconsistency management, however,
may have severe repercussions on the time it takes to
produce a correct product. For example, dealing with
incompatible sub-system interfaces during the integra-
tion phase may require additional iterations over costly
engineering activities. Consequently, analyzing the im-
pact of various inconsistency management techniques is
desirable.
Explicit modeling of the engineering process enables
combining the two facets of proper and efficient inconsis-



Figure 1: Autonomous Guided Vehicle (AGV): an example heterogeneous system which requires stakeholder collabo-
ration across various domains.

tency management. On the one hand, the process model
enables thorough understanding of where and when spe-
cific inconsistencies arise. On the other hand, it also
enables a quantitative assessment of the impact of in-
troducing a specific inconsistency management strategy
to the process.
Here, we focus on how inconsistencies should be man-
aged in collaborative, heterogeneous settings in order to
guarantee the correctness of the end product, yet en-
abling an efficient flow of engineering work. We present
PROxIMA, a process-oriented framework for managing
inconsistencies. The main features of the framework are
(i) its support for the optimal selection of inconsistency
management techniques across the process, and (ii) en-
forcing the overall consistency of the virtual product by
process enactment and tool interoperability. The feasi-
bility of our approach has been demonstrated by means
of the engineering of an Autonomous Guided Vehicle
(AGV), shown in Figure 1.

MANAGING INCONSISTENCIES

Inconsistencies may have different causes. Human er-
ror is the top cause, with examples such as making
design mistakes and communication shortcomings. In

more elaborate cases, inconsistencies may arise from im-
precise semantics of modeling languages or from a mis-
match between the semantics of different modeling lan-
guages (Huzar et al., 2005).
As proposed by Finkelstein (2000), instead of simply
just removing inconsistencies from the design, we need
to think about “managing consistency”. One of the core
activities of (in-)consistency management is the detec-
tion of inconsistencies. It is preferred that detection is
achieved as early as possible, because the earlier the in-
consistencies are detected, the lower the costs of resolv-
ing them. Early detection of inconsistencies also pro-
vides more freedom in choosing the appropriate resolu-
tion and tolerance techniques Van Der Straeten (2005);
Dávid et al. (2016b).
A significant amount of research has been dedicated to
solving semantic inconsistencies on the syntactic level
(for example (Adourian and Vangheluwe, 2007; Bhave
et al., 2010)). These approaches, however, are prone
to lose vital information during the approximation and
abstraction steps taken while translating semantic prop-
erties to linguistic structures and parameters. We argue
that reasoning over explicitly modeled semantic proper-
ties suits the problem of tackling inconsistencies better,
as demonstrated by, e.g., Herzig and Paredis (2014).



Prevention

Preventive approaches advocate avoiding inconsistencies
before they occur. A pertinent example is using lock-
ing mechanisms in collaborative modeling settings, for
example, by storing the models into a version control
system. Such a technique, however, does not allow true
parallelism in the engineering process, as entire mod-
els/files are locked for one stakeholder, putting others’
work on hold, thus rendering the process less perfor-
mant. Property-based locking (Chechik et al., 2015) al-
leviates this problem by reducing the scope of the lock
to selected parts of the model, by the use of graph pat-
terns. Additionally, such a fine-grained locking mecha-
nism solves the problem of overlocking, where multiple
stakeholders would lock too many models/files and a
deadlock or livelock could occur. To support true paral-
lelism in the engineering flow, contract-based techniques
have been recently proposed (Vanherpen et al., 2016). In
this approach, the accepted value ranges of the various
system parameters are being negotiated by the stake-
holders concerned with the respective parameters, and
the negotiated values are persisted in a contract. The
contract asserts what different stakeholders guarantee
towards the others with respect to a specific parameter.
By establishing a contract prior to the actual engineer-
ing work, the consistency of the virtual product, with
respect to the properties detailed in the contract, can
be guaranteed.

