
Model Transformations for Round-Trip Engineering in
Control Deployment Co-Design

Ken Vanherpen
University of Antwerp

ken.vanherpen@uantwerpen.be

Joachim Denil
University of Antwerp

joachim.denil@uantwerpen.be

Hans Vangheluwe
University of Antwerp

McGill University
hv@cs.mcgill.ca

Paul De Meulenaere
University of Antwerp
paul.demeulenaere@

uantwerpen.be

ABSTRACT1

When developing a control algorithm for a mechatronic sys-2

tem, its deployment on hardware is rarely taken into ac-3

count. Hardware properties such as execution performance,4

memory consumption, communication delays, buffer sizes,5

(un)reliability of the communication channel, etc. are often6

not the first concern of the control engineer. However, these7

properties may have important effects on the control loop be-8

haviour such that initial requirements may no longer be ful-9

filled. To tackle this issue, we propose a Round-Trip Engi-10

neering (RTE) method allowing for a semi-automatic integra-11

tion of hardware properties, corresponding to the deployment,12

into the control model. The proposed RTE method combines13

techniques of model transformations and model-based design14

space exploration. The resulting method will enable an en-15

gineer to further enhance the control model based on imple-16

mentation properties such that the initial requirements are still17

satisfied when deployed on the target hardware platform.18

Author Keywords19

Behavioural Modelling; Co-Design; Deployment20

Optimization; Real-Time Embedded Systems; Round-Trip21

Engineering (RTE)22

ACM Classification Keywords23

B.8.2 PERFORMANCE AND RELIABILITY; C.4 PER-24

FORMANCE OF SYSTEMS; D.3.4 PROGRAMMING25

LANGUAGES: Processors-Code generation26

INTRODUCTION27

Model Driven Engineering (MDE) and Model-Based Design28

(MBD) are gaining more interest for the design and develop-29

ment of software-intensive and cyber-physical systems [12].30

This results in a development shift from hand-written code31

to models from which implementation code is automatically32

generated through model-to-text transformations. Further-33

more, various disciplines are involved in designing a cyber-34

physical system such as mechanical engineering, control en-35

gineering, software engineering, integration engineering, etc.36

TMS/DEVS 2015 April 12-15, 2015, Alexandria, VA, USA
Copyright c© 2015 Society for Modeling & Simulation International (SCS)

This interdisciplinary design involves a multitude of views37

on the system under design. For example, a control engi-38

neer designs a control algorithm for a certain problem and is39

concerned about the control performance and stability of the40

algorithm. Afterwards, a software and integration engineer41

have to deploy this control model on a set of networked em-42

bedded systems. They use the constraints given by the con-43

trol engineer to deploy the algorithm but are also concerned44

about resource constraints, timing constraints, schedulability45

of software tasks, etc.46

Because control engineers have limited aids to estimate the47

impact of the deployment process on their (created) control48

algorithms, they typically do not take any resource constraints49

into consideration during control design. Software and inte-50

gration engineers face similar difficulties when deploying a51

control algorithm on hardware. The control engineer specifies52

timing constraints on the periodic behaviour of the algorithm53

for numerical stability. However, the software and integration54

engineer still have to decide the optimal control-loop timing55

for the algorithm based on control performance and resource56

constraints [7]. It is clear that an optimised deployment of57

control models onto an electronic control unit (ECU) or a set58

of networked ECUs remains a huge challenge.59

To mend these problems, this work focuses on control-60

deployment co-design by introducing a Round-Trip Engi-61

neering (RTE) approach [19] as globally represented in Fig-62

ure 1. It allows both the control engineer and integration en-63

gineer to assess the impact of the deployment on the control64

algorithm. Our RTE approach is implemented in a common65

design process for software-intensive and cyber-physical sys-66

tems: (a) Control Design: Based on a set of requirements, a67

control engineer designs an algorithm to control (a part of)68

the system. This can be done by using Simulink R© block di-69

agrams, currently the de facto standard for control engineer-70

ing. Once the simulation results conform to the given require-71

ments, the model of the system is handed over to the software72

engineer. (b) Deployment: The software engineer receives73

the control model and prepares the model for deployment,74

for example modularisation of the control model. From the75

prepared control model, code is generated. Afterwards, an76



Control model Plant model

ECU1 ECU2
CAN

Tr
ac

ea
bi
lity

De
pl

oy
m

en
t

Ro
un

d-
Tr

ip
 lo

op

Extra 
blocks

Figure 1. Overview of RTE approach.

