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Abstract. A designer often has to evaluate alternative designs during12

the development of a system. A multitude of Design-Space Exploration13

(DSE) techniques exist in the literature. Integration of these techniques14

into the modelling paradigm is needed when a model-driven engineering15

approach is used for designing systems. To a greater or lesser extent,16

the integration of those different DSE techniques share characteristics17

with each other. Inspired by software design patterns, we introduce an18

initial pattern catalogue to categorise the embedding of different DSE19

techniques in an MDE context. We demonstrate their use by a literature20

survey and discuss the consequences of each pattern. Finally, we demon-21

strate the application of our initial pattern catalogue on two examples.22

1 Introduction23

Model-Driven Engineering (MDE) uses abstraction to bridge the cognitive gap24

between the problem space and the solution space in complex software system25

problems. To bridge this gap, MDE uses models to describe complex systems26

at multiple levels of abstraction, using appropriate modelling formalisms. Model27

transformations play a key role in MDE to manipulate models. Transformations28

are used for code synthesis, mapping between models at the same or multiple29

levels of abstraction, etc. Model transformation is even regarded as the “heart30

and soul of model-driven software and system development” [1].31

While designing a system, the need often arises to explore different design32

alternatives for a specific problem. Design Space Exploration (DSE) is an au-33

tomatic process where possible alternatives of a particular design problem are34

explored. The exploration is guided with imposed constraints and optimality35

criteria on the different candidate solutions. In the literature a multitude of36

design-space exploration techniques are available, for example (Mixed Integer)37

Linear Programming, evolutionary algorithms and constraint satisfaction.38



In our experience with embedding DSE in a model-driven engineering context39

and a survey of the literature, we observed the use of different models, expressed40

using different formalisms, for both design, exploration and the modelling of41

goal functions. Combining the different models, using transformations, with the42

multitude of techniques available for searching design-spaces revealed similarities43

between the models and transformations of the different exploration techniques.44

To consolidate this knowledge, we organise these methods into an initial pattern45

catalogue, inspired by software design patterns. The goal of this effort is to create46

a more complete pattern catalogue for model-driven engineering approaches for47

design-space exploration with the support of the community.48

The remainder of this paper is structured as follows. Related work is elab-49

orated in Section 2. Section 3 introduces the Initial Pattern Catalogue. In Sec-50

tion 4, we discuss other useful techniques for DSE in an MDE context. Finally,51

Section 6 concludes our contributions and elaborates on future work. This tech-52

nical report discusses some case studies, as an elaboration of our work presented53

in [2].54

2 Related Work55

The concept of patterns is widely used in Software Engineering. They provide56

generalized solutions to common software problems in the form of templates.57

The templates can be used by software developers to tackle the complexity in a58

larger software problem. One of the most highly cited contributions to pattern59

catalogues in the field of software is the work of the “Gang of Four” [3], which60

presents various design patterns with respect to object-oriented programming.61

Inspired by the Gang of Four, Amrani et al. [4] presents a model transformation62

intent catalogue which identifies and describes the intents and properties that63

they may or must possess. Their catalogue can be used for several purposes such64

as requirements analysis for transformations, identification of transformation65

properties and model transformation language design. Their presented catalogue66

is a first attempt to introduce the concept of patterns in MDE.67

A more in-depth literature study is integrated in Section 3 such that each68

pattern is illustrated by known uses. This motivates one to the application of69

the introduced patterns.70

3 Initial Pattern Catalogue for DSE71

In this section we first discuss the need for a pattern catalogue specific to the72

Design Space Exploration domain. Next, our proposed pattern structure is de-73

scribed by analogy with the seminal work of the “Gang of Four” [3]. Finally,74

Subsections 3.2 and 3.3 will elaborate our initial pattern catalogue.75

3.1 The need for patterns76

By definition design patterns are used to formalise a problem which recur repeat-77

edly. They help a designer to evaluate alternatives for a given design problem78



in order to choose the most appropriate design. The usefulness of such patterns79

has already been proven in the Software Engineering domain where the “Gang80

of Four” [3] gave impetus to the creation of a widely accepted software design81

patterns catalogue. The successful impact of its widespread use is undoubtedly82

the well defined structure of each pattern. More specifically, each pattern is83

typed by: (1) Pattern Name and Classification, (2) Intent, (3) Also Known as,84

(4) Motivation, (5) Applicability, (6) Structure, (7) Participants, (8) Collabora-85

tions, (9) Consequences, (10) Implementation, (11) Sample Code, (12) Known86

Uses and (13) Related Patterns. Each of these sections is textually described and87

