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Abstract. Because of the combination of computational, networking11

and physical artifacts, different engineering disciplines are involved in12

the design of a Cyber-Physical System (CPS). This multidisciplinary ap-13

proach leads to different, often contradicting, views on the system under14

design which in the end might lead to inconsistencies between domain15

specific properties. Contract-Based Design (CBD) aims to prevent these16

contradictions by defining possible conflicting properties in a contract.17

These contracts consist of a set of pre- and postconditions.18

Although the current state-of-the-art describes the abstraction/refinement,19

composition and multi-view analysis and verification principles of CBD,20

it lacks methods and techniques to identify the shared properties in con-21

current design processes. By combining the theory of CBD with the22

principles of ontological reasoning, this paper intents to provide a frame-23

work which enables Contract-Based Co-Design (CBCD). The feasibility24

of this framework will be explained by means of a running CPS example.25

Keywords: Co-Design · Contract-Based Design · Cyber-Physical Sys-26

tems · Ontological Reasoning · Ontologies27

1 Introduction28

Increasingly more, Cyber-Physical Systems (CPS) [1, 2] take a prominent role in29

a wide range of application areas such as transportation, manufacturing, health30

care, etc. They extend traditional mechanical systems with computational and31

networking capabilities making (daily life) products smarter, faster, more accu-32

rate, remotely controllable, and so forth. Therefore, CPS are considered as one33

of the key enablers of the fourth industrial revolution.34

Despite the extended capabilities of CPS, its development process is charac-35

terized by costly, iterative, design cycles partly due to the involvement of various36

engineering disciplines, each with a different view and set of concerns of the sys-37

tem under design [3]. The involvement of these different stakeholders can lead to38
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inconsistencies between shared properties, causing unexpected behaviors during39

the integration of the different design artifacts. To preserve consistency between40

those different views, Contract-Based Design (CBD) [4–6] is increasingly being41

used by system engineers to formalize an agreement between two or more engi-42

neering domains. Originating from contracts used in software engineering, such43

an agreement consists out of a set of assumptions and guarantees. These assump-44

tions and guarantees describe the conditions under which a system promises to45

operate while satisfying desired properties.46

Given the increasing complexity of Cyber-Physical Systems, aggravated by47

the need for cost-efficient products and shorter development time, the need for48

concurrent design (co-design) processes arises. Concurrent design makes engi-49

neers reason about common design properties to allow the independent devel-50

opment of parts of the system. In that sense, Contract-Based Design seems to51

be a useful methodology. Different contributions have been made elaborating on52

abstraction/refinement, verification and validation of contracts (see Section 2).53

However, the current state-of-the-art does not allow the engineers to reason54

about the content of such a contract. It thus lacks in its applicability to the55

co-design of Cyber-Physical Systems. This paper intents to provide a framework56

which enables Contract-Based Co-Design (CBCD) by combining the current57

state-of-the-art of CBD with the principles of ontological reasoning [7]. The58

latter enables one to make the implicit knowledge of each engineer explicit by59

using ontological properties and certain influence relationships between them.60

The rest of this paper is structured as follows. Section 2 gives an overview of61

the related work. The running CPS example is introduced in Section 3, while an62

overview of the currently used contract operators is given in Section 4. Similar63

to the proposed methodology in the current state-of-the-art, Section 5 investi-64

gates the applicability of the current theory in a co-design engineering process.65

However, some shortcomings will emerge which are resolved by our proposed66

CBCD methodology in Section 6. Finally, Section 7 concludes our contribution67

and gives an overview of our future work.68

2 Related Work69

Contract-Based Design finds its origin in the late 80’s when Bertrand Meyer70

introduced the Eiffel programming language to enable contract-based software71

development [8, 9]. Eiffel introduces Require and Ensure clauses that correspond72

to respectively a set of pre- and post-conditions under which a software routine73

ensures to operates.74

More than a decade later, the use of contracts during the design of CPS came75

to the attention of some researchers, including Damm [10, 11]. He introduced the76

concept of ‘rich components’ to deal with uncertainty when designing Cyber-77

Physical Systems. Rich components extend model components such that: (a)78

they cover all the specifications of the involved viewpoints, (b) they contain a79

set of assumptions and guarantees with respect to the context of the component,80

and (c) they provide classifiers to the assumptions.81
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In the framework of the European project SPEEDS5, the work of Damm was82

