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Abstract
The complexity of current engineered systems has increased dras-
tically over the last decades. Due to this complexity, these systems
are typically developed in collaborative settings with stakeholders
from different domains involved. A pertinent example is engineer-
ing of cyber-physical systems (CPS). Such collaborative endeav-
ours are severely hindered by inconsistencies that arise due to se-
mantic overlaps between different models. Additionally, since the
involved domain-specific languages of stakeholders may be very
disparate, inconsistencies often do not manifest on the linguistic
level.

To cope with this problem, we propose an approach that enables
better understanding how inconsistencies arise, evolve and how
they should be managed. The core of our approach is a rich process
modeling formalism that allows modeling multiple aspects of the
development workflow in accordance with the guidelines of multi-
paradigm modeling (MPM). We support our approach with an
open-source prototype tool for designing engineering processes,
defining inconsistency patterns and their respective management
alternatives, and with the ability to optimize the original process
for various optimality criteria, such as consistency and costs.

Keywords inconsistency management, process engineering, model-
based design, cyber-physical systems

1. Problem and motivation
The complexity of current engineered systems has increased drasti-
cally over the last decades. A pertinent example are today’s mecha-
tronic and cyber-physical systems (CPS). These are characterized
by heterogeneity, namely the complex interplay between physical,
software, and network components (27).

Due to their complexity, these systems are no longer engineered
by a single individual, but rather by the collaboration of experts.
Such collaborative endeavors involve stakeholders from different
domains, who bring their point of view on the system to be built,
resulting in typical settings of multi-view and multi-paradigm mod-
eling (MPM) (24), which proposes to tackle complexity by model-
ing and relating all aspects of the system – including development
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processes – explicitly, using the most appropriate formalisms, at the
most appropriate levels of abstraction.

Semantic inconsistencies Collaborative modeling scenarios are
vulnerable to model inconsistencies. This is a consequence of the
multiple views on the same virtual product that give rise to out-
dated and incorrect data. Overlaps in the semantic domain of mod-
els have been identified as the primary reason of model inconsisten-
cies by many authors (27; 20; 34). That is, properties of different
models often turn out to be logically connected or sometimes even
(nearly) the same (14; 18). Such a property can be, for example, the
“safety” of the designed system, which in turn can be implied by
the property of “stability” of a specific subsystem, meaning that the
two properties are connected as they semantically overlap. Involv-
ing different engineering domains which typically feature disparate
modeling formalisms further aggravates the problem. Although the
problem of inconsistencies is a well-studied area in software en-
gineering (32), state-of-the-art techniques typically focus on syn-
tactic inconsistencies (30; 15; 16). Since retaining semantic con-
sistency is typically linked to simulation and model checking tech-
niques which can often be resource demanding and time consum-
ing, state-of-the-art techniques fail to efficiently address the consis-
tency issues of semantic properties in the broader system engineer-
ing domain.

Managing (in)consistencies Finkelstein (13) hints that instead
of just removing inconsistencies, one should manage them. This
entails reasoning about the causes and sources of inconsistencies,
their evolution, interaction and impact on the overall design. We
argue that this can be best achieved by investigating inconsistencies
in the context of (i) the design process of the virtual product, (ii) the
modeling languages and transformations used in the process, and
(iii) the ontological and linguistic properties of the virtual product
that are manipulated during the design.

Consequently, the goal of inconsistency management is to trans-
form inconsistent design processes into consistency preserving pro-
cesses, and that, preferably by introducing (semi) automated con-
sistency management tasks, instead of manual ones.

Tolerating inconsistencies Even though incremental techniques
(34; 11; 17) offer better scalability compared to batch techniques
in the case of syntactic inconsistencies, applying them on semantic
cases results in frequent re-computations of properties in order
to inspect the consistency of them. Inconsistencies are stateful
entities that might occur, evolve and later potentially disappear as
the natural consequence of the design workflow. This gives room
for temporarily tolerating them (3), i.e. allowing inconsistencies to
exist for a period of time, which promises lower resolution costs by
(i) postponing resolution to a more appropriate phase of the design
process; or in some cases even (ii) completely avoid resolution as
specific inconsistencies get resolved on their own.



Motivation The motivation of our work is the lack of a compre-
hensive, process-oriented approach to managing semantic inconsis-
tencies with the ability to be flexible, i.e. tolerate inconsistencies in
certain (temporal) cases. In this paper we present the foundations
of such an approach, link it to the state-of-the-art and present future
development directions.