where necessary graphically supported using Class Diagrams, describing struc-88

ture, and/or Activity Diagrams, describing the workflow of the pattern. At least89

one case study demonstrates how the patterns can be applied in practice.90

In accordance to software design patterns, we define the format of each pro-91

posed pattern as follows. Intent: Gives a short explanation of the intention of92

the pattern. Structure: Describes the general structure of the pattern. Con-93

sequences: Describes the trade-offs in using the pattern. Known Uses: Lists94

the applications of the pattern in the literature. While this is not meant to be an95

exhaustive literature review of all the applications of the pattern, one can draw96

inspiration from these examples to apply the pattern. Application: Gives a97

short description in which cases this pattern can be useful and how it can be98

implemented.99

The Structure is graphically supported by the Formalism Transformation100

Graph and Process Model (FTG+PM). The left side of the FTG+PM clearly101

shows all involved formalisms (boxes) and their relations using model transfor-102

mations (circles). The right side shows the process with the involved models103

(boxes), transformed by a model transformation (roundtangle). Complex data-104

flow (dashed line) and control-flow (full line) relations can exist in the process105

part of the FTG+PM. This can be summarized as a legend, which is shown106

in Figure 1. The reason behind this latter supported formalism is threefold:107

(1) It clearly represents the structure of the approach by connecting the dif-108

ferent formalisms with transformations on the left side of the FTG+PM. The109

FTG+PM also shows the workflow of combining the different models and trans-110

formations in a process on the right side. (2) The FTG+PM can be used to (semi-111

)automatically execute the defined transformation chains (yellow coloured). Man-112

ual operations are also possible that allow for experience based optimisation and113

design (grey coloured). (3) Different patterns described in this formalisms are114

easily connected to each other. This enables the embedding of DSE within the115

MDE design of systems.116

As mentioned in section 1, we would like to refer to our technical report [2]117

where we apply our initial pattern catalogue to some case studies.118

3.2 Exploring Design Spaces119

Performing design-space exploration in a model-driven engineering context can120

be abstracted in some steps: (1) A meta-model defines the structural constraints121

of a valid solution. (2) A DSE-tool generates valid candidate solutions conforming122
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Fig. 1: FTG+PM Legend

to the meta-model. An initial model adds other structural constraints to the set123

of candidate solutions. (3) A transformation transforms the set of candidate124

solutions to an analysis formalism to check the feasibility of the solution with125

respect to a set of constraints. (4) If necessary, a second transformation generates126

a model in a performance formalism to check the optimality of the solution127

with respect to certain optimisation goals. (5) Depending on the optimisation128

technique, the process is iterated multiple times. Information from feasibility129

and performance models is used to guide the exploration.130

Depending on the exploration technique, we classify different model-driven131

engineering approaches to solve this generic design-space exploration strategy.132

Model Generation Pattern133

134
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Fig. 2: Model Generation Pattern

Intent: This pattern transforms the meta-model of a problem space together135

with constraints to a constraint-satisfaction problem. The exploration of the136

design consists of the generation of a set of models that satisfy the structural137



constraints imposed by the meta-model and the other constraints provided using138

a constraint formalism.139

Structure: The pattern, shown in Figure 2, starts with a meta-model and140

some constraints. A transformation transforms these models into a constraint141

satisfaction problem. By invoking a solver, an exploration of the design space142

generates candidate solutions. Each candidate solution is transformed into an143

analysis representation. The analysis produces traces of each candidate solution.144

Based on the goal function model, the optimal trace is transformed to a solution145

model. This solution model can either be expressed in the exploration formalism,146

the original model formalism or a specific solution formalism.147

Consequences: Depending on the used solver, this method might be com-148

putationally and memory intensive because an exhaustive search of the design149

space is executed. A transformation is needed to translate the meta-model with150

constraints to a model that is usable by the DSE-tool. Domain knowledge can151

be introduced by adding constraints to the meta-model. Note that adding extra152

constraints helps the search for a solution. An initial model, where some choices153

are predetermined, adds extra constraints. A less generic alternative is to add154

the initial model when evaluating candidate solutions.155

Known Uses: Neema et al. [5] present the DESERT framework used for Model-156

Driven constraint-based DSE. It implements an automated tool which abstracts157

the Simulink design space to generate candidate solutions. In [6] the FORMULA158

tool is presented, where candidate solutions are generated from a meta-model.159

A similar tool called Alloy is used by Sen et al. [?] to automatically generate160