Allow-and-resolve

Instead of spending effort on the a priori negotiation of
a contract, other approaches deal with inconsistencies in
situ, i.e., inconsistencies are allowed to occur and sub-
sequently are detected and later resolved, with the pos-
sibility of tolerating them (Balzer, 1991) for a certain
period. After that period, the inconsistencies are ei-
ther naturally resolved or need to be resolved explicitly.
Dependency analysis between models has been widely
applied in collaborative settings, where inconsistencies
typically occur due to the usage of different overlap-
ping stakeholder models (Qamar et al., 2012). In such
techniques, a pivot model (correspondence model) re-
lates the elements of the models and by this, enables
propagating change information from one model to the
others. In its most basic form, such a technique can pro-
vide a stakeholder with the information that a change in
another stakeholder’s model may have resulted in an in-
consistency, and consequently, investigation/resolution
of the problem is required. If more information about
the relationship between the models (such as algebraic
relationships between their parameters) is known, prop-
agation of the change information may also trigger au-
tomated resolution of the inconsistency. SysML is a
typical choice for establishing pivot models at the ar-
chitectural level. Recently, the combination of SysML

and ontological reasoning has been proposed in order to
support the detection of semantic inconsistencies (Feld-
mann et al., 2014).
To manage an inconsistency, one has to choose an ap-
propriate management technique, and to decide when to
apply it. This decision can be viewed as an optimiza-
tion problem and as such, requires an objective function.
Typical examples include minimizing the time to mar-
ket, minimizing the overall cost per work item, maximiz-
ing the utilization of resources, etc. Whichever metric
we choose as an objective function for the optimization,
the only way to derive them is by modeling and sim-
ulating the underlying engineering process. To satisfy
the objective function, the process is transformed to an
improved one, where every inconsistency is managed.

The challenge: appropriate selection of inconsis-
tency management techniques

The management of inconsistencies is achieved by se-
lecting an appropriate management pattern for each in-
consistency instance. The selection is made from a cata-
logue of management patterns, such as reordering activ-
ities, introducing automated or manual consistency in-
spections after a critical region of the process, applying
an engineering contract (Sangiovanni-Vincentelli et al.,
2012) on a specific part of the process, etc.
Since the same type of inconsistency may be managed by
applying different different management patterns, the
selection of the most appropriate one should happen
through quantified cost measures. We use the expected
transit time of the process (to approximate the time-
to-market) as a cost measure and prefer processes with
lower transit time, as they result in accelerated prod-
uct development. This problem is translated to a con-
straint solving and optimization problem which finds the
best process alternative while managing every potential
source of inconsistencies, discussed in the following sec-
tion.

THE PROxIMA FRAMEWORK

The PROxIMA (PRocess Optimization + Inconsis-
tency MAnagement) (Dávid et al., 2016a, 2017) frame-
work provides tools for modeling numerous aspects of
the engineering process (Figure 2); transforming the
process into an optimized form; and enacting the op-
timized process while interfacing with engineering tools.
The most important capabilities of the framework are

• modeling the engineering process with both (con-
trol) flow of engineering activities, and (data) flow
of engineering artifacts in it;

• modeling the attributes and properties of the en-
gineered system, and relating them to engineering
activities and artifacts;



Figure 2: The modeling tool allows specifying various aspects of the underlying engineering process.

• resource and cost modeling;

• process optimization – finding the most cost-
efficient process which still guarantees the correct-
ness of the product by satisfying every system prop-
erty;

• process enactment – exection and monitoring of the
optimized process.

The tool was built on the Eclipse platform, using Python
libraries for symbolic mathematical evaluations and tool
interoperability.1
In the following, we discuss the typical steps required
for inconsistency management in our framework.

Modeling the process

The modeling of the process is carried out using a vi-
sual modeling tool, built with the Sirius framework. Ac-
tivities, their precedence, the input and output mod-
els are captured using the Ftg+Pm formalism (Lú-
cio et al., 2013). The formalism enables the usage
of process models (“PM”) in conjunction with the
model of languages and transformations (the formalism-
transformation graph - “FTG”) used throughout the
process. Formalisms and transformations serve as types

1The tool is available as open-source software (EPL) from
http://istvandavid.com/icm.

to the processes: objects of the process are instances
of languages of the FTG; and activities of the process
realize transformations. In addition, system parame-
ters which are subjects to potential inconsistencies, are
charted as well and linked to the engineering activities
which interact with them (e.g., by reading the value of
the parameter or modifying it). This information is vital
in identifying the root causes and scope of inconsisten-
cies. In addition, resources (human and automated) can
be modeled as well, such as stakeholders who enact the
different activities, machines, tools, licenses, etc.
The optimality of the process is expressed by cost mod-
els. Multiple types of costs can be associated with ac-
tivities, models, and tools. These costs are treated as
different objectives to the optimization, resulting in a
Pareto-front.