The rest of the paper is structured as follows. Section 2 gives an
overview on the background of this research and the related work.
Section 3 briefly presents our approach. In Section 4 we discuss the
current results of the approach. Finally, we conclude the paper by
discussing our contributions in Section 5.

2. Background and related work
Inconsistency management Inconsistency management is a well-
studied topic in the domains of software engineering, mechatronic
design and cyber-physical systems, due to the typically multi-view
and often multi-paradigm approach to system design. Persson et
al (27) identify consistency between the various views of cyber-
physical system design as one of the main challenges in design of
such complex systems. This is due to relations between views, with
respect to their semantic relations, process and operations which
often overlap. Our technique embraces these ideas and addresses
the problem of inconsistencies by explicitly modeling semantic
properties and relating them to engineering processes.

Other approaches also acknowledge the role of semantic tech-
niques in inconsistency management, and try to relate semantic
concepts to the linguistic concepts of modeling. Hehenberger et
al (19) organize structural design elements and their relations into
a domain ontology to identify inconsistencies. A limited set of se-
mantic properties are expressed with linguistic concepts which en-
ables reasoning over semantic overlaps to a sufficient extent. Sim-
ilarly, Chechik et al (6) introduce the notion of approximate prop-
erties: linguistic properties expressed as graph patterns which are
accurate enough to appropriately approximate a semantic property.
Approximate properties suitable to implement smart locking mech-
anisms in collaborative model-based design as they introduce a
trade-off between the computational resources to obtain or check
a property, and the accuracy of the results. As opposed to these, our
approach makes semantic properties first-class artifacts and relates
them to processes, instead of linguistic model elements, which en-
ables management of a richer class of inconsistencies.

As opposed to the above techniques, inconsistency management
in collaborative modeling is more frequently addressed on the lin-
guistic level. Qamar et al (28) approach inconsistency management
by making inter- and intra-model dependencies explicit. Dependen-
cies are direct results of semantic overlaps and are used to no-
tify stakeholders about possible inconsistencies when dependent
properties change. Our approach introduces an indirection between
models and properties by relating them to specific activities that
during working over models also access properties with specific in-
tents. Blanc et al (5) approach the detection of inconsistencies from
a model operation based point of view, where models are stored
as sequences of change events and inconsistencies are expressed
in terms of CRUD operations. Our approach generalizes this ap-
proach by introducing intents that are analogous with model opera-
tions, but they express change operations in terms of activities and
properties. Egyed et al (11) investigates the impact of single incon-
sistencies on the whole system by introducing the notion of change
impact based scopes. Scopes are used to carry out resolution steps
on the required regions of the models and thus enhancing the effi-
ciency of the inconsistency management framework. We carry out
a similar scope detection and management on the property model of
our approach. Specific technical challenges of collaborative model-
ing have been addressed by state-of-the-art techniques, such as (8)
for comparing and merging models and EMFStore (10) for model

persistence. These techniques can serve as an implementational ba-
sis for improving our tool.

Process engineering Modeling, analyzing and optimizing pro-
cesses has been a topic of interest in project management. The
resource-constrained project scheduling problem (RCPSP) (2) con-
sists of finding a schedule of minimal duration by assigning a start
time to each activity such that the precedence relations and the re-
source availabilities are respected. More formally, the RCPSP is a
combinatorial optimization problem with potentially multiple di-
mensions of optimality (e.g. optimizing for material costs and du-
ration as well). The problem has been well-researched and multiple
solution techniques exist, but this construction lacks the notion of
formalism and corresponding models being manipulated during the
process.

BPMN2.0 (25) has been widely used for modeling and execut-
ing business processes. It enables high-level modeling to support
stakeholders from the business domain. Its syntax is, therefore, sim-
ple to be used by a non-expert, especially when compared to the
formalism presented in this paper.

Inconsistency tolerance Balzer et al (3) introduces the notion of
temporal tolerance by deconstructing inconsistency rules to two de-
rived rules, the appearance and disappearance rule which span a
temporal interval of the model(s) being in an inconsistent state,
hence making inconsistencies stateful entities. By allowing fur-
ther engineering activities to be executed during the inconsistent
interval, the better parallelization of the design workflow can be
achieved and ultimately, these may lead to the inconsistencies to
be resolved without interrupting the design process for further rec-
onciliation. As a limitation, the technique only deals with the most
simplistic version of temporal consistency relations, in which a pair
subsequent operations form an identity transformation. In practice,
more complex structures of operations have to be supported. East-
erbrook et al (9) propose a framework for temporal inconsistency
tolerance in the context of multi-view modeling. Tolerating incon-
sistencies decouples the viewpoints and introduces flexibility in the
design process as deciding upon when to resolve inconsistencies is
the responsibility of the owner of the view. The authors provide a
formal approach for guiding the decision in form of pairs of pre-
and post-conditions. The technique is, however, not explicit about
the metric used for evaluating the divergence of views (and view-
points) and consequently, it does not scale well for larger problems.
The lack of a distance metric also makes it hard to assess the impact
of unresolved inconsistencies and reason over their accumulation
and evolution.

