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Abstract—The design of Cyber-Physical Systems (CPS) in-1

volves a multitude of stakeholders. Each of these stakeholders2

has a specific view on the system under design. Unfortunately,3

when designers create artefacts in their different views in a4

concurrent manner, the integration of the different views may5

reveal inconsistencies. This leads to time consuming, iterative6

design processes where inconsistencies are resolved, in turn7

possibly creating new ones. It is hence necessary to reason8

explicitly about the view-specific properties that depend on, and9

influence properties of other views. This enables consistency10

during integration and reduces the development time and effort.11

In this paper we formalise the interrelationships between the dif-12

ferent views, in the context of different design processes, to allow13

designers to meaningfully and efficiently manage inconsistencies.14

Our formalisation introduces ontological domain properties and15

their relations as the link between the view-specific properties16

used by the stakeholders. Thus, our approach combines the state17

of the art of Model-Based Systems Engineering (MBSE) and18

Semantic Web. The relevance of this approach is demonstrated19

by means of a motivating example.20

I. INTRODUCTION21

The development process of a Cyber-Physical System (CPS)22

is characterised by a collaboration of different teams in mul-23

tiple engineering disciplines, which we call stakeholders [1]–24

[3]. Given a set of requirements, representing the behaviour of25

the real-world system in a certain context, stakeholders express26

their individual concerns through a set of properties specific to27

their own view on the system under design. As a consequence,28

requirements are –often implicitly– shared among stakeholders29

due to the overlapping sets of properties. This overlap puts30

constraints on the design processes of the domain-specific31

views.32

We experience this in current CPS design processes. For33

example, both control and embedded software engineers derive34

the properties which should hold for their view of a system35

with an implicit knowledge of each other’s domain. For a36

control engineer it is, for example, important to know how37

fast outputs can be computed and written, which depends38

on the hardware platform. Due to his limited knowledge 39

of the embedded domain, however, a control engineer may 40

overestimate available hardware resources such as processor 41

speed. During integration, the embedded software engineer 42

chooses a processor type based on, for example, its cost. This 43

might lead to a lower processor speed than what was assumed 44

by the control engineer. As a result, integration affects the 45

performance of the control algorithm. 46

This introductory example clearly demonstrates how both 47

engineering views (stakeholders) use incomplete assumptions 48

of each others view. Shared properties are not (fully) taken 49

into account, such that consistency cannot be guaranteed. 50

Consistency means the absence of inconsistencies: situations 51

where multiple views imply conflicting values for common 52

properties that may be derived from them. This results in iter- 53

ative, time consuming design processes where inconsistencies 54

are resolved, in turn possibly creating new ones. Because the 55

views in this example are at different levels of abstraction, we 56

classify this type of (in)consistency as vertical (in)consistency. 57

The notion of vertical consistency also occurs within the 58

engineering view. For example, during the modelling of a 59

control algorithm, a more abstract control model is used at 60

a higher level of abstraction while its refinement adds more 61

detail at a lower level of abstraction. Vertical consistency 62

should be maintained during the refinement process as well, 63

such that the (behavioural) properties of the abstract control 64

model are maintained after refinement. 65

Horizontal (in-)consistency pertains to models at the same 66

level of abstraction. An example is the modelling of an 67

electrical motor subsystem. Electrical and mechanical views 68

exist for this system. These are considered at a same level of 69

abstraction if they allow reasoning about exactly the same set 70

of properties (such as power). To be consistent, analysis of 71

both models must always yield identical values for each of 72

these properties. 73

During the last decade, many attempts were made to resolve 74



vertical inconsistency by supporting control engineers with75

tools enabling them to make hardware properties explicit [4]–76

[6]. To this end, blocks introducing a certain hardware prop-77

erty are added to the control model. The blocks encode78

an abstraction of property effects (such as time) due to79