integration engineer decides how the model is deployed on a77

set of networked ECUs by setting the operating system pa-78

rameters, setting bus priority messages, etc. (c) Round-Trip79

loop: The results of the deployment process are used to create80

new behavioural diagrams by updating the control model with81

extra blocks. These blocks represent the effects of the deploy-82

ment at the level of the control engineer. As a result, the con-83

trol engineer can use his/her appropriate view and techniques84

to evaluate the behaviour after deployment.85

The rest of this paper is structured as follow. Related work is86

elaborated in Section “Related Work”. Section “Approach”87

explains in detail our contributions, whereas Section “Case88

Study: Power Window” applies our theory on a case study.89

A discussion about our proposed approach and some future90

work which needs to be tackled is described in Section “Dis-91

cussion & Future Work”. Finally, Section “Conclusions” con-92

cludes our contributions.93

RELATED WORK94

The literature describes multiple scientific contributions to95

introduce real-time execution behaviour when modelling a96

Cyber-Physical System (CPS). Eidson et al. [6] presents the97

PTIDES design environment as an extension to the Ptolemy98

II framework. It allows a control designer to add a no-99

tion of physical time without actually deploying the system.100

Therefore, PTIDES extends discrete-event systems with a101

relationship between model time and physical time at sen-102

sors, actuators and network interfaces. Another approach103

is presented by Guerra et al. [10] where triple graph trans-104

formations are used to back-annotate original models with105

analysis results. In [15] Naderlinger demonstrates how to106

manipulate the Zero Execution Time (ZET) simulation be-107

haviour of MATLAB/Simulink R© models to real-time execu-108

tion behaviour by introducing building blocks consuming a109

finite amount of simulation time. In addition, a more gen-110

eral overview of integrating real-time execution behaviour at111

model level is given by Derler et al. [5] where a framework of112

design contracts is proposed to facilitate interaction between113

control and embedded integration engineers designing CPS.114

However, the former mentioned methods all perform horizon-115

tal model-to-model transformations meaning they operate at a116

same level of abstraction. By contrast, our approach operates117

vertically in terms of levels of abstraction and thus perform-118

ing transformations from model-to-text and vice versa. To119

this end, Ciccozzi et al. describe in [2,3] an approach which is120

similar to ours. Their round-trip solution consists out of three121

steps: (1) the generation of code from a source model, (2)122

monitoring of extra-functional properties at system level, and123

(3) back-annotation of the source model. Nevertheless, their124

back-annotation consists out of a textual description with im-125

plementation related properties meaning the system devel-126

oper needs to be aware of these specific technical terms in127

order to optimise the deployment. In this respect, Morelli128

and Di Natale present the T-Res framework in [13] allowing129

for a co-simulation of the software model and the hardware130

execution platform. Inspired by TrueTime [1, 11], they in-131

troduce kernel and task blocks into the Simulink R© software132

model (i.e. the control model which is adapted for implemen-133

tation). Although they graphically back-annotate the control134

model with deployment information, the T-Res framework, in135

our opinion, aims for a collaborative design between software136

and integration engineer.137

Our work differs in the sense that we aim for a co-design be-138

tween control and integration engineer. To this end, we focus139

on changing the behaviour of the source models with (de-140

ployment) timing information at the level of abstraction of the141

control engineer, i.e. by introducing rather simple Simulink R©
142

blocks and eliminating excessive deployment information.143

APPROACH144

Nowadays, many different disciplines are involved in the de-145

velopment of a control algorithm, each with their own view,146

skills and concerns regarding the algorithm to be developed.147

However, some of these views may conflict with each other148

and may affect the overall performance of the algorithm under149

development. Moreover, due to the introduction of model-150