extended by Josko et al. [12] and Benvenuti et al. [13] by means of ‘Heteroge-83

neous Rich Component’ (HRC) which supports the integration of heterogeneous84

viewpoints on a system with different semantics originating from multiple de-85

sign layers and tools. Therefore, a common meta-model was developed in [14].86

Similar but less comprehensive approaches, however, were already introduced87

by the MARTE UML profile [15] and as a modelling framework called Metropo-88

lis [16]. The scope of the SPEEDS project resulted in the (first) use of contracts89

in a component based engineering context. In [17], Benveniste et al. present the90

mathematical foundations of CBD to enable the combination of contracts for91

different model components and the combination of contracts for different view-92

points on the same model component. According to the authors, a contract as93

such consists out of a pair of Assumptions and Guarantees formulated as C =94

(A,G). Note that this relates to the Require and Ensure clauses introduced by95

Meyer [9].96

In the scope of the European project CESAR6, Benveniste et al. extended97

their theory and showed how contracts might be used through multiple ap-98

plication cases [4, 18]. They show that there exist three fundamental contract99

operators to combine contracts: refinement, composition and conjunction [4, 19].100

Based on the work of of Benveniste et al., Graf et al. describe how circular101

and non-circular assume-guarantee reasoning can be used in order to check for102

contract dominance [20]. They make use of two frameworks, L0 and L1, which103

are focused on component refinement and component interactions respectively.104

Sangiovanni-Vincentelli et al. address the emergent need of CBD in the con-105

text of system level design [6] . They present a design methodology that combines106

the concepts of CBD with Platform-Based Design (PBD) as a meet-in-the-middle107

approach. Related to the work of Graf et al. [20], Sangiovanni-Vincentelli et al.108

demonstrate how contracts may be dominated when combining subsystems (in-109

dividually bounded by a contract). Furthermore, a clear distinction is made110

between horizontal and vertical contracts when combining the concepts of CBD111

with PBD. Similarly, Nuzzo et al. elaborate on the usefulness of CBD, and their112

formal analysis and verification methods, in a PBD methodology for Cyber-113

Physical Systems [21, 22]. Besides going into detail on the different methods114

and tools that are used to enable their methodology, an aircraft electric power115

distribution system is used as a demonstrator.116

In [5], a more general framework of design contracts in the context of CPS117

design is given. Derler et al. focus on timing properties to facilitate the communi-118

cation between control and embedded engineers. A non-exhaustive enumeration119

of contract types is given each with a specific set of parameters having a com-120

mon interest to both engineering domains. Depending on the type of contract121

(and therefore the formalized set of parameters), an actual implementation of122

the contract is feasible for one or both of the engineering domains.123

5 www.speeds.eu.com
6 http://www.cesarproject.eu
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Törngren et al. describe the different viewpoints involved in the design of124

a mechatronic system [3]. Furthermore, they show how these viewpoints are125

interrelated by means of supporting models at different design levels, namely:126

(a) people level, (b) models level and (c) tools level. At each design level, some127

challenges and solutions (supporting models) are described. For the contributions128

of our work, the first two levels are particularly interesting. At people level, the129

authors point out that each stakeholder, involved in the design of a CPS, should130

be aware of the effect of his/her work on others. To enable this, the use of design131

contracts, as suggested by Derler et al. [5], is proposed. Moreover, they hint132

towards the use of assumptions and guarantees as discussed by [6]. Additionally,133

at models level, Törngren et al. describe the existence of dependencies between134

models implementing certain parts of the overall system requirements.135

We conclude this section with the work of Persson et al. where the authors136

characterize model-based approaches used in the design of Cyber-Physical Sys-137

tems [23]. To do so, a clear distinction is made between views and viewpoints.138