the hardware platform on which the controller is deployed.80

Contract-Based Design (CBD) [7]–[9] as a methodology, is81

gaining popularity in the design of CPS. Its use originates from82

computer programming where a set of pre- and postconditions83

defines under which conditions a system promises to operate84

satisfying desired properties. Similarly, by defining contracts85

between different engineering views in CPS design, view-86

specific properties are balanced against each other in a pre-87

liminary negotiation phase. This design methodology enables88

concurrent engineering (co-design) in which synchronization89

occurs on a regular basis. Thus, both horizontal and vertical90

consistency can be guaranteed.91

From our experience with design processes, however, trans-92

lating view-specific properties from one domain to another93

seems to be hard for engineers and is often done in an ad94

hoc fashion. To address this issue and to facilitate CBD, we95

express these interrelations using an ontological framework. To96

build this framework, we make the implicit knowledge of each97

stakeholder explicit. During the translation of requirements to98

view-specific properties, each stakeholder keeps in mind cer-99

tain domain properties, which we call ontological properties.100

For example, a control engineer implicitly thinks about control101

performance, reaction time, and safety. The embedded engi-102

neer reasons about schedulability, processor load, cost, etc.103

Due to overlap in requirements, some ontological properties104

will be shared and/or will influence each other such that the105

related view-specific properties will be shared or influenced as106

well. By making the influence relations between ontological107

properties explicit in our framework, we are able to explicitly108

translate related properties used in different views.109

Reasoning about ontologies (i.e., relating ontological prop-110

erties) and tracing the properties at the modelling level to these111

ontologies allows us to examine current design processes.112

The processes can be restructured accordingly to reduce the113

number of costly design iterations. Note that we do not comply114

with the Semantic Web definition of ontologies since we have115

not yet committed to formalisms/languages/techniques/tools to116

use for ontological reasoning.117

The rest of this paper is structured as follows. The usability118

of our approach is demonstrated through a motivating example119

in Section II. Section III presents three generalised design120

operations showing how ontological reasoning can be enabled.121

Given these generalised operations, we revisit the motivating122

example in Section IV. Section V discusses our fundamental123

approach and gives an outlook to future work. Section VI124

summarises the related work. Finally, Section VII concludes.125

II. MOTIVATING EXAMPLE126

We use the design of a power window at the passenger127

side of a vehicle to illustrate the usefulness of our ap-128

proach. Although the power window seems more related to129

engineering an embedded system rather than a production 130

system, it contains properties which are highly related to a 131

production system: (a) it contains both computational and 132

physical elements, (b) it contains sensors and actuators, and (c) 133

when closing it might cause live threatening injuries such that 134

safety is highly important. This section introduces the power 135

window example and its design process. The case study will 136

be revisited in Section IV using the foundations introduced in 137

Section III. 138

For the embedded system to be designed, a set of require- 139

ments describe the behaviour of the system within a given 140

context. In this case, the context of the power window is a 141

vehicle, for which the behaviour at the passenger side can be 142

described as follows [10]: 143

1) An electrical motor will operate the power window. 144

2) The window has a width and a height of respectively 145

1057 mm and 768 mm. 146

3) The power window can be operated by both driver and 147

passenger. Priority is given to the driver. 148

4) The power window should start moving within 200 ms 149

after a command is issued. 150

5) The power window shall be fully opened or closed within 151

4.5 s. 152

6) Detection of a clamped object when closing the window 153

should lower the window by 10 cm. 154

For the design of the power window, three stakeholders 155

are involved: a mechanical, control and embedded engineer. 156

Depending on their view of the system, each stakeholder 157

considers one or more requirements. The mechanical engineer 158

chooses a motor whose characteristics (voltage, current, speed, 159

torque, etc.) satisfy the requirements 1, 2 and 5. Furthermore, 160

he creates a plant model representing the physical elements of 161

the window and the motor. 162