3. A process-oriented approach for inconsistency
management

In this section, we give an overview on the foundations of our
process-oriented inconsistency management approach.

3.1 Overview of the approach
Potential sources of inconsistencies are identified by considering
characteristics of the process model. Management of inconsisten-
cies is achieved by selecting the appropriate techniques from a cat-
alogue of management patterns and applying them on the unman-
aged process to achieve a managed one. Typical patterns include
re-ordering activities of a process, ensuring property checks around
inconsistency-prone regions and using design contracts. Since the
same type of inconsistency may be managed via different man-
agement patterns, the selection of the most appropriate one should
happen through quantified cost measures. The selection method is
translated to a constraint solving and optimization problem which
finds the best process alternative while managing every potential
source of inconsistencies. The concept is shown in Figure 1.



Figure 1: Conceptual overview of the approach.

3.2 A formalism for modeling processes
To model engineering processes with sufficient semantics for man-
aging inconsistencies, we propose a formalism that augments the
process with the syntactic and semantic properties that depict speci-
ficities of the engineered system.

We build our formalism on the FTG+PM (21) formalism,
which enables the usage of process models (“PM”) in conjunction
with the model of languages and transformations (the formalism-
transformation graph - “FTG”) used throughout the process. As
shown in Figure 2, languages and transformations serve as a type
system to the processes: objects of the process are instances of
languages of the FTG; and activities of the process realize transfor-
mations.

Figure 2: The main parts of the process formalism.

We extend the above formalism with the following aspects.

Properties These serve as the foundational basis for reasoning
about semantic inconsistencies. The property model, therefore
is used to guarantee a managed process, but not for optimiz-
ing it. We assume activities of an engineering process have a
meaningful purpose of enhancing the system. This purpose is
expressed as the intent of an activity with respect to a property
or a set of properties.

Resources As opposed to properties, explicit modeling of re-
sources serves for reasoning over how the process can be re-
structured for optimality. Activities are allocated to a certain
set of resources, but the availability of the resources is typically
limited. We also distinguish between automated and manual
resources to further improve optimality by favoring automated
resources as much as possible.

Costs Finally, to actually quantify optimality, at least one cost
model is required. Our approach, however, enables using multi-
ple cost models. Typical cost models include process execution
time, queueing time, material costs. The cost model itself may
be as simple as assigning a usage cost to each resource; but
may be more complex by additionally assigning non-resource
induced costs directly to activities.

3.3 Process optimization
The process optimization problem is NP-hard in the strong sense.
This can be shown by reducing the RCPSP to our problem, and the
former one is a known NP-hard problem in the strong sense (2).

The optimization, therefore cannot be approached with exhaustive
techniques. We solve the problem by model transformation based
multi-objective design space exploration (DSE) (1) as shown in
Figure 3.

Figure 3: Detailed overview of the optimization approach.

The exploration mechanism takes the original unmanaged pro-
cess as an input and produces an optimal managed process as a se-
ries of model transformations applied on the original process. (The
property and resource models are left intact as it reflects domain
knowledge and as such, typically should not be changed because of
a single process.) The exploration process is guided by hard con-
straints and optimality soft objectives.

The purpose of using model transformations is twofold. We use
them to (i) augment the process with inconsistency management
techniques and for (ii) optimizing it. An example for the latter one
is parallelizing as many activities as possible. Of course, this will
affect the applicable inconsistency management patterns, and there-
fore, the execution and evaluation of these transformations must be
achieved in a coupled way. Transformation rules aiming to aug-
ment the process with inconsistency management techniques, are
derived from the inconsistency patterns and management patterns.
These transformations have an inconsistency patterns as left-hand
side precondition, a management pattern as a rewrite rule and are
triggered when the appropriate inconsistency pattern is detected.

Hard constraints and soft objectives are used to guide the explo-
ration process and evaluate the solution candidates. We constrain
the set of solutions to processes that are well-formed, have no un-
managed inconsistencies and a feasible allocation to the resources
exists. As the objective function, the cost functions are used. Since
the cost of non-linear processes (i.e. the ones featuring directed
cyclic graphs) is not deterministic, simulations of various kinds can
be used to obtain the cost, such as event queueing networks or dis-
crete event simulations.