The former relates to the multitude of abstractions that can be made of a sys-139

tem while the latter refers to a set of all possible view instances. The authors140

show that there exist relations between views, and as such viewpoints, with re-141

spect to their content, process and operations which are not entirely exclusive to142

each other. This is illustrated by an academic case study of a wind-shield wiper143

system.144

3 The Power Window as a Running Example145

To clarify the current state-of-the-art in Section 5 and to detail our contribution146

in Section 6, we use the power window as a running example.147

As every system, the power window is specified by a set of requirements.148

These requirements describe the expected behavior of the system given a certain149

context. Given that the power window system operates in a vehicle, we describe150

the most elementary behavior of the power window as follows [24]:151

1. The power window should start moving within 200 ms after a command is152

issued.153

2. The power window shall be fully opened or closed within 4.5 s.154

3. When closing the power window, a force of no more than 100 N may be155

present.156

4. Detection of a clamped object when closing the window should lower the157

window by 10 cm.158

Power window 
system

button_up

button_down

pinch_F

cmd_up

cmd_down

Fig. 1. Representation of the
power window system

Given these requirements, the power win-159

dow system can be seen as a black box con-160

troller with three inputs and two outputs as161

illustrated in Figure 1.162

Using the definition of contracts for system163

design from [4] and [19], the set of require-164

ments are formalized as a system contract, as165

shown in Table 1. The contract specifies cer-166
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tain assumptions on the context/environment the power window operates in,167

namely: (a) the input force is lower than 1000 N and (b) the minimum inter-168

val of button operations is 100 ms. Under these conditions, a safe operation of169

the system is guaranteed. It might be clear that the requirements of the sys-170

tem are the guarantees of the system. However, as one may notice in Table 1,171

certain functional requirements are refined given domain-specific knowledge. For172

example, requirement 3 and 4 are further refined in the spatial and temporal173

dimension to detail the safety requirement:174

1. Spatial dimension: if a clamped object is detected, the power window may175

continue to close for a maximum of 0.2 mm before life threatening injuries176

occur.177

2. Temporal dimension: given the spatial dimensions, safety can be guaranteed178

if the window lowers within 1 ms.179

This refinement, that is made after discussions with experts and looking into180

regulations, results in the fifth guarantee of Table 1.181

Table 1. Power window system contract CSYS

Assumptions
pinch F will be lower than 1000 N.

button up occurs sporadic with a minimum period of 100 ms.

button down occurs sporadic with a minimum period of 100 ms.

Guarantees

Delay between button up and cmd up within [0 ms, 200 ms].

Delay between button down and cmd down within [0 ms, 200 ms].

Maximum activation time cmd up within [0 ms, 4.5 s].

Maximum activation time cmd down within [0 ms, 4.5 s].

If pinch F exceeds 100 N, delay between pinch F and cmd down within
[0 ms, 1 ms ].

If pinch F exceeds 100 N, activation time cmd down within [0 s, 0.43 s].

4 Overview of the State-of-the-Art Contract Operators182

In section 2 it is shown that a lot of contributions in the field of Contract-183

Based Design for Cyber-Physical Systems have been done in the context of the184

SPEEDS and CESAR projects. Therefore, this section gives a short overview of185

the currently used contract operators. Section 5 uses these operators to check186

their feasibility in a co-design engineering process.187

Decomposition of a system188

Concurrent engineering (co-design) can be realized by decomposing the system189

into components that are designed (semi-)independently of each other. From the190

perspective of a CPS, one can distinguish three independent components: (a) a191

hardware component, i.e. one or more embedded platforms which are connected192

to each other, (b) a control component and (c) a mechanical component. Each193
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component is typed by a set of in- and outputs, a set of behaviors and a set of194

extra-functional properties like performance, timing, energy, safety, etc. Figure 2195

shows the decomposition of the power window system (Figure 1) into its control196

and hardware component. Note that we neglected the mechanical component197

for the sake of clarity. As can be seen, components can be further refined and198

hierarchically structured to represent different levels of abstraction. They can be199

connected to each other by sharing certain ports and variables.200

Control 1

button_up

button_down

up_out

down_out
Control 2

pinch_F

cmd_up

cmd_down

up_in

down_in

CAN

button_up

button_down

up_out

down_out
ECU 1 ECU 2

pinch_F

cmd_up

cmd_down

up_in

down_in

button_up

button_down

pinch_F

Power window system

Control component

Hardware component

cmd_up

cmd_down

Fig. 2. Refinement of the power window system

The decomposition of the system results in a decomposition of the system201

contract as well. Indeed, each (sub-)component is typed by an individual con-202

tract that is derived from the system contract. By using different operators, the203

component contracts are merged and should satisfy or refine the system contract.204