based development the integration of some of those views is151

postponed to a later development phase. In our case a prece-152

dence relation [17] exist between the control design and the153

integration engineering. This results in a late detection of154

conflicting views which in turn results in multiple iterations155

to deploy a single control model. In this paper we focus on156

a method to facilitate this co-design, in particular between a157

control engineer and an integration engineer.158

Overview159

We graphically represent our Round-Trip Engineering (RTE)160

method by the Formalism Transformation Graph and Process161

Model (FTG+PM) shown in Figure 2. The left side of the162

FTG+PM declares all the involved formalisms (boxes) and163

all the model transformations (circles) between these differ-164

ent formalisms. The right side shows the process with the165

involved models (boxes), transformed by a model transfor-166

mation (round-tangled boxes). Note that a model in the PM167

part is an instance of a formalism declared in the FTG part.168



Furthermore, complex data-flow (dashed line) and control-169

flow (full line) relations can exist in the process part of the170

FTG+PM.171

Our RTE method is typed by three distinguished phases: (1)172

Control Design, (2) Deployment and (3) Round-Trip Loop.173

Note that each of these phases respectively correspond to174

one column in Figure 2. Furthermore, an Architecture De-175

scription Language (ADL) is used to store design information176

while executing each phase and to maintain traceability. For177

this purpose, formalisms such as MARTE can be used which178

is a UML profile for the Modeling and Analysis of Real-Time179

and Embedded Systems [8].180

(1) During the first phase a control algorithm is created and181

modelled by the control engineer. A software engineer re-182

ceiving the control model applies some other actions such as183

the modularisation of the control model (i.e. the subdivision184

of the control model in to several subsystems). Simultane-185

ously, the ADL model which holds the requirements of the186

system is updated by adding the different subsystems to the187

component level. Traceability links link the ADL model to188

the behavioural models. From each subsystem, source code189

is generated by performing a model-to-text transformation.190

(2) From the source code, several analyses are executed in or-191

der to find a feasible and optimised deployment onto an Elec-192

tronic Control Unit (ECU) or a set of networked ECUs. These193

analyses include timing analysis to obtain the Worst Case Ex-194

ecution Time (WCET) of the source code and schedulability195

analysis to obtain the Worst Case Response Time (WRT) for196

each subsystem. These extra functional properties are added197

to the ADL model while maintaining traceability. Further-198

more, parameters related to the mapping of software compo-199

nents to tasks, operating systems parameters, parameters of200

the tasks and messages on the bus, etc. are stored in the ADL.201

(3) By using parametrised model transformation templates in202

our Round-Trip Loop, a set of model transformations, based203

on the result of the deployment process, are created to up-204

date the control design by inserting extra blocks. Note that205

the results of the deployment process are retrieved from the206

ADL model. The control engineer receives this updated con-207

trol model enabling him/her to evaluate its behaviour after208

deployment.209

Round-Trip Engineering Method210

For each of the described phases of our RTE method, we elab-211

orate on the involved methods and tools that are used. This212

further clarifies the presented FTG+PM of our RTE method.213

Control Design214

Based on a set of requirements, which are stored in an ADL,215

a control engineer creates an algorithm to control (part of)216

the system. A common way to specify control logic is by217

using the Causal Block Diagram formalism, usually referred218

to as Simulink R© diagrams. Control engineers connect plant219

models to the control models to verify the behaviour of the220

designed algorithms in the context of the system with respect221

to the requirements of the system. The created control models222

are prepared for deployment by the control engineers. This223

involves the discretisation of a continuous-time model into a224

discrete-time model.225

If the output of the control model still meets the predeter-226

mined requirements, the model is handed over to the software227