Off-line inconsistency management: process op-
timization by design-space exploration

After the process is modeled, the first phase of the incon-
sistency management takes place. The process is trans-
formed so that as much inconsistencies are managed
as possible, but also resulting in the best performing
process, and respecting the resource constraints. The
search for the resulting process is carried out using rule-
based multi-objective design space exploration (DSE),
in which the space of different process alternatives is

http://istvandavid.com/icm


Figure 3: Design-Space Exploration.

searched to find the most appropriate one (Figure 3).
The DSE engine takes the original, unmanaged and pro-
duces an optimized managed process as an output. This
is achieved by applying pre-defined model transforma-
tions rules on the original process model in multiple it-
erations, thus constituting a search plan. Instead of an
exhaustive approach, this search is governed by a hill
climbing algorithm. There are two types of transforma-
tions:

• management transformations transform the process
by applying management patterns onto it (e.g., in-
troducing a contract negotiation activity in the pro-
cess);

• optimization transformations, which try to paral-
lelize the process as much as possible, also consid-
ering resource and scheduling constraints.

In every iteration, the consistency and performance of
the new process is assessed so it can be decided whether
the new process is an appropriate one. Managing incon-
sistencies is a hard constraint of the optimization, while
maximizing the overall efficiency is a soft objective. This
means, every potential inconsistency will be managed
in the process, but this may sacrifice efficiency. Due to
the stochastic nature of the process, assessing the per-
formance of a candidate process is not straightforward.
The process model is mapped onto the queueing network
formalism of MathWorks’ SimEvents and simulated to
obtain a quantitative performance metric (Figure 4).
The following rules are used to map the engineering pro-
cess onto the SimEvents formalism.

• Activities are translated to a Server processing a
single token in the SimEvents formalism. The ser-
vice time of the token in the server is based on the
provided cost. The service time is either a constant
value or a value sampled from a distribution.

• Fork nodes are translated to replicate nodes that
process an incoming token (and all of it properties,
like the total service time) to each of the outgoing
branches.

• The Join node uses a combination of queues to let
the tokens wait for the other branches. An entity
combiner combines all tokens when they are avail-
able.

• Decision nodes are translated to an output switch
element that routes to the available paths. The cho-
sen path is sampled from the information provided
in the process model. The merge node uses a path
combiner to combine the incoming paths.