Contract operators205

Because a contract is a set of assumptions and guarantees, set theory is used to206

merge component contracts. Three basic operators are defined in literature [19]:207

abstraction/refinement�, conjunction ∧ and composition⊗. Before applying the208

current CBD theory to our example, we briefly discuss these basic operators.209

Abstraction/Refinement As already stated, components might be hierarchi-210

cal structured and as such, a component its contract might be further refined.211

Let C
′

= (A
′
, G

′
) and C = (A,G) be two contracts consisting out of a set of212

assumptions and guarantees. The refinement C
′ � C holds if and only if:213

A
′
⊇ A

G
′
⊆ G

(1)

Given this constraint, it is clear that a refined contract should weaken the as-214

sumptions and strengthen the guarantees. Therefore, we say that any implemen-215

tation M of contract C
′

is an implementation of C as well, or more formally:216

If M |= C
′

and C
′
� C then M |= C (2)
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A similar reasoning can be obtained for the environment E of both contracts:217

If E |= C and C
′
� C then E |= C

′
(3)

Conjunction The conjunction operators enables one the merge different view-218

point contracts associated to one single component. In the example of Figure 2,219

the component ‘Control 1’ might be typed by a behavioral and a safety view-220

point contract. Let C1 = (A1, G1) and C2 = (A2, G2) be two viewpoint contracts221

consisting out of a set of assumptions and guarantees. The conjunction C1 ∧C2222

can then be obtained as follows:223

A = (A1 ∪A2)

G = (G1 ∩G2)
(4)

Similar to the abstraction/refinement operator, the conjunction operator weak-224

ens the assumptions and strengthens the guarantees.225

Composition The composition operator enables one to merge the contracts226

associated to different components. In the example of Figure 2, the contracts227

related to the sub-components ‘Control 1’ and ‘Control 2’ can be composed to228

compute the ‘Control’ contract. Let C1 = (A1, G1) and C2 = (A2, G2) be two229

components contracts consisting out of a set of assumptions and guarantees. The230

composition C1 ⊗ C2 can then be obtained as follows:231

A = (A1 ∩A2) ∪ ¬(G1 ∩G2)

G = (G1 ∩G2)
(5)

In the case of composition, both assumptions and guarantees are strengthened.232

5 Applicability of the Current Methodologies on a233

Co-Design Engineering Problem234

To the best of our knowledge, the current CBD theory has never been applied235

in a co-design engineering process. On the contrary, the examples shown in [4,236

21, 22] are sequential engineering processes. Therefore, this section analyzes the237

feasibility of the current state-of-the-art/state-of-the-practice and identifies pos-238

sible shortcomings using the power window example of Section 3.239

Control component240

As can be seen in Figure 2, the control component is decomposed into two control241

components. One component takes care of the user operations (button up and242

button down) and as such implements guarantee 1 and 2 of the system contract243

of Table 1. The other control component implements the main control loop which244

takes care of the remaining guarantees.245
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The composition of the two refined control components refines (the control246

view of) the system contract of Table 1 and will, using equation 1, strengthen247

(some) guarantees and weaken (some) assumptions. As an example, Table 2248

shows a fragment of the contract of component ‘Control 1’ which is obtained by249

the conjunction of its functional and timing contract and the composition with250

the signal contract. The later one specifies a contract on the signals between251

‘Control 1’ and ‘Control 2’. The refined contract strengthens the guarantees of252

the system contract. In ’control 1’ the delay between the component its input and253

its output (in fact, the input of the other component) is lowered from 200 ms to254

52 ms. Together with the contract of ’Control 2’, the total time is less than 200255

ms. Furthermore, equation 3 holds because the environment of the composed256

refined components will be one for the system as well. Note that the actual257

refinement of the system contract is the conjunction of the composition of the258

hardware components and the composition of the control components.259

Table 2. Fragment of contract CC1 for ‘Control 1’

Assumptions
button up occurs sporadic with a minimum period of 50 ms.

up out occurs sporadic with a minimum period of 2 ms.

Guarantees Delay between button up and up in within [0 ms, 52 ms].