engineer. He applies some other actions such as the modu-228

larisation of the control model with respect to the hardware229

configuration while maintaining traceability. To this end, the230

software engineer adds the different components to the com-231

ponent model of the ADL and models the interactions be-232

tween the new components and the rest of the system. Trace-233

ability links link the ADL model to the behavioural models.234

From the different subsystems, source code is automatically235

generated for deployment onto the ECUs. Widely available236

tools like Simulink Embedded Coder R© are used for this pur-237

pose.238

Deployment239

The source code generated from each subsystem, called soft-240

ware components, need to be feasibly and optimally mapped241

to an ECU or a set of networked ECUs. Each software com-242

ponent is allocated to an operating system task and task re-243

lated parameters are set. Signals originating in the software244

components are packed into bus messages for communica-245

tion between networked ECUs. To this end, parameters such246

as message priority are set.247

To check whether a configuration is feasible and optimal, the248

integration engineer starts by determining the performance249

of each software component by executing a timing analy-250

sis. For this purpose, two different methods exist: static and251

measurement-based method. The former method makes use252

of the generated code and a model of the target hardware to253

analyse the set of different possible control flow paths. The254

latter method executes the generated code on the target hard-255

ware or on a low-level simulation model to measure the exe-256

cution time given a set of inputs. Both methods lead to the257

determination of the Worst Case Execution Time (WCET)258

indicating the upper bound on execution times of the soft-259

ware components running on the target hardware. A detailed260

overview of the tools and methods involved in obtaining the261

WCET can be found in [21].262

The results of the timing analysis are added to the ADL263

model, from which a Real-Time Task Model can be derived.264

As a result, this model contains software related information265

(e.g. WCET) and information about the target hardware (e.g.266

number of ECUs), as well as the information related to tasks267

on the operating system and messages on the bus. Based on268

this model, an integration engineer executes a schedulabil-269

ity analysis. Different techniques such as the one described270

by Tindell and Clark [20] or Palencia and Harbour [16] can271

be used. As a result, the schedulability analysis provides the272

integration engineer a trace containing the Worst Case Re-273

sponse Time (WRT) for each subsystem. As its name im-274

plies, the WRT indicates the maximum bound at which the275

subsystem produces a signal on (one of) its outputs. Nowa-276

days, several tools can be invoked to perform a schedulability277

analysis resulting in a trace containing the WRT. In the scope278

of this paper, we are using an analysis tool called MAST [9]279

for this purpose.280



CodeGeneration

C-Code

ExecuteTimingAnalysis

Control Model

Performance Trace

ExtractPerformanceResults

Performance Model

ExecuteSchedulabilityAnalysis

Schedulability Trace

Real-Time Task Model

ADL Model

UpdateADL

BackAnnotationOfADL

CreateRTTaskModel

Rule

CreateGraphOfModel

Himesis

CreateGraphOfRule

Himesis

CreateTemplate

Parametrised Template

CreateTransformations

Simulink Transformations

ExecuteTransformations

Himesis

UpdateControlModel

:Control Model

:UpdateADL:CodeGeneration

:C-Code :ADL Model

:ExecuteTimingAnalysis :CreateRTTaskModel

:Performance Trace :Real-Time Task Model

:ExtractPerformanceResults :ExecuteSchedulabilityAnalysis

:Performance Model :Schedulability Trace

:ExtractSchedulabilityResults
ExtractSchedulabilityResults

:BackAnnotationOfADL

Schedule Model
:Schedule Model

:BackAnnotationOfADL

:ADL Model

FTG

Consume / Produce Formalism

Formalism Manual
Transformation

(Semi-)Automatic
Transformation

PM

Control Flow Data Flow

Model
Artifact

Manual
Activity

(Semi-)Automatic
Activity

:CreateGraphOfModel

:Himesis

:CreateGraphOfRule

:Himesis

:CreateTemplate

:Parametrised Template

:CreateTransformations

:ExecuteTransformations

:UpdateControlModel

:Simulink Transformations

:Himesis

:Control Model

:Rule

Figure 2. Formalism Transformation Graph (left) + Process Model (right) of our Round Trip Engineering Method.