The plant model is used by the control engineer, who is 163

concerned with all requirements except 1 and 2, to synthesise 164

the modelled control algorithm. It goes without saying that 165

control performance will be of the utmost importance for the 166

control engineer during the design of the control algorithm. 167

Note that control performance is an ontological property which 168

a control engineer implicitly keeps in mind when deciding on 169

modelling properties such as ‘sample rate’. 170

An embedded engineer considers all of the requirements 171

except 2 and the priority part of 3 in his view, such that the 172

control algorithm deployed onto the Electronic Control Unit 173

(ECU) is able to operate the window. He is concerned with 174

hardware details (e.g. processor speed and period of tasks) 175

instead of the behaviour of the control algorithm. Although 176

there are shared requirements between the different views, the 177

embedded engineer keeps in mind ontological properties such 178

as schedulability when specifying properties like ‘processor 179

speed’. 180

Let us consider the relationships between control and em- 181

bedded engineer to get to the point of this illustrating example. 182

As some of the requirements are shared among views, it may 183

be clear that view-specific properties related to those shared 184

requirements should be consistent. Due to the view-specific 185



interpretation of the requirements, however, engineers reason186

about different ontological properties: control performance for187

the control engineer and schedulability for the deployment188

engineer. Unintentionally, this leads to inconsistencies between189

views. In current design processes, for example, engineers190

have limited aids in estimating the impact of their design191

choices. Therefore, it is common for a control engineer to192

assume almost unlimited hardware resources such that view-193

specific properties such as ‘computation and write time of194

outputs’ are underestimated. As a consequence, control per-195

formance is verified using a wrong abstraction of the hardware196

platform. On the other hand, an embedded engineer strives for197

a schedulable system by deploying the control algorithm onto198

an ECU such that its load is regarded as safe. As a result,199

an ECU with enough resources (e.g., ‘processor speed’) is200

selected such that the system is schedulable without excessive201

costs. Moreover, the hardware platform’s resources are typ-202

ically shared among multiple software tasks. This results in203

extra time delays, expressed as ‘Worst-Case Response Times’204

(WRTs), which where not taken into account by the control205

engineer.206

From this example we conclude that relating view-specific207

properties such as ‘computation and write time’ and ‘processor208

speed’ may be difficult for engineers having a different view on209

the system. Moreover, they are often not aware of the relations210

between those view-specific properties and the ontological211

properties such as control performance and schedulability.212

By introducing an ontological framework, we make the re-213

lations between ontological properties explicit. This enables214

ontological reasoning such that view-specific properties can215

be interrelated and consistency can be guaranteed.216

III. FOUNDATIONS217

Designing a CPS while keeping the views consistent is not218

obvious. Moreover, each design process is slightly different219

making consistency management of view-specific properties220

process dependent. We believe that using a combination of221

generic templates improves the usefulness of consistency222

management among views while reducing time and effort. By223

analysing current design processes, we experienced that they224

combine three fundamental relationships: Multi-Semantics225

(MS), Multi-Abstraction (MA) and Multi-View (MV).226

The structure of each operation relies on the concepts227

of linguistic and ontological (meta-)modelling. In a model-228

driven-engineering context, a conformance relationship ex-229

ist between a meta-model and a (possible infinite) set of230

models which are instances of the meta-model. According231

to Kühne [11] this conformance relationship can be either232

linguistic or ontological. Based on the work of Barroca et233

al. [12], Figure 1 represents these conformance relationships.234

We clarify the different types of conformance relationships235

by means of the motivating example of Section II. A control236

algorithm is modelled by a control engineer using formalisms237

such as causal block diagrams, Statecharts, etc. Each model is238

typed by a meta-model: there exists a conformance relation239

between them. Since we are dealing with languages, this240
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Fig. 1. Linguistic versus Ontological models