3.4 Tool interoperability
After rewriting the process into a managed and optimized one, its
enactment and deployment can be supported by automatically gen-
erated artifacts, such as executable code snippets or configuration
to various workflow engines (23; 29). By that, the interoperability
of the engineering tools used throughout the process can be guaran-
teed as well. OSLC (31) has been widely used to enable standard-
ized interfacing between various tools. Our approach can extend the
OSCL collaboration model with the explicit notion of the process
and therefore, enable higher level of orchestration.

Interactions between tools are typically automated activities of
the process, but in some cases semi-automated activities requiring a
human-in-the-loop may be more appropriate. Modeling interaction
patterns will be supported by using statecharts (26) in conjunction
with the process model.

3.5 Inconsistency tolerance
By temporal inconsistency tolerance (9), we mean postponing the
resolution of an inconsistency to a later point in the process as the



inconsistency may be resolved at that point or even disappear as
the natural consequence of the process. Tolerating inconsistencies,
even for a (temporal) period of time, can be seen as a compromise
between the quality and the cost of the process. By explicitly
modeling cost factors in conjunction with inconsistency patterns,
our formalism enables reasoning about these cases.

4. Results
We support our approach with a prototype tool that allows (i)
modeling processes and (ii) augmenting processes with inconsis-
tency management patterns, while identifying the optimal man-
aged process. The tool is built on top of the Eclipse platform and
is available under the EPL licence from https://github.com/
david-istvan/icm.

The tool offers an extensible catalogue of inconsistency patterns
and their management alternatives. The extensible nature of the cat-
alogues allows the framework to be tailored to the domain and the
problem at hand. Inconsistency patterns are captured by a declar-
ative graph query language (33) and the respective management
patterns are defined by model transformation rules (4).

Since the primary target audience of our approach are multi-
disciplinary engineering teams, we support inter-domain commu-
nication by providing domain-specific views on the process, such
as design structure matrices (DSM) (12) for mechanical engineers
or Gantt charts for project managers.

Figure 4: Process modeling in the prototype tooling.

We validated our approach on a case study of an autonomous
guided vehicle (AGV). In our experiments we used two types of
inconsistencies characteristic to the engineering process which de-
velops the AGV; and four types of inconsistency management tech-
niques were used. After modeling the original process, the goal was
to come up with an optimized fully managed process, i.e. one with-
out inconsistencies and with minimal costs. To evaluate the opti-
mality, we used the event queueing network (EQN) formalism of
the SimEvents (22) framework. The real challenge of applying in-
consistency management patterns in an orchestrated way, so that
their application does not give rise to new unmanaged inconsisten-
cies, is tackled by using a heuristic or exhaustive search through the
state space. Applying our approach to the whole process of the case
study resulted in a fully managed process with reasonable increase
in costs. In our simulations, we measured up to 10% cost reduction
while fully managing the process with two types of inconsistencies.

5. Contributions
This work develops the foundations of multi-paradigm modeling
(MPM) with a focus on the collaborative, multi-view aspects of

model/system development and the resulting consistency issues;
and that in the context of complex engineered systems such as
mechatronic and cyber-physical systems. The main contributions
of this work are the following.

A A formalism that enables modeling the process in conjunction
with (i) linguistic and semantic properties, (ii) the formalisms
used within the project, (iii) resources the process is executed
upon and (iv) cost factors. This rich semantics allows reason-
ing about trade-offs between the various aspects, most notably
compromising quality for costs, i.e. tolerating inconsistencies if
the process costs are more acceptable without managing them.
This also entails temporal tolerance of inconsistencies.

B Our approach enables expressing tacit domain knowledge ex-
plicitly and thus making it reusable across different processes
(projects), at least partially, which is a typical concern in com-
panies on CMMI levels 3 and above. (7) In order to enhance the
reusing of domain knowledge, techniques of ontological rea-
soning will be investigated.

C The prototype tooling enables modeling, analyzing and opti-
mizing processes. An extensible catalogue of inconsistency pat-
terns and management patterns allows customizing the opti-
mization process.

Our current research focuses on (i) support for tool interoperability
across the process and (ii) comprehensive support for temporal
inconsistency tolerance.

Tool interoperability is enabled by being explicit about the mod-
eling formalisms employed. High-quality enactment code is gener-
ated from the optimized process. Interfacing with engineering tools
(such as Simulink and CAD tools) is enabled by the OSLC stan-
dard. Our preliminary studies showed the explicit notion of the pro-
cess contributes to effective temporal inconsistency tolerance tech-
niques, which will be an important extension to our current results.
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