INITIAL	NODE

Design_Concept

Design_MBM

Design_Elca

MERGE

FORK

Select_Battery Select_Motor

JOIN

Mechanical_Design

Control_Co-Sim

Electrical

DECISION

FINAL

#d
et
wIN

OUT
Read	Timer

IN

Entity	Sink

f1
IN

OUT

Entity	Departure
Function-Call	Generator

-T-

Goto

Display1

IN OUT

Start	Timer

OUT

Time-Based
Entity	Generator

#dIN1

IN2 OUT

Path	Combiner1fcn OUT

Event-Based
Entity	Generator

-T-

From

t

IN
OUT

Single	Server5

Event-Based
Random	Number5

t

IN
OUT

Single	Server6

Event-Based
Random	Number6

t

IN
OUT

Single	Server7

Event-Based
Random	Number7

#d

IN OUT1

OUT2

Replicate

t

IN
OUT

Single	Server3

Event-Based
Random	Number3

t

IN
OUT

Single	Server4

Event-Based
Random	Number4

#dIN1

IN2 OUT

Entity	Combiner

Display7

#d
IN

OUT

FIFO	Queue

#d
IN

OUT

FIFO	Queue1

Display8

Display9

#a
#d

IN OUT1
OUT2

Entity	Splitter

IN

Entity	Sink1

Display2

IN1

IN2
OUT

Path	Combiner

IN OUT

Infinite	Server

t

IN
OUT

Single	Server2

Event-Based
Random	Number2

t

IN
OUT

Single	Server1

Event-Based
Random	Number1

t

IN
OUT

Single	Server

Event-Based
Random	Number

p

IN

OUT1

OUT2

Output	Switch

	>	0

Switch

1

Constant

2

Constant1

Timed	to
Event	Signal

ScopeUniform	Random
Number

Figure 4: A quantitative SimEvents simulation model,
generated from the original FTG+PM process model.



• Because we only allow for a single process to be
executed at the same time, the logic in the final
node allows for the creation of a new token in the
initial node.

• The control flow between these newly created en-
tities is equal to the control flow edges in the process
model.

For each of the tokens, the total service time is recorded.
As SimEvents is a stochastic formalism, multiple tokens
are used to calculate the total cost of the process. We
use the average service time of all tokens as the cost of
the process.

On-line inconsistency management: process en-
actment and monitoring

Process enactment is commonly defined as the use of
software to support the execution of operational pro-
cesses, which enables mixing automated and manual ac-
tivities. (CMMI Product Team, 2010) The PROxIMA
framework provides an engine for enacting previously
defined (and optimized) processes with the additional
support for interoperability with a selection of engineer-
ing tools, such as Matlab/Simulink or Papyrus. During
the enactment, the constraints of the system’s param-
eters are continuously monitored. Whenever a viola-
tion of a constraint occurs, the stakeholders are notified
about the occurrence of an inconsistency.
By employing symbolic mathematics, constraints can
additionally be maintained in an incremental fashion
and used for guiding the engineering work. Whenever
the value of a system attribute can be derived from a
combination of constraints and previously assigned at-
tributes, the engine will provide this information to the
stakeholder, thus aiding engineering decisions.

RELATED WORK

Inconsistency management has been a topic of interest
for a long time in the domains of software engineering,
mechatronic design and cyber-physical systems, due to
their typically multi-view approach to system design.
Di Ruscio et al. (2017) identify the research directions,
challenges, and opportunities of collaborative MDSE
and conclude that inconsistency management is one of
the main enablers of efficient collaboration.
Multiple authors point out that managing inconsisten-
cies should be carried out with processes in mind as
well. Persson et al. (2013) identify consistency between
the various views of cyber-physical system design as
one of the main challenges in design of such complex
systems. This is due to relations between views, with
respect to their semantic relations, process and oper-
ations which often overlap. Multi-paradigm modeling
Vangheluwe et al. (2002) advocates using the most ap-
propriate formalism(s), at the most appropriate level(s)

of abstraction, while also explicitly modelling the pro-
cesses manipulating the models. The framework pre-
sented in this paper aims at the problem of semantics
inconsistencies with a focus on processes.
Other approaches also acknowledge the role of seman-
tic techniques in inconsistency management, and try to
relate semantic concepts to the linguistic concepts of
modeling. Hehenberger et al. (2010) organize structural
design elements and their relations into a domain ontol-
ogy to identify inconsistencies. A limited set of semantic
properties are expressed with linguistic concepts which
enables reasoning over semantic overlaps to a sufficient
extent. Similarly, Chechik et al. (2015) introduce the
notion of approximate properties: linguistic properties
expressed as graph patterns which are accurate enough
to appropriately approximate a semantic property. Ap-
proximate properties suitable to implement smart lock-
ing mechanisms in collaborative model-based design as
they introduce a trade-off between the computational re-
sources to obtain or check a property, and the accuracy
of the results. As opposed to these, our approach makes
semantic properties first-class artifacts and relates them
to processes, instead of linguistic model elements, which
enables management of a richer class of inconsistencies.
Ontologies have been used for inconsistency manage-
ment by Kovalenko et al. (2014) to support automated
detection of defects between domain-specific models.
Similarly, Feldmann et al. (2014) use the OWL lan-
guage in conjunction with a SysML-based approach to
formally represent the design of a production system and
evaluate the compatibility of domain-specific models in
a collaborative setting. These approaches are comple-
mentary to ours: incorporating relationships between
ontological properties for reasoning over inconsistencies
is a planned extension to our work.
As opposed to the above techniques, inconsistency man-
agement in collaborative modeling is more frequently
addressed on the linguistic level. Qamar et al. (2012) ap-
proach inconsistency management by making inter- and
intra-model dependencies explicit. Dependencies are di-
rect results of semantic overlaps and are used to notify
stakeholders about possible inconsistencies when depen-
dent properties change. Our approach introduces an
indirection between models and properties by relating
them to specific activities that during working over mod-
els also access properties with specific intents. Blanc
et al. (2008) approach the detection of inconsistencies
from a model operation based point of view, where mod-
els are stored as sequences of change events and incon-
sistencies are expressed in terms of Create Read Update
Delete (CRUD) operations. Our approach generalizes
this approach by introducing intents that are analogous
with model operations, but they express change opera-
tions in terms of activities and properties.
In our work, we opted for the Ftg+Pm formalism for
modeling processes. As compared to the widely used
BPMN2.0 Object Management Group (OMG) (2011) or