conformance relation is called linguistic and the meta-model 241

is called a Linguistic Type Model (LTM). Semantics is given 242

to a model by defining a Semantic Domain (SD) and a 243

semantic mapping function ([[.]]) which maps a model onto 244

its meaning, an element of the Semantic Domain. For example, 245

the control model of the power window can be transformed 246

to a Petri-Nets model, which linguistically conforms to the 247

Petri-Net meta-model, to obtain a reachability graph. A second 248

transformation is used to retrieve performance values such 249

as liveness and boundedness. We specify them as linguistic 250

properties since they are situated in the linguistic world. In that 251

sense, the view-specific properties ‘sample rate’ and ‘period 252

of tasks’ in Section II are linguistic as well. Subsequent 253

transformations will check if a linguistic property satisfy a 254

constraint using a function that returns a logical value (True 255

or False). The linguistic models are modelled with Closed 256

World Assumptions (CWA). This means that if a property is 257

not modelled, it is assumed False. 258

As shown in the motivating example, each view interprets 259

the requirements by means of some ontological properties 260

(e.g., Control Performance High Enough? and Schedulable?). 261

We use the question mark to make explicit that these are 262

ontological properties that need to be checked based on the 263

linguistic performance values. As a result, each model is typed 264

by one or more Ontological Type Models (OTM) representing 265

the implicit knowledge of the engineer. An OTM categorises 266

or classifies real-world entities based on properties (concepts). 267

These are logically related using some appropriate logic (e.g., 268

description logic). Note that each ontology also conforms to 269

a Linguistic Type Model (LTM) because the representation of 270

the ontology must also be modelled using a language. 271

In our philosophy of ontological reasoning, ontologies and 272

linguistic models are related to each other through a satis- 273

faction relationship that must hold between their respective 274

properties. In other words, each linguistic property stemming 275

from a semantic domain can be linked to an ontological 276

property. This implies that linguistic properties stemming 277

from different semantic domains can be related to each other 278

through a common ontology or a set of ontologies. Note that 279

from an ontological viewpoint, no strict relation exists between 280

a model and an OTM. If a relation does not exist, either 281

within the ontology or with the linguistic type model, we do 282

not assume that it is False. We could just be unaware of the 283



relation. Ontologies are therefore modelled with Open World284

Assumptions (OWA).285

Based on these principles, the next subsections elaborate286

on three fundamental relationship patterns: Multi-Semantics287

(MS), Multi-Abstraction (MA), and Multi-View (MV). Fig-288

ure 1 will serve as a basis to describe the structure of289

these patterns, each of them exemplified using isolated design290

operations on the power window example. By composing the291

different patterns, Section IV demonstrates the usefulness for292

the entire design process.293

A. Multi-Semantics (MS)294

Intent: The first pattern focusses on multiple semantic295

domains, for a single engineering domain, to give meaning296

to one specific view on the real-world system. It is useful297

when different performance characteristics can be analysed298

from a single model. For example, an electronic engineer299

analyses both the power consumption and heat dissipation300

of an electronic system-on-chip. Power consumption and heat301

dissipation are analysed in different semantic domains, using302

a different semantic mapping.303

Structure: Figure 2 gives an overview of the relationships304

between linguistic and ontological properties. In the first305

phases of the design process, a written set of requirements306

formulates the desired properties of the real world system for307

a given context. Given these requirements, the engineer implic-

PropII=f(PVII)PropI=f(PVI)

Real World (RW)

Ontological World
Linguistic World

Properties
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Fig. 2. Linguistic and Ontological relationships for Multi-Semantics
308

itly reasons about ontological properties. The solid oval in the309

Ontological World denotes the set of ontological properties310

covered by the requirements. Examples of such ontological311

properties include Safe?, Performance High Enough?, Schedu-312

lable?, Deadlock Free?, etc.313

As a first step in the design process, the engineer makes an314

abstraction of the real-world system by means of a model. This315

model strictly conforms to a Linguistic Type Model (LTM).316

This is denoted by the conformance relation in Figure 2. By317

mapping the model, using semantic a mapping function [[.]],318

to a Semantic Domain (SD) a meaning is associated with319

the model. The model thus obtained in the Semantic Domain320

may allow analysis of some pertinent (linguistic) properties. In321

this pattern, multiple semantic mappings to different semantic322

domains are available to analyse different linguistic properties.323

The result of these analyses are called performance values324

(pv).325

To check if a linguistic property satisfies a certain ontolog- 326

ical property, we test its related performance value using a 327

function that returns a logical value (True or False). 328

Reasoning about consistency: Different satisfaction rela- 329

tions can exist between the performance values and the ontol- 330

ogy: (I) the performance values must satisfy two orthogonal 331

properties. The two properties are orthogonal if they are not 332

ontologically related (even after transitive closure of inter- 333

mediate relationships). In this case, there are no consistency 334

issues. (II) both performance values must satisfy the same 335

ontological property. In this case, the model is consistent with 336

itself. Otherwise the model is (a) intra-model inconsistent, (b) 337

the semantic mappings are inconsistent, (c) different linguistic 338

properties are checked or (d) the model is infeasible. (III) there 339

are (transitive) relations between the ontological properties that 340

must be satisfied: Depending on the type and direction of the 341

relations, this will lead to category (I) or (II). 342

Motivating Example: We clarify the pattern by means 343

of the example of Section II. The control model shown in 344

Figure 3 represents the model which linguistically conforms 345

to the meta-model of Simulink R©. On the one hand, performing 346

a simulation gives semantics to the control model (e.g., in the 347

form of a simulation trace). From this, we obtain performance

Reaction=f(Traces)DLF=f(Reachability)
Properties

DLF? Reaction?