One should notice that the former mentioned deployment pro-281

cess is typically an iterative process. This is not taken into ac-282

count in the FTG+PM shown in Figure 2, but is demonstrated283

in the work of Mustafiz et al. [14].284

The results of this deployment are fed back to the ADL285

model. However, the choices made by the integration engi-286

neer when deploying the system onto the hardware affect the287

performance of the designed control loop. For example, a288

signal can be delayed due its transmission via a bus or a soft-289

ware component may encounter a longer execution time due290

to task related parameters.291

Round-Trip Loop292

Finally, the results of the deployment process are used to cre-293

ate new behavioural models by updating the Simulink R© con-294

trol model with extra blocks. These blocks introduce the ef-295

fects of the deployment at the level of the control engineer.296

The control engineer can use his/her appropriate view and297

techniques to evaluate the behaviour after deployment.298

Therefore, we rely on a model transformations for, and in299

Simulink [4] as can be seen in the third column of the300

FTG+PM. Our technique creates a parametrised rule-based301

model transformation based on the original control model and302

a self-defined (set of) rule(s). It serves as a template to create303

a set of rule-based model transformations whereby the pa-304

rameters are replaced by parsing the information stored in the305

ADL.306

Updating the control model is supported by introducing delay307

blocks. These blocks delay signals in the Simulink model to308

reflect the WRT as a result of the schedulability analysis.309

CASE STUDY: POWER WINDOW310

In this section, the former mentioned RTE method is applied311

to an automotive case study. At the time of writing, we imple-312

mented a mock-up of an ADL prior to the selection of an ap-313

propriate ADL which covers all our current and future needs.314

As a result, however, traceability is manually maintained.315

As an automotive case study, we select the power window316

case consisting out of four windows and typed by the follow-317

ing requirements/specifications [18]:318

1. The power window consists out of four windows which319

can be separately operated.320

2. All three passenger windows can be globally operated by321

the driver.322

3. The operations of the driver have priority in case a passen-323

ger window is simultaneously operated by the driver and a324

passenger.325

4. A window shall start moving within 200 ms after a com-326

mand is issued.327

5. A window shall automatically move to a final position328

when the up or down command is issued for less than329

500 ms.330

6. A window shall be fully opened or closed within 4.5 s.331

7. When closing a window, a force of no more than 100 N332

may be present.333

8. The detection of an object when closing a window should334

result in lowering the window by approximately 10 cm.335

Control Design336

We create a Simulink R© model based on the presented require-337

ments consisting out of five sequential connected main parts338

(further called subsystems): (1) Control signals simulating339

the actions of driver and passengers, (2) signal debouncing,340

(3) control exclusion for driver priority, (4) main control de-341

sign, (5) plant model to simulate the environment. We briefly342

describe their implementation details. Furthermore, subsys-343

tems (2) to (4) are deployed on several ECUs. This will be344

further elaborated in Subsection Deployment.345



(1) The control signals which simulate the actions of driver346

and passengers are built by using Simulink Signal Builder R©.347

For each driver and passenger a set of up and down signals348

are generated. At some points in time, a simultaneous action349

from driver and passenger is generated to simulate the control350

exclusion.351

(2) Signal debouncing is modelled by the use of Simulink352

Stateflow R©. The implementation of the debounce circuit is353

trivial: A signal has to be in its new state for at least 30 ms354

before it is forwarded.355

(3) Likewise, the implementation of the control exclusion356

circuit is straightforward. By using some basic logic gates,357

driver priority is obtained when a driver and passenger oper-358

ate the same window simultaneously.359

(4) Our controller is based on the work of Prabhu and Moster-360

man [18] which can also be find as a Simulink R© tutorial. It361

includes an implementation for most of the aforementioned362

requirements as a Simulink Stateflow R© diagram.363

(5) As a last subsystem of our control design, the plant model364

represents the environment of our power window. This in-365

cludes mainly the behaviour of the motor and the window366

mechanism. Their properties are explicitly modelled by us-367

ing control theory. Note that the external pinch force is part368

of the environment. Therefore, a feed back loop from plant to369

control model is present.370

The simulation result of this ideal control design is shown371

as a solid blue curve in Figure 5 and more detailed in the372

upper part of Figure 6, where the window behaviour of the373

front passenger is shown. At time stamp 1 s the driver ini-374

tiates an up-command, whereafter the window closes within375

50 ms. During this movement, a force of 100 N is detected376

at time stamp 3.15 s. This results in a revert movement of377

the window 35 ms after pinch detection. The driver sends378

a down-command at time stamp 8 s for a time period longer379

than 500 ms, resulting in lowering the window 52 ms after the380

command is initiated. At time stamp 10 s both driver and pas-381

senger issue a window command. However, their commands382

conflict with each other giving it priority to the driver. This383

results in a completely closed window within a time period384

of 4.41 s. At the remainder time stamps, some other require-385

ments are tested which are irrelevant to the further course of386

this paper. Bottom line of these simulation results is that the387