If we take a closer look at the content of the contract in Table 2, we may260

wonder to what extent a control engineer is able to guarantee these timing delays.261

Although a control engineer has several degrees of freedom (e.g. the order of the262

control algorithm) to influence the computational expensiveness of a algorithm,263

these timings highly depend on the hardware platform and thus on the hardware264

component. From our experience with industry, we know that control engineers265

have limited aids in estimating hardware properties and as such are not able to266

guarantee these delays once the control algorithm is deployed.267

Hardware component268

A similar conclusion can be made when looking to the contract for the hardware269

component, and in particular for the contract of ‘ECU 1’ (see fragment in Ta-270

ble 3) which implements the algorithm of ‘Control 1’. Note that the composition271

of this contract with the ’ECU 2’ and ’CAN’ contract is again a refinement of272

the (hardware view of the) system contract, which one can verify using equa-273

tions 1 - 3.274

At a first glance, the contract contains everything an embedded engineer is275

able to reason about: timing period of a runnable, Worst Case Execution Time276

(WCET) and Worst Case Response Time (WRT). However, their position in the277

table is questionable. To be more specific, both parts of the table reason about278

these properties, while they should be clear guarantees of the platform.279
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Table 3. Fragment of contract CE1 for ‘ECU 1’

Assumptions
button up occurs sporadic with a minimum period of 40 ms.

Runnable#actuation occurs each 40 ms.

Delay between Runnable#actuation and up out within [0 ms, 10 ms].

Guarantees
Timer occurs each 10 ms.

Delay between button up and up out within [200 us, 10 ms + 1.3 ms].

Shortcomings280

From this example, we conclude that the current state-of-the-art does not sup-281

port a co-design process because the individual contracts: (a) contain properties282

on which the domain engineer lacks the ability to reason about and/or (b) make283

no clear separation between what is assumed from the other domain and what284

should be guaranteed under these conditions.285

6 A Contract-Based Co-Design Methodology286

To overcome the aforementioned shortcomings, a clear negotiation phase is in-287

cluded in the proposed engineering process. This results in a so called mapping288

contract. Based on this overall contract, the different domain-specific contracts289

are derived and further refined. This process for deriving domain-specific con-290

tracts from a negotiated contract was already suggested by Derler et al. in [5].291

However, a clear methodology was not proposed. Therefore, we suggest to use292

domain ontologies to support this Contract-Based Design process.293

In its essence, an ontology is typed by a set of ontological properties and294

certain influence relationships which exists between those properties. Each on-295

tological property classifies a certain part of the real world.296

Real World (RW)

Ontological World
Linguistic World

Conforms toTransforms
Checks satisfactionHolds Linguistically conforms to

Represents

Prop=f(PV)

LTM SD
[[.]]

model Performance Value (PV)
[[.]]

1
3

2
4

Properties

Fig. 3. Ontological Reasoning

In the context of Cyber-Physical297

Systems, ontologies are ideal to make298

the implicit knowledge of each domain299

engineer explicit. Based on our earlier300

work [7], Figure 3 shows a formal rep-301

resentation of ontological reasoning in302

a CPS design context. Given a set303

of requirements, which describes the304

real-world system for a certain con-305

text, the engineer reasons about cer-306

tain domain properties (which might307

be related to each other). The solid308

oval in the Ontological World denotes309

the set of ontological properties covered by the requirements.310

As a first step in the design process, the engineer abstracts the real-world311

system by means of a model. This model is typed by a meta-model, called a312
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Linguistic Type Model (LTM ). A linguistic conformance relationship exists be-313

tween the model and the LTM. By transforming the model to a Semantic Do-314

main (SD), using a semantic mapping function ([[.]]), a meaning is given to the315

model. This allows for analysis of linguistic properties which are called Perfor-316

mance Values (PV ). The engineer evaluates these performance values to his own317

implicit knowledge of the system. This allows the engineer to conclude whether318

the system is conforming to the requirements or not.319

By making this knowledge explicit using an ontology, a function returning320

a logical value can be used to evaluate these performance values against a cer-321

tain ontological property. As discussed in [7], ontological reasoning enables us to322

reason about consistency between performance values related to different onto-323

logical properties. These properties in turn are connected by means of influence324

relationships.325

We argue that ontological reasoning enables contract-based co-design of a326

CPS. Given the requirements of the system, an ontology of the overall system is327

created. The overall ontology is complemented with domain-specific ontologies328

for each engineering domain. The system ontology is linked to the domain-specific329

ontologies by means of influence relationships enabling us to reason about re-330

lationships between system and domain-specific properties and thus also about331

contracts. For example, Figure 4 shows the ontology (right side) and the differ-332

ent contracts (left side) of the power window system. We can clearly distinguish333

three areas: (a) a control area in the upper part, (b) a mapping area in the334

middle and (c) a hardware area in the lower part. The following subsections335

discuss these areas in more detail and how there are related to each other in a336