Safe?

Fig. 3. Model of the power window controller and its ontology for Multi-
Semantics

348

values such as the time to reverse the movement of a window 349

when an object gets stuck between a closing window and the 350

frame. This is then checked against the Reaction Time High 351

Enough? property. On the other hand, a transformation to a 352

Petri Net representation can be made to verify the Deadlock 353

Free? property. Both ontological properties have a relation to 354

the property Safe?. The influence relation between ontological 355

properties is in this case: Safe? requires Deadlock Free? and 356

Reaction Time High Enough?. Deadlock Free? and Reaction 357

Time High Enough? are orthogonal. 358

B. Multi-Abstraction (MA) 359

Intent: In the multi-abstraction pattern, an abstraction- 360

refinement relation exists between the different models. This 361

implies that the abstract model’s performance values must 362

satisfy a subset of the ontological properties satisfied by the 363

(performance values of the) more refined model. 364

Structure: The structure of the pattern is shown in Figure 4. 365

As in every design process, a written set of requirements 366
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Fig. 4. Linguistic and Ontological relationships for Multi-Abstraction

formulates the real world system demands. Given this set367

of requirements, each engineering domain creates a set of368

ontological properties and relations between the ontologies369

that the system should satisfy. Because there is only a sin-370

gle view (engineering domain), there exists only one set371

of ontological properties the system should satisfy. This is372

denoted by the solid oval in the Ontological World. Similar to373

the previous pattern, linguistic properties are tested for both374

models by transforming them to a semantic domain. Again, the375

performance values are tested, using a function, for satisfaction376

with the ontological properties.377

By definition of abstraction A, for an original model model,378

only a subset of the ontological properties satisfied by the379

performance values (in the Linguistic World) of the original380

model have to be satisfied by the performance values of381

the abstracted model A(model). For each such ontological382

property op:383

{A(model) |= op} =⇒ {model |= op}384

If A(model) satisfies an ontological property, this must imply385

that model satisfies that same property.386

Reasoning about consistency: If the set of performance387

values of the refined model do not satisfy all the properties388

of the abstracted model, the two models are inconsistent.389

This case is called vertical inconsistency in the literature. The390

designer should mitigate the issue such that the refined model391

satisfies all the properties of the abstract model. This could be392

a redesign of the abstract or refined model.393

Motivating Example: Figure 5 shows a refined model394

of the power window controller and the set of ontological395

properties it satisfies (via its performance values). Our refined396

model still satisfies the ontologies discussed in the multi-397

semantics example. However, it also satisfies a new ontological398

property: Priority to Driver?. This property denotes that the399

driver commands have priority over the commands of the400

passenger. The model is still deadlock free and the reversal401

of the window is still satisfied. Note that we also discovered402

a new relation in the ontology. Safe? now also requires the403

Priority to Driver? property to be satisfied. Our abstract model404

however cannot be regarded as Safe? anymore because it has405

no notion of priority. To keep the ontology consistent with the406

Reaction=f(Traces)DLF=f(Reachability)
Properties

DLF? Reaction?

Safe?
Priority?

Fig. 5. Refined model of the power window controller and its ontology for
Multi-Abstraction

different design artefacts, the Safe? property should be moved 407

from the inner to the outer set of properties. 408

C. Multi-View (MV) 409

Intent: A final pattern operation focuses on multiple en- 410

gineering domains involved when designing a CPS, each of 411

them with a domain-specific view on the real-world system. 412

It is useful when the view-specific models are somehow 413

related to each other. For example, during the design of a 414

control algorithm its model is synthesized using a plant model 415

representing the physical elements of the real-world. 416

Structure: Similar to the previous patterns, Figure 6 de- 417

picts the structure of Multi-View design. Given the set of

PropII=f(PVII)PropI=f(PVI)

Real World (RW)

Ontological World
Linguistic World

Prope
rties

Performance ValueI (PVI) modellI

SDI LTMI
[[.]]