aforementioned requirements are met.388

Deployment389

The modularisation of the subsystem is made on the basis390

of their specific action. Each subsystem (i.e. parts (2) to391

(4) since the other ones are a simulation of the environment)392

needs to be deployed onto an ECU. Therefore, code is gener-393

ated for each of those subsystems by performing a model-394

to-code transformation. Since we have modelled the con-395

trol design in Matlab Simulink R© we are using the Embedded396

Coder R© for this purpose. Furthermore, the ADL is updated397

such that it contains the names of all the subsystems.398

Once the different subsystems are transformed to C-code, a399

timing analysis is executed. The Worst Case Execution Time400

(WCET) is derived from this trace. To this purpose, each401

code-segment is separately deployed on a DVK90CAN1 de-402

velopment board which holds an 8-bit AT90CAN128 micro-403

controller. After a repeated execution of all possible func-404

tionalities of the different subsystems, our timing analysis re-405

sults in the WCET shown in column ‘C’ of Table 1. Along406

with the timing periods (‘T’) and deadlines (‘D’) shown in407

Table 1 this information is stored in the ADL. Note that the408

task names refer to the different subsystems of our control de-409

sign, where ‘Deb’, ‘PW’ and ‘CE’ are abbreviations for ‘De-410

bounce’, ‘Power Window’ (i.e. the controller which holds the411

stateflow of the power window) and ‘Control Exclusion’ re-412

spectively. For the rear passenger windows the same results413

are obtained as for the front passenger.414

In addition to the information related to the subsystems, the415

ADL is further extended by the deployment engineer with a416

description of the hardware architecture (i.e. the number of417

ECUs, type of scheduler, etc.). At this point, the ADL stores418

al the information needed by schedulability algorithms to de-419

termine the deployment of the subsystems onto the different420

ECUs. For this purpose we use the MAST tool [9] and select421

the ‘Offset Based Approximate Analysis’ technique [16]. An422

optimal system deployment is found by using two ECUs for423

each power window. One holds the debounce circuit, while424

the other one holds the control exclusion circuit and the power425

window control logic. However, the window control parts are426

not the only tasks allocated to the ECUs. Other miscellaneous427

tasks (‘Misc’), which for example control the wing mirrors428

(‘WM’) or the door lock system (‘DL’), interfere with the ex-429

ecution of the window control parts because of operating sys-430

tem mechanisms like pre-emption. This is taken into account431

in our schedulability analysis as can be seen in Table 1.432

ECU Tasks
Name Name C T D P W
DRV 1 WM DRV 21 85 85 8 21.5
DRV 1 DL DRV 32 95 95 7 54
DRV 1 Deb DRV 30 100 100 5 84.5
DRV 2 PW DRV 42 50 50 5 42.5

Front 1 Misc1 Front 21 85 85 8 21.5
Front 1 Misc2 Front 32 95 95 7 54
Front 1 Deb Front 30 100 100 5 84.5
Front 2 PW Front 42 50 50 5 42.5
Front 2 CE Front 0.25 50 50 4 43.25

Table 1. ECU Mapping (C: WCET in [ms], T: Time Interval in [ms], D:
Deadline in [ms], P: Priority, W: WRT in [ms]).

Round-Trip Loop433

The schedulability trace holding the Worst Case Response434

Time (WRT) is added to the ADL and serves as an input for435

our Round-Trip Loop. As already mentioned, the WRT indi-436

cates the maximum bound at which the subsystem produces437

a signal on (one of) its outputs. In other words, how much438

an output signal is delayed compared to an ideal simulation.439

For example, a debounce circuit takes up to 84.5 ms to pro-440

duce an output. In more detail, we can deduce that this time441



(a) Left Hand Side (LHS).

(b) Right Hand Side (RHS).

Figure 3. Parametrised Model Transformation Rule.

is composed out of 30 ms computation time (‘C’) and 54.5 ms442

scheduling related time. This is valuable information for the443

control engineer because these delays might affect the over-444

all behaviour of the designed control loop (which was done445

by the availability of unlimited resources). Moreover, by de-446

tailing the WRT a control engineer is able to focus on the447

optimization of the computation time since this is related to448

the control design.449

To this end, the Simulink R© model of the control design is450

updated with extra delay blocks. Therefore, a parametrised451

rule-based model transformation is created as depicted in452

Figure 3. At the Left Hand Side (LHS) of the rule an453

original output of a subsystem is modelled, which needs454

to be transformed to an output followed by a two delay455

blocks as modelled at the Right Hand Side (RHS) of the rule.456

This parametrised template will be used by our Round-Trip457

Loop to create a set of model transformations based on the458

traces of the schedulability analysis which are stored in459

the ADL. Therefore, parameters characterised by asterisks460

will be replaced by values derived from the schedulability461

trace. For example, Figure 4 shows the result of a model462

transformation applied on the debounce subsystem of the463

front passenger. Executing all model transformations based464

on the schedulability trace results in a new control design465

allowing a control engineer to evaluate its behaviour after466

deployment.467

468

Results469

When evaluating the simulation result of the new behavioural470

diagram, shown as a dashdotted red curve in Figures 5 and 6,471

we see remarkable differences compared to the ideal simu-472

lation result (solid blue curve). While closing the window,473

a force of 100 N was detected at time stamp 3.15 s. Ideally474

it only took 35 ms to reverse the movement of the window.475

When taking into account the delays after deployment, one476

can notice the timespan between detection and action is in-477

creased to 83 ms. Due to this slow response time, the window478

closes for another 3.9 mm before an action takes place. Al-479

though requirements don’t mention any response time when480

Figure 4. Result of a model transformation.