Contract-Based Design process consisting out of three phases: (a) negotiation,337

(b) deriving the domain contracts and (c) refinement of the domain contracts.338

Phase 1 - Negotiation339

A co-design engineering process, supported by Contract-Based Design, starts340

with a negotiation phase where the involved engineering domains discuss the341

system properties which need to hold. Therefore, each engineer represents the342

architecture of its domain given the system requirements. For example, the con-343

trol engineer reasons about: (a) the amount of software components, (b) their344

in- and outputs, (c) connections between components, etc. On the other hand,345

the hardware engineer responsible for the hardware part of the system reasons346

about: (a) the number of Electronic Control Units (ECUs), (b) their processor,347

(c) communication between the ECUs, etc. These architectural parameters can348

also be ranged values. An example of such an architecture is shown in Figure 2349

which, indeed, is a refinement of the system.350

Given the architecture of the involved domains and the system requirements351

(e.g. Table 1), the engineers decide how these architectures are related to each352

other. For example, when focusing on control and hardware components, they353

decide how the control algorithm is mapped to the hardware. In the case of the354

power window, they decide on a one-to-one mapping between a control and ECU355

component. Based on this mapping, a mapping contract, as shown on the left356
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Max E-E Latency Control1->2 = 199 ms

Min interval inputs = 100 ms

# instr SWC1  = 200

Assumptions

Guarantees

Assumptions

Guarantees
Max E-E Latency Comp1 = 199 ms

Max E-E Latency Comp2 = 1 ms

250 us ≥ Periodicity Comp2 ≤ 750 us

Processor Clock1 = 1 MHz

# instr Comp2  = 1000

200 us ≥ Periodicity Comp1 ≤ 100 ms

# instr Comp1  = 200

Processor Clock2 = 8 MHz

Min interval inputs = 100 ms

Max comm time = 50 ms

Assumptions

Guarantees

Max E-E Latency ECU1->2 = 199 ms

Min interval inputs = 100 ms

WCET1 = 200 us

Clock1 = 1MHz

200 us ≥ T1 ≤ 100 ms

Reaction

Performance

Mapping

Schedulability

Load

Cost

Safety

System

Control Architecture

HW Architecture

Control

Mapping

Mapping

Hardware

Fig. 4. Fragment of the mapping contract and the derived engineering contracts for
the power window example

side of Figure 4, is defined that consists out of a set of assumptions and guar-357

antees. Properties related to the architectures are best guesses. Therefore, they358

are assumptions of the mapping contract. Examples of such estimated properties359

are: clock speed, number of instructions, periodicity, minimum interval times of360

the inputs, maximum communication time between ECUs, etc.361

Keeping in mind the defined architectures, the given system requirements362

are translated to system properties as well. For example, one requirement of the363

power window example states that ‘the power window should start moving within364

200 ms after a command is issued ’. This maximum latency is refined into two365

guarantees of the mapping contract: (a) a maximum latency of 199 ms for map-366

ping component 1 and (b) a maximum latency of 1 ms for mapping component367

2. A mapping component refers to the one-to-one mapping of a control to an368

ECU component. It might be clear that the system requirements, such as these369

latencies, are considered as guarantees of the mapping contract. As we notice,370
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the mapping contract as shown in Figure 4 is a refinement of the system contract371

shown in Table 1. As a result, equations 1 - 3 are valid.372

Phase 2 - Deriving the domain contracts373

In the second phase of the process, the elements of the mapping contract are sub-374

divided into three categories using the ontology shown on the right of Figure 4:375