[[.]]
modelII Performance ValueII (PVII)

LTMII SDII
[[.]]

[[.]]

Conforms toTransforms
Checks satisfactionHolds Linguistically conforms to

Represents

Fig. 6. Linguistic and Ontological relationships for Multi-View

418

requirements describing the behaviour of the real-world system 419

for a given context, each view (engineering domain) reasons 420

about certain linguistic properties and their related ontological 421

properties. These sets are represented by the dashed ovals in 422

Figure 6. However, since some of the requirements are shared 423

among the views, properties will concern both views which 424

implies that the ontological sets overlap. A semantic mapping 425

function transforms both models to a semantic domain to 426

test their linguistic properties. Using an appropriate evaluation 427

function, the performance values are evaluated for satisfaction 428

with the ontological properties. 429



Reasoning about consistency: Since the ontological prop-430

erties at the intersection are related to the same requirement(s),431

an ontological relationship between them exists by default.432

Satisfaction between the performance values and the ontology433

can occur in two ways: (I) if the performance value(s) satisfy434

one or more of the properties in the intersection. (II) if435

the performance value(s) satisfy a view-specific ontological436

property which has a relation (after transitive closure) with437

a property in the intersection. If for (I) and (II) the view-438

specific performance values satisfy the property, the model439

is consistent with itself. Otherwise, the model is inter-model440

inconsistent. In the literature, this type of (in)consistency is441

specified as horizontal (in)consistency. Consistency can be442

guaranteed as well if performance value(s) satisfy orthogo-443

nal properties such that no relation with a property of the444

intersection exists.445

Motivating Example: We illustrate this pattern operation446

by using the motivating example of Section II. The upper447

part of Figure 7 depicts how the power window controller is448

connected to a plant model, while the lower part of Figure 7449

shows relationships between ontological properties. As already

Lowering=f(Traces)Reaction=f(Traces)

Pro
perti

es

DLF? Safe?

Reaction?
Priority?

Properties

Efficiency?

Lowering?

Fig. 7. Control and plant model of the power window and their ontologies
for Multi-View

450

shown in the previous patterns, the power window controller451

is modelled using a statechart diagram and satisfies the onto-452

logical properties discussed in the multi-abstraction example.453

On the other hand, the plant model describes the physical454

elements of the real-world (i.e., the motor and the window455

mechanism) using causal-block diagrams. For this view, per-456

formance values should satisfy the properties Efficiency High457

Enough?, Lowering?, Safe? and Reaction Time High Enough?.458

Since lowering the window ensures that a clamped object can459

be released, a relation exists between Lowering? and Safe?.460

From the example in the multi-semantics pattern, we have461

shown how Safe? is related to Reaction Time High Enough?462

for the control view. Since the properties Safe? and Reaction463

Time High Enough? are part of the intersection, inter-model464

consistency can be guaranteed.465

IV. MOTIVATING EXAMPLE REVISITED466

While demonstrating the fundamental design operations467

in the previous section, it became clear no single pattern468

can be used on its own in a complete design process. This469

section revisits the motivating example of Section II using470

the fundamental pattern operations, validating how consistency 471

can be guaranteed during the design of a CPS. 472

Figure 8 shows the ontologies related to the design of the 473

power window example. Centralized in the figure, one may 474

recognize the Multi-View pattern combined with the Multi- 475

Abstraction pattern which where demonstrated in Figure 7 476

and Figure 5 respectively. Both patterns are concurrently used 477

by the control and mechanical engineer. Note that we have 478

added the ontological property Performance High Enough? to 479

indicate a control engineer reasons about control performance 480

as well during his design. As already mentioned in Section II,

Reaction?

Load?

Cost?

Perf?

Schedulable?

Reaction=f(Traces)Schedulable=f(Traces)

DLF?

Safe?Priority?

Efficiency?

Lowering?