Figure 5. Simulation results - Front passenger.

an object is detected, it is clear that the slower response time481

may lead to safety issues compared to the ideal situation482

where the window closes for only 1.4 mm after detection. A483

serious violation of the fourth requirement can be found when484

comparing the reaction times after a command is issued. For485

example, at time stamp 8 s the driver issues a lower-command486

resulting in an ideal reaction time of 52 ms. However, after487

deployment the reaction time appears to be 221 ms which is488

10 % higher than required. Likewise, a violation of the sixth489

requirement can be identified because it now takes 4.7 s to490

fully close the window.491

The simulation results show that our parametrised model492

transformations do add essential information to the control493

model in order to evaluate the control performance for a given494

deployment.495

DISCUSSION & FUTURE WORK496

Applying our Round-Trip Engineering method to a rather497

simple case study shows how to inject the behaviour of the498

deployment to a higher level of abstraction. This enables a499

control engineer to evaluate the updated control design using500

his/her appropriate view and techniques. Updating the con-501



Figure 6. Detail of simulation results - Upper: Ideal simulation; Lower: After in-place transformation.

trol design consists of placing delay blocks representing the502

Worst Case Response Time of the prior subsystems. Future503

work consists out of the implementation of an appropriate Ar-504

chitecture Description Language (ADL) which replaces the505

mock-up used so far. This will enable us to maintain trace-506

ability (semi-)automatically by adding traceability links be-507

tween the ADL model and the behavioural models, similarly508

as in [2]. Naturally, the software and integration engineers509

receiving, subdividing and deploying the control model will510

model their actions to the component model of the selected511

ADL.512

In order to obtain a control design which is deployable onto a513

set of ECUs, we believe our proposed method needs to be ex-514

ecuted iteratively. After the first Round-Trip Loop, a control515

engineer can modify the control design such that the require-516

ments are again fulfilled whereafter the process starts over.517

During these successive iterations, the available ADL can be518

used to enhance the deployment process. In other words, the519

Design-Space Exploration (DSE) process for optimal deploy-520

ment can be influenced by taking into account information521

available in the ADL.522

These future design optimizations should result in con-523

tracts to facilitate interaction between control and soft-524

ware/integration engineers in the design of Cyber-Physical525

Systems [5]. In the end, the design contracts are used to in-526

fluence the design process in a structured way to allow for527

control deployment co-design.528

CONCLUSIONS529

In this paper we described a Round-Trip Engineering method530

which allows control engineers to evaluate the implications531

of their deployed control design. Our contribution focused on532

making this information available into the behavioural mod-533

els. This method enables a control engineer to evaluate the534

control design using his/her appropriate view and techniques535

without having knowledge of lower level specifications (e.g.536

buffer usage). The Round-Trip Engineering method proposed537

in this paper makes use of a set model-to-model and model-538

to-text transformation to schedule the control design onto a539

set of ECUs. Therefore, trace information originating from540

timing analysis is used. By using a parametrised model trans-541

formation, a set of model transformations are created based542

on the traces of schedulability analysis. This enables us to up-543

date the control design by introducing delay blocks conform544

the Worst Case Response Times (WRTs) of the deployed sys-545

tem. The usefulness of this method is illustrated by a power546

window case study. We showed how the deployment of the547

power window control design affected the overall behaviour.548

Moreover, we have illustrated how initial requirements are no549

longer met resulting in unsafe conditions. This is of impor-550

tance when dealing with safety critical systems.551

Acknowledgements552

This work has been carried out within the framework of553

the MBSE4Mechatronics project (grant nr. 130013) of the554

agency for Innovation by Science and Technology in Flan-555

ders (IWT-Vlaanderen).556

REFERENCES557

1. Cervin, A., Henriksson, D., Lincoln, B., Eker, J., and558

Arzen, K.-E. How does control timing affect559