test models. Saxena and Karsai [7] present an MDE framework for generalized161

design-space exploration. A DSE problem is constructed out of a generalized162

constraint meta-model combined with a domain specific meta-model.163

Application: The pattern is not recommended when one searches for an opti-164

mal solution out of a large search space without a lot of constraints. On the other165

hand, this pattern is very useful to rapidly obtain candidate solutions conforming166

to the meta-model.167

Model Adaptation Pattern168

169

Intent: This pattern transforms the model or a population of models to a170

generic search model used in (meta-) heuristic searches. Depending on the prob-171

lem and search algorithm, different search representations can be used.172

Structure: A model or population of models expressed in a certain formalism is173

transformed to a specific exploration formalism. Based on the guidance of a goal174

function, an algorithm creates new candidate solutions. A (set of) candidate175

solutions are transformed to an analysis model in order to evaluate. Finally,176

the result is transformed to a solution model. This solution model can either177

be expressed in the exploration formalism, the original model formalism or a178

specific solution formalism.179

Consequences: A dedicated search representation has to be created as well as180

manipulation functions to create alternative designs. This requires an adequate181

understanding of the problem and domain knowledge. A translation from the182
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Fig. 3: Model Adaptation Pattern

problem domain to the search representation and vice-versa is required. An initial183

model, as a constraint, can be added by fixing the generated solution or by184

rewriting the functions to create new solutions (cross-over, mutation, etc.).185

Known Uses: Williams et al. searched for game character behaviour using a186

mapping to a genetic algorithm [8]. Burton et al. solve acquisition problems using187

MDE [9]. Genetic algorithms are used to create a Pareto front of solutions. A188

stochastic model transformation creates an initial population. Finally, Kessentini189

and Wimmer propose a generic approach to searching models using Genetic190

Algorithms [10]. The proposed method is very similar to the described pattern.191

Application: This pattern is recommended when a design problem can easily192

be transformed to an optimal search representation, e.g. a list or tree repre-193

sentation. Different operations on this new representation are implemented in194

the solution space (usually a generic programming language). Well-known algo-195

rithms, like genetic algorithms and hill-climbing, implement the search.196

Model Transformation Pattern197

198

Intent: This pattern uses the original model to explore a design-space. Model199

transformations encode the knowledge to create alternative models. Guidance to200

the search can be given by selecting the most appropriate next transformation201

or by adding meta-heuristics to the model transformation scheduling language.202

Structure: A model combined with a goal function is used to create a set of203

candidate solutions that are expressed in the original model formalism. These204

are transformed to an analysis representation to gather some metrics that are205

expressed by a trace. Using (meta-)heuristics, a new set of candidate solutions206
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Fig. 4: Model Transformation Pattern

can be generated according to a goal function. Finally, if required, the most207

optimal solution or set of solutions can be transformed into a solution model.208

Consequences: A high degree of domain knowledge about the problem is re-209

quired to design the transformation rules. On the other hand, the rules encode210

domain knowledge to guide the exploration. Model-to-model or model-to-text211

transformations are required to evaluate a candidate solution. An initial model212

as a constraint can be added by adjusting the meta-model with variation tags.213

Similarly to the Model Adaptation Pattern, the initial conditions can also be214

implemented as fix operations using model transformations. Model transforma-215

tions to create new candidate solutions are computationally expensive because216

of the subgraph isomorphism problem.217

Known Uses: In [?] a model-driven framework is presented for guided design218

space exploration using graph transformations. The exploration is characterised219

by a so called exploration strategy which uses hints to identify dead-end states220

and to order exploration rules. This way the number of invalid alternatives is221

reduced. Denil et al. [11] demonstrates how search-based optimization (SBO)222

techniques can be included in rule-based model transformations.223

Application: The pattern is used when it is hard to obtain a generic search224

representation. Model transformation rules, expressed in the natural language of225

the engineer, are implemented using current model transformation tools. Guid-226

ance is implemented through the scheduling of the model transformation rules.227



3.3 Exploration Chaining Pattern228

In order to prune the design space more efficiently, multiple of the proposed pat-229

terns can be chained. This technique is called “Divide and Conquer” and may as230

well be described by a pattern. To represent the chaining of multiple FTG+PMs,231

this pattern is graphically supported by means of a principle representation.232

233
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Fig. 5: Exploration Chaining
Pattern