BPEL-based process modeling frameworks (e.g., jBPM),
our formalism allows modeling details more relevant to
engineering scenarios in MDE settings. Models and
transformations are first-class citizens in the Ftg+Pm,
which enables deeper understanding of inconsistencies
and more control over the enacted process.
Our framework provides simple undo/redo actions to
revert to the latest consistent state of the models, but
there have been other approaches to inconsistency reso-
lution published. Mens et al. (2006) propose expressing
the steps of inconsistency detection and resolution as
graph transformation rules. Critical pair analysis is used
to analyse potential dependencies between the detection
and resolution of inconsistencies. It is, however, un-
clear whether critical pair analysis scales to industrial-
size problems. Eramo et al. (2016) present an approach
where each of the consistent alternatives are maintained
throughout the process and removed when a decision is
made and an alternative becomes infeasible. Almeida da
Silva et al. (2010) investigate the possibilities of man-
aging deviations of enacted processes from their respec-
tive specifications. It is not within the scope of our work,
but indeed, deviations from the specified process are big
threat to the validity of any process-oriented engineering
approach. The efforts put into analyzing and optimiz-
ing a process model can be easily undone by deviating
from (and sometimes even completely abandoning) the
specification of the process.

CONCLUSIONS

In this paper, we presented an approach and framework
for managing inconsistencies in collaborative and po-
tentially highly parallelized, concurrent engineering set-
tings. Our approach leverages the underlying engineer-
ing process and the various related information which
enables reasoning over inconsistencies, their origins, im-
pact and severity in a novel way.
We support the automated process of inconsistency
management by a prototype tool. The approach has
been evaluated over a case study of a mechatronic sys-
tem, and Autonomous Guided Vehicle (AGV).
The approach discussed here can be an efficient enabler
for collaborative engineering. At the same time, how-
ever, making the various facets of the engineering pro-
cess explicit is a labor intensive and tedious task, which
heavily frontloads the project. To alleviate the costs,
the task of process modeling can be automated to a rel-
atively high extent. The fundamental structure of the
engineering process can be derived from business level
processes.
In the future, we plan to augment our framework with
performance simulation techniques for the process mod-
els. Our ongoing work focuses on performance metrics
such as the transit time of the process. The impact of
inconsistencies on the process is another performance
metric we plan to support the simulation of. We also

plan to enable explicit reasoning about the trade-off be-
tween managing inconsistencies in the process optimiza-
tion phase (Dávid et al., 2016a) and during the enact-
ment (Dávid et al., 2017). Another direction in our re-
search is to support our approach with a library of incon-
sistency resolution techniques. We aim for developing a
semi-automated selection of resolution methods, which
will require detailed cost models of the process and all
of its aspects.

ACKNOWLEDGEMENTS

This research has been partially funded by a BOF
DOCPRO-1 grant of the University of Antwerp, Bel-
gium.