performance? Analysis and simulation of timing using560

Jitterbug and TrueTime. IEEE Control Systems 23, 3561

(June 2003), 16–30.562

2. Ciccozzi, F., Cicchetti, A., and Sjödin, M. Round-trip563

support for extra-functional property management in564

model-driven engineering of embedded systems.565

Information and Software Technology 55, 6 (June 2013),566

1085–1100.567

3. Ciccozzi, F., Saadatmand, M., Cicchetti, A., and Sjödin,568

M. An automated round-trip support towards569



deployment assessment in component-based embedded570

systems. In Proceedings of the 16th International ACM571

Sigsoft symposium on Component-based software572

engineering - CBSE ’13, ACM Press (2013), 179–188.573

4. Denil, J., Mosterman, P. J., and Vangheluwe, H.574

Rule-Based Model Transformation For , and In575

Simulink. In DEVS ’14 Proceedings of the Symposium576

on Theory of Modeling & Simulation (2014).577

5. Derler, P., Lee, E. a., Tripakis, S., and Törngren, M.578

Cyber-physical system design contracts. In Proceedings579

of the ACM/IEEE 4th International Conference on580

Cyber-Physical Systems - ICCPS ’13, ACM Press581

(2013), 109.582

6. Eidson, J. C., Lee, E. A., Matic, S., Seshia, S. A., and583

Zou, J. Distributed Real-Time Software for584

Cyber-Physical Systems. Proceedings of the IEEE 100,585

1 (Jan. 2012), 45–59.586

7. Ernst, R. Codesign of embedded systems: status and587

trends. IEEE Design & Test of Computers 15, 2 (1998),588

45–54.589

8. Faugere, M., Bourbeau, T., Simone, R. D., and Gerard,590

S. MARTE: Also an UML Profile for Modeling AADL591

Applications. In 12th IEEE International Conference on592

Engineering Complex Computer Systems (ICECCS593

2007), no. Iceccs, IEEE (2007), 359–364.594

9. Gonzalez Harbour, M., Gutierrez Garcia, J., Palencia595

Gutierrez, J., and Drake Moyano, J. MAST: Modeling596

and analysis suite for real time applications. In597

Proceedings 13th Euromicro Conference on Real-Time598

Systems, IEEE Comput. Soc (2001), 125–134.599

10. Guerra, E., Sanz, D., Diaz, P., and Aedo, I. A600

Transformation-Driven Approach to the Verification of601

Security Policies in Web Designs. ICWE’07 4607602

(2007), 269–284.603

11. Henriksson, D., Cervin, A., and Arzén, K.-E. TrueTime :604

Real-time Control System Simulation with MATLAB /605

Simulink. In Proceedings of the Nordic MATLAB606

Conference (2003).607

12. Liggesmeyer, P., and Trapp, M. Trends in Embedded608

Software Engineering. IEEE Software 26, 3 (May 2009),609

19–25.610

13. Morelli, M., and Di Natale, M. Control and Scheduling611

Co-design for a Simulated Quadcopter Robot : A612

Model-Driven Approach. In SIMPAR 2014 (2014),613

49–61.614

14. Mustafiz, S., Denil, J., Levi, L., and Vangheluwe, H. The615

FTG + PM Framework for Multi-Paradigm Modelling :616

An Automotive Case Study. In Proceeding MPM ’12617

Proceedings of the 6th International Workshop on618

Multi-Paradigm Modeling (2012), 13–18.619

15. Naderlinger, A. Multiple Real-Time Semantics on top of620

Synchronous Block Diagrams. In DEVS 13 Proceedings621

of the Symposium on Theory of Modeling & Simulation622

(2013).623

16. Palencia, J., and Gonzalez Harbour, M. Schedulability624

analysis for tasks with static and dynamic offsets.625

Proceedings 19th IEEE Real-Time Systems Symposium626

(Cat. No.98CB36279) (1998), 26–37.627

17. Persson, M., Törngren, M., Qamar, A., Westman, J.,628

Biehl, M., Tripakis, S., Vangheluwe, H., and Denil, J. A629

Characterization of Integrated Multi-View Modeling in630

the Context of Embedded and Cyber-Physical Systems.631

In Proceedings of the Eleventh ACM International632

Conference on Embedded Software, IEEE Press (2013),633

10:1–10:10.634

18. Prabhu, S. M., and Mosterman, P. J. Model-Based635

Design of a Power Window System: Modeling ,636

Simulation , and Validation. In Society for Experimental637

Machines IMAC Conference (2004).638

19. Sendall, S., and Küster, J. Taming Model Round-Trip639

Engineering. In Proceedings of Workshop on640

BestPractices for Model-Driven Software Development641

(part of 19th Annual ACM Conference on642

Object-Oriented Programming, Systems, Languages,643

and Applications) (2004).644

20. Tindell, K., and Clark, J. Holistic schedulability analysis645

for distributed hard real-time systems. Microprocessing646

and Microprogramming 40, 2-3 (Apr. 1994), 117–134.647

21. Wilhelm, R., Mitra, T., Mueller, F., Puaut, I., Puschner,648

P., Staschulat, J., Stenström, P., Engblom, J., Ermedahl,649

A., Holsti, N., Thesing, S., Whalley, D., Bernat, G.,650

Ferdinand, C., and Heckmann, R. The worst-case651

execution-time problem-overview of methods and652

survey of tools. ACM Transactions on Embedded653

Computing Systems 7, 3 (Apr. 2008), 1–53.654