(a) Control architecture, (b) Hardware architecture and (c) System. Based on376

this categorization it is decided if a contract element should be an assumption377

or a guarantee of the domain contract. Moreover, due to relations there exist378

between the ontological properties, it is decided whether a certain element is379

relevant for the domain contract and how it should be translated. The decision380

whether a contract element is translated to the domain contract is relevant when381

one wants to focus on one particular (extra-)functional requirement (e.g. timing,382

safety, etc.).383

Contract elements which are related to a certain architecture become part384

of the guarantees of the domain contract related to that architecture. Given385

the mapping contract in Figure 4, for example, the element Processor Clock386

and Periodicity of Component 1 are translated as guaranteed elements of the387

hardware contract as these are design decisions the hardware engineer should388

take care of. Likewise, the element Number of instructions for Component 1 is389

translated as a guaranteed element of the control contract. Indeed, the control390

engineer is responsible for maintaining this limited amount of instructions which391

can be influenced by the order of the control algorithm.392

Contract elements which are related to the system requirement, i.e. which are393

part of the system contract or which are a refinement of them, are translated as394

assumed elements of all the involved domain contracts. Based on these assump-395

tions, domain engineers are able to make domain specific decisions in phase 3396

of the design process. Those decisions are again the guarantees of their domain397

contracts.398

Note that every element of the mapping contract is translated to at least399

one domain contract over the ontological relations such that completeness is400

guaranteed.401

Phase 3 - Refinement of the domain contracts402

As a final phase of the co-design engineering process, the domain engineers ex-403

tend and refine their own contracts, keeping in mind equations 1 - 3, as shown404

in Figure 5. For example, the hardware engineer might decide to strengthen the405

periodicity of component 1, i.e. increase the periodicity from 100 ms to 50 ms. He406

is allowed to refine this contract element since it is a design parameter he has to407

guarantee. However, the refinement has to be taken under the given assumptions408

which might be relaxed (e.g. decreasing the maximum end-to-end latency).409

Once a contract element is refined in one domain, the changes must be pushed410

to related contract elements which are part of the other domain contracts. This is411

made possible because every contract element is linked to an ontological property412
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Assumptions

Guarantees Max E-E Latency Run1 = 199 ms

Processor Clock1 = 1 MHz

200 us ≥ Periodicity Comp1 ≤ 100 ms

# instr Comp1  = 200

Min interval inputs = 100 ms

Assumptions 1

Guarantees 1 # instr SWC1  = 200

Max E-E Latency Control1->2 = 199 ms

Min interval inputs = 100 ms

T1 = 50 ms

Assumptions 1

Guarantees 1

Max E-E Latency ECU1->2 = 199 ms

Min interval inputs = 100 ms

WCET1 = 200 us

Load = 30 %

Clock1 = 1MHz

T1 =  50 ms

P1 = 1

WRT1 = 1.3 ms

Control

Mapping

Mapping

Hardware

Reaction

Performance

Mapping

Schedulability

Load

Cost

Safety

System

Control Architecture

HW Architecture

Fig. 5. Fragment of the refined engineering contracts for the power window example

which in turn are related to each other by means of influence relationships. For413

example, the refinement of the periodicity in the hardware contract results in414

an update of the assumed periodicity in the control contract via the ontological415

properties: Load→ HW Architecture→ Mapping→ Performance→ Reaction.416

7 Conclusions & Future Work417

The application of contract-based design in a concurrent engineering setting with418

multi-disciplinary teams is not well supported. Contracts contain elements that419

might be irrelevant for the engineer. Furthermore, there is no clear distinction420

between what is assumed from other domains and what is guaranteed under421

these conditions.422

By combining the theory of CBD with the principles of ontological reason-423

ing, we propose a three phased process that starts with a negotiation phase. A424

negotiation allows engineers to discuss a common mapping contract. Using an425
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ontology, elements of the mapping contract are translated to domain-specific con-426

tract elements and, depending on the engineering, are defined in the assumption427

or guarantee part of the domain contract. By definition, our methodology en-428

sures that what is assumed in one domain will be guaranteed by another domain.429

Furthermore, using ontological reasoning our methodology ensures consistency430

between contracts and as such keeps them synchronized at all times.431

It might be clear that the applicability in an industrial context is only feasible432

when our methodology is supported by a user-friendly tool. Given an ontology,433

build by a system engineer, and the negotiated mapping contract we believe the434

supported tool should hide phase 2 and 3 of our proposed methodology allowing435

engineers to focus on their core business (i.e. designing the system). Providing436

this tool support is considered as future work. Once available, it will allow us437

to increase the complexity of the use case and investigate the feasibility of our438

methodology on models used in industry. Besides providing tool support, we are439

planning to verify the compatibility of our proposed design methodology with440

the current state-of-the-art contract operators. We believe an extension of the441

current contract operators is needed to support our vision of a mapping operator442

which assures that all the information is put forward to the (derived) domain443

contracts.444
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