Properties

Fig. 8. Ontologies related to the design process of the power window

481

the third stakeholder (embedded engineer) is concerned about 482

the deployment of the control algorithm onto an ECU. There- 483

fore, he uses a hardware platform which is designed by the 484

same or an additional engineer keeping in mind ontological 485

properties such as Balanced Load? and Low Cost?. A relation 486

between them exists since more hardware resources (resulting 487

in a lower load) leads to a higher cost and vice versa. This is 488

symbolized by an ontology which has no (direct) relation with 489

the ontologies regarding the design of the control and plant 490

model. To this end, we say that both ontologies are orthogonal. 491

However, a consistency relationship between the software 492

(control algorithm) and the hardware (ECU) exists from the 493

ontological property Balanced Load? to Performance High 494

Enough? through the property Schedulable?. This latter prop- 495

erty refers to the implicit knowledge of the embedded engineer 496

who strives for a schedulable system in which the load for the 497

ECU and the control performance is balanced. Since control 498

performance has a consistency relationship with the property 499

Reaction Time High Enough?, an indirect link between the 500

schedulable system and the reaction time, to reverse the 501

movement of the window, exists. Due to this ontological 502

reasoning, a schedulable system implies a system to be safe. 503

One may notice that the pattern composition is not entirely 504

valid for this design process of our power window. Since the 505

Schedulable? property concerns both control and embedded 506

engineer it would have been better to reason upfront about the 507

performance values of timing. 508

V. DISCUSSION 509

The foundations and motivating example show how in- 510

consistencies arise because of the link between linguistic 511

and ontological properties and their interrelations. We discuss 512

some ramifications of reasoning in the ontological world for 513



the design of complex engineered systems and subsequent514

tools that are needed.515

Engineers use approximation in a similar way as abstrac-516

tion. From an engineering perspective, we rarely deal with517

true abstraction. Because of measurement errors, numerical518

techniques, order reduction of our physical quantities and519

phenomena, we usually approximate our performance value520

in the linguistic domain. Our foundations deal with these521

approximation by tuning the function that checks a linguis-522

tic performance value against the ontological property. The523

function has to take the tolerated error into account, and thus524

works with a range of values. Reasoning about consistency525

is in this case much harder. We need to take a distance526

metric between the non-approximated performance value and527

the approximated performance value into account to allow528

for substitutability. This is considered future work for our529

approach.530

During the process of designing systems, engineers learn531

about the system they are designing. It is therefore also532

necessary to allow the ontology to be extended and updated.533

This also has to reflect within the tool support. However,534

the mechanisms of relating process, models and ontologies535

requires tools to be usable by engineers. We will use the model536

verse tool to enact the different modelling environments [13].537

The model verse tool allows us to model languages, models,538

processes, ontologies and the different dependencies between539

the different artefacts. It also requires us to trace the different540

properties back to the linguistic world such that efficient541

consistency management can be done at the modelling level.542

Of course, the use of an additional tool(set) might lead to543

additional complexity. In certain development processes, how-544

ever, ontologies can be reused, extended and/or merged which545

reduces the additional complexity and enhances scalability.546

Nonetheless, the feasibility of extending and merging two547

or more ontologies will depend on their heterogeneity. Note548

that the use of an incomplete ontology doesn’t necessary lead549

to an inconsistent system. However, consistency can not be550

guaranteed for those properties which are not linked to an551

ontology.552

Tool builders can take the ontological properties and re-553

lations into account to support the engineers. An example554

of this is the use of round-trip engineering in the design555

process. With round-trip engineering, information about cer-556

tain linguistic properties, that are only analysable at a less557

abstract level, are reintroduced at the higher abstraction level,558

essentially synchronising the two artefacts. However, we still559

need to reason about which linguistic properties need to be560

synchronised. Because of the link with ontologies, we can now561

reason on the dependant ontological properties and trace them562

to the linguistic properties. For example, the control models563

can be extended with timing information as shown in [6], [14].564

Both papers introduce extra blocks into the control model that565

represent the delays of the computation time, scheduling time566

and communication time. This allows the control engineer to567

re-evaluate the control model for timing anomalies. By making568

the information explicit, the number of design iterations could569