REFERENCES

Adourian C. and Vangheluwe H., 2007. Consistency Be-
tween Geometric and Dynamic Views of a Mechanical
System. In Proc. of the 2007 Summer Computer Sim-
ulation Conf. Society for Computer Simulation Int.,
San Diego, SCSC ’07. ISBN 1-56555-316-0, 31:1–31:6.

Almeida da Silva M.A.; Bendraou R.; Blanc X.;
and Gervais M.P., 2010. Early Deviation De-
tection in Modeling Activities of MDE Processes,
Springer Berlin Heidelberg, Berlin, Heidelberg.
ISBN 978-3-642-16129-2, 303–317. doi:10.1007/
978-3-642-16129-2_22.

Balzer R., 1991. Tolerating Inconsistency. In Proceed-
ings of the 13th International Conference on Software
Engineering. IEEE Computer Society Press, ICSE
’91. ISBN 0-89791-391-4, 158–165.

Bhave A.; Krogh B.; Garlan D.; and Schmerl B., 2010.
Multi-domain modeling of cyber-physical systems us-
ing architectural views. AVICPS 2010, 43.

Blanc X.; Mounier I.; Mougenot A.; and Mens
T., 2008. Detecting model inconsistency through
operation-based model construction. In Software En-
gineering, 2008. ICSE ’08. ISSN 0270-5257, 511–520.
doi:10.1145/1368088.1368158.

Chechik M.; Dalpiaz F.; Debreceni C.; Horkoff J.; Ráth
I.Z.; and Varró D., 2015. Property-based methods for
collaborative model development.

CMMI Product Team, 2010. CMMI for Development,
Version 1.3, Tech. Rep. CMU/SEI-2010-TR-033.

Corley J.; Syriani E.; Ergin H.; and Van Mierlo S., 2016.
Cloud-based multi-view modeling environments. In
Modern Software Engineering Methodologies for Mo-
bile and Cloud Environments, IGI Global. 120–139.

Dávid I.; Denil J.; Gadeyne K.; and Vangheluwe
H., 2016a. Engineering Process Transformation to



Manage (In)consistency. In COMMitMDE 2016.
http://ceur-ws.org/Vol-1717/, 7–16.

Dávid I.; Meyers B.; Vanherpen K.; Van Tendeloo Y.;
Berx K.; and Vangheluwe H., 2017. Modeling and
Enactment Support for Early Detection of Inconsis-
tencies in Engineering Processes. In COMMitMDE
2017.

Dávid I.; Syriani E.; Verbrugge C.; Buchs D.; Blouin D.;
Cicchetti A.; and Vanherpen K., 2016b. Towards In-
consistency Tolerance by Quantification of Semantic
Inconsistencies. In COMMitMDE 2016. 35–44.

Di Ruscio D.; Franzago M.; Muccini H.; and Malavolta
I., 2017. Envisioning the future of collaborative model-
driven software engineering. In Proceedings of the
39th International Conference on Software Engineer-
ing Companion. IEEE Press, 219–221.

Eramo R.; Pierantonio A.; and Rosa G., 2016. Ap-
proaching Collaborative Modeling as an Uncertainty
Reduction Process. In COMMitMDE 2016. 27–34.

Feldmann S.; Kernschmidt K.; and Vogel-Heuser B.,
2014. Combining a SysML-based modeling approach
and semantic technologies for analyzing change influ-
ences in manufacturing plant models. Procedia CIRP,
17, 451–456.

Finkelstein A., 2000. A Foolish Consistency: Tech-
nical Challenges in Consistency Management. In
Database and Expert Systems Applications, Springer,
LNCS, vol. 1873. ISBN 978-3-540-67978-3, 1–5. doi:
10.1007/3-540-44469-6_1.

Hehenberger P.; Egyed A.; and Zeman K., 2010. Consis-
tency Checking of Mechatronic Design Models. In 30th
Computers and Information in Engineering Conf.
ASME, vol. 3. ISBN 978-0-7918-4411-3, 1141–1148.
doi:10.1115/DETC2010-28615.

Herzig S.J. and Paredis C.J., 2014. Bayesian Reasoning
Over Models. In MoDeVVa 2014. 69–78.