be reduced. 570

By reasoning about the relations between the different 571

ontological properties, we can also reason about the design 572

process. An example of such a process restructuring can be 573

the parallelisation of two sequential design activities where 574

no ontological overlap is present. Tearing, partitioning and se- 575

quencing algorithms, introduced in design structure matrices, 576

can be used to guide the restructuring process [15]. 577

The linguistic models linked to the ontologies also help us 578

in identifying activities that do not use a proper abstraction. 579

For example, in the power window, the schedulability prop- 580

erty influences the control performance property. However, 581

the evaluation of the schedulability property requires more 582

information that is only available after mapping the control 583

components to the hardware components. Restructuring these 584

activities into a real co-design process requires us to reason 585

about the timing information before starting the design of the 586

control and hardware models. Vertical design contracts allow 587

us to mend this. The ontologies and relation with the linguistic 588

world allows us to infer the view-specific properties that are 589

needed for a specific design contract. By making the relations 590

explicit, engineers can negotiate about the contracts with a 591

common understanding of how properties are linked. 592

VI. RELATED WORK 593

Introducing a common understanding between different 594

disciplines through languages has been a common research 595

theme in the mechatronic domain, for example in [16]. Close 596

to our contribution is the work of Hehenberger et al [17] who 597

introduce a domain ontology with structural elements of the 598

design and relations to reason about consistent structures of 599

the mechatronic device. In [18] OWL ontologies are used 600

to formally represent the design of a production system. 601

Combined with a SysML-based modelling approach, it enables 602

engineers to evaluate the compatibility of their domain-specific 603

models. Kovalenko et al [19] use an ontology-based approach 604

to support engineers in the automated detection of defects 605

between domain-specific models. Similar to our approach, it 606

enables engineers to use their own tools and view on the 607

system under design. 608

Persson et al [20] characterise model-based approaches used 609

in the design of Cyber-Physical Systems. The authors identify 610

consistency between the various views of the system as one of 611

the main challenges in the design of such complex systems. 612

This is due to relations between views, with respect to their 613

content (i.e., semantic relations), process and operations which 614

are not entirely exclusive to each other. 615

Van der Straeten et al [21] emphasise the importance of 616

proper characterisation of inconsistent model states, as a 617

foundational activity in model inconsistency management. The 618

authors propose a logic-based approach to address this activity, 619

although, as it often the case in the state-of-the-art, they focus 620

entirely on linguistic inconsistencies of pure software systems. 621

As an alternate approach, correspondence models have been 622

used extensively as a formal underpinning to inconsistency 623

characterisation. Qamar et al [22] propose explicit modelling 624



of dependencies among elements of various models in order625

to support change propagation and consistency management.626

Dávid et al [23] extend this framework by adapting it to627

explicitly modelled design processes and augmenting the628

reasoning by levels of precision of dependency links. As a629

special case of correspondence modelling, pivot models are630

often employed in mechatronics and CPS. Bhave et al [24]631

use an “architectural base model” and a set of model trans-632

formations for bi-directional mapping between various views633

and the base model. SysML and EAST-ADL are frequent634

choices for implementing pivot models, as presented in [25]635

and [26]. Adourian et al [27] show a technique for maintaining636

consistency between geometric and dynamic properties of637

mechanical systems using triple graph grammars (TGG). Due638

to the nature of TGGs, the approach does not only support639

unidirectional synchronisation, but also bidirectional change640

propagation and consequently, parallel evolution.641

Characterisation of inconsistencies is a labor intensive task642

when carried out manually. This is especially true when643

ontological properties have to be taken into account. Herzig et644

al [28] propose a probabilistic approach to identify semanti-645

cally similar model elements over multiple models, in order to646

relate them. Bayesian reasoning is used to infer likely semantic647

overlaps, based on similarity metrics of various models and648

model elements.649

VII. CONCLUSIONS650

This paper provides a foundation to facilitate communi-651

cation among stakeholders having different concerns when652

designing a Cyber-Physical-System. We isolated three design653

operations and extended them with the notion of ontological654

reasoning. By re-composing fundamental design operations,655

we demonstrated how (in-)consistency can be managed. Fur-656

thermore, reasoning in the ontological domain gives us insights657

into the required content of contracts in Contract Based658

Design.659
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