Herzig S.J.; Qamar A.; and Paredis C.J., 2014. An ap-
proach to identifying inconsistencies in model-based
systems engineering. Procedia Comp Sci, 28, 354–362.

Huzar Z.; Kuzniarz L.; Reggio G.; and Sourrouille
J.L., 2005. Consistency Problems in UML-based Soft-
ware Development. In Proceedings of the 2004 In-
ternational Conference on UML Modeling Languages
and Applications. Springer-Verlag, Berlin, Heidelberg,
UML’04. ISBN 3-540-25081-6, 1–12. doi:10.1007/
978-3-540-31797-5_1.

Kovalenko O.; Serral E.; Sabou M.; Ekaputra F.J.; Win-
kler D.; and Biffl S., 2014. Automating Cross- Disci-
plinary Defect Detection in Multi-Disciplinary Engi-
neering Environments. In Knowledge Engineering and
Knowledge Management, Springer. 238–249.

Lúcio L.; Mustafiz S.; Denil J.; Vangheluwe H.; and
Jukss M., 2013. FTG+PM: An Integrated Framework
for Investigating Model Transformation Chains. In
SDL 2013: Model-Driven Dependability Engineering,
Springer, LNCS, vol. 7916. ISBN 978-3-642-38910-8,
182–202. doi:10.1007/978-3-642-38911-5_11.

Mens T.; Van Der Straeten R.; and D’Hondt M., 2006.
Detecting and resolving model inconsistencies using
transformation dependency analysis. In International
Conference on Model Driven Engineering Languages
and Systems. Springer Berlin Heidelberg, 200–214.

Object Management Group (OMG), 2011. BPMN 2.0
Specification. http://www.bpmn.org/. Accessed:
2018-05-06.

Persson M.; Törngren M.; Qamar A.; Westman J.; Biehl
M.; Tripakis S.; Vangheluwe H.; and Denil J., 2013.
A Characterization of Integrated Multi-View Model-
ing in the Context of Embedded and Cyber-Physical
Systems. In EMSOFT. IEEE. ISBN 9781479914432,
1–10. doi:10.1109/EMSOFT.2013.6658588.

Qamar A.; Paredis C.J.; Wikander J.; and During C.,
2012. Dependency modeling and model management
in mechatronic design. Journal of Computing and In-
formation Science in Engineering, 12, no. 4, 041009.

Sangiovanni-Vincentelli A.; Damm W.; and Passerone
R., 2012. Taming Dr. Frankenstein: Contract-Based
Design for Cyber-Physical Systems. European Journal
of Control, 18, no. 3, 217 – 238. ISSN 0947-3580. doi:
http://dx.doi.org/10.3166/ejc.18.217-238.

Spanoudakis G. and Zisman A., 2001. Inconsistency
management in software engineering: Survey and
open research issues. In in Handbook of Software Engi-
neering and Knowledge Engineering. World Scientific,
329–380.

Van Der Straeten R., 2005. Inconsistency manage-
ment in model-driven engineering. An Approach Us-
ing Description Logics (PhD thesis), Vrije Univer-
siteit Brussel, Brussels, Belgium.

Vangheluwe H.; De Lara J.; and Mosterman P.J., 2002.
An introduction to multi-paradigm modelling and sim-
ulation. In Proc. of the AIS’2002 conf. 9–20.

Vanherpen K.; Denil J.; Dávid I.; Meulenaere P.D.;
Mosterman P.J.; Torngren M.; Qamar A.; and
Vangheluwe H., 2016. Ontological reasoning for con-
sistency in the design of cyber-physical systems. In
CPPS 2016. 1–8. doi:10.1109/CPPS.2016.7483922.

http://www.bpmn.org/

	INTRODUCTION
	MANAGING INCONSISTENCIES
	Prevention
	Allow-and-resolve
	The challenge: appropriate selection of inconsistency management techniques

	THE PROxIMA FRAMEWORK
	Modeling the process
	Off-line inconsistency management: process optimization by design-space exploration
	On-line inconsistency management: process enactment and monitoring

	RELATED WORK
	CONCLUSIONS
	ACKNOWLEDGEMENTS