Intent: This pattern adds multiple abstrac-234

tion layers in the exploration problem where235

candidate solutions can be pruned. High-level236

estimators are used to evaluate the candidate237

solutions and prune out non-feasible solutions238

and solutions that can never become optimal239

with respect to the evaluated properties. Fig-240

ure 5 shows the overall approach of this pat-241

tern.242

Structure: At each of the abstraction layers243

an exploration pattern is used to create and evaluate candidate solutions. Non-244

pruned solutions are explored further in the next exploration step.245

Consequences: Domain knowledge about the problem is required to add levels246

of abstraction. High-level estimators are needed at each of the abstraction layers247

to evaluate a candidate solution. Because more information is introduced at each248

of the abstraction layers, the evaluation of a single candidate solution becomes249

more complex and usually more computationally intensive. Finally, a pruning250

strategy is required to decide what solutions have to be pruned at each of the251

abstraction layers.252

Known Uses: Sen and Vangheluwe add different levels of abstraction in the253

design of a multi-domain physical model [12]. This numerically constraints the254

modeller to create only valid models. Kerzhener and Paredis introduce multiple255

levels of fidelity in [13]. Finally, multiple levels of abstractions for an automotive256

allocation and scheduling problem are introduced in [14].257

Application: This pattern provides a solution when memory and time com-258

plexity are an issue during the exploration of the design space. It tackles the259

complexity by its layered pruning approach. Therefore, this pattern is preferred260

when searching for (an) optimal solution(s) in a large search space. Different261

exploration patterns are chained to create solutions.262

4 Discussion263

In this section we describe some other techniques that are useful for design-264

space exploration in a model-driven engineering context. Some techniques could265

potentially become a pattern in a new version of the catalogue.266

Dealing with Multiple Objectives : Multi-objective optimisation deals with the267

decision making process in the presence of trade-offs between multiple goal func-268

tions. Certain DSE and search algorithms can deal with multi-objective functions269



by construction. However, some techniques do not have this features. Here we270

give two ways of dealing with the problem.271

Scalarize the Objective-Function: When scalarizing a multi-objective272

optimisation problem, the problem is reformulated as a single-objective func-273

tion. The goal function model becomes a combination of individual objective274

functions. A model defines how the combination of the different individual goal275

function models is done, for example in a linear fashion, or other more complex276

functions.277

Create Variants: In certain cases the designer would like to compare278

the different trade-offs using a Pareto curve. We use the scalarizing pattern to279

create multiple variants of the combined objective function. Intermediate results280

of the exploration are used to select an appropriate recombination that could281

potentially add a new Pareto solution.282

Meta-model reduction: By using sensitivity analysis of the involved modelling283

elements and parameters, the meta-model can be reduced with the elements and284

parameters that have a small influence on the result of the goal function. An285

example of this technique can be found in [15].286

5 Examples287

In this section we illustrate the implementation of the previously described pat-288

terns by means of two examples. The first example searches for an electrical289

filtering circuit. The second example is a resource allocation problem in the290

automotive domain based on [16].291

5.1 Electrical Network292

We regard a filter design as a black box with an input, output and mass node293

with some passive electrical components in between which are connected to each294

other. When focussing on the exploration of passive analogue filters, those electri-295

cal components can be Resistors, Capacitors and Inductors. The corresponding296

meta-model is shown in Figure 6. Various configurations of those components297

lead to the construction of different types of filters. An example is a Low-Pass298

Filter (LPF) which passes low-frequency signals and attenuates signals with fre-299

quencies higher than the cut-off frequency (ωc). A filter its behaviour is specified300

using a gain-magnitude frequency response, also called Bode plot, whereof an301

example is shown in Figure 7.302

The goal of our DSE is to find a filter where its Bode plot has a minimal303

deviation compared to the theoretical one shown in Figure 7. Therefore, we see304

the deviation as a difference value between the theoretical and measured gain305

for each frequency point. In that case, the goal-function or fitness-function can306

be formulated by Equation 1. A larger deviation will result in a higher score,307

while a solution containing fewer components will result in a lower score.308



Node
Name: String

Component
Name: String
Value: Int
InNetwork: Boolean

Resistor Capacitor Inductor
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Fig. 6: Meta-model of a passive electrical design filter

Fig. 7: LPF Bode plot



Score = (Deviation ∗ 20) − Number of components (1)

Which pattern of our proposed initial pattern catalogue can one apply to309

solve this design problem? Since the search space is quite large without a lot310

of constraints, we exclude the model generation pattern. This implementation311

has a very high memory and time complexity, resulting in a uncompleted ex-312

ploration of the design space and thus a non-optimal solution. When choosing313

the dedicated search representation pattern, one will notice we are dealing with314

a design problem which is hard to transform to a generic search model such as315

a list or tree. The most appropriate pattern to implement this design problem316

is the search using model transformation pattern. The designer has to create a317

set of model transformation rules that apply mutation operations on the initial318

model. Example of such search rules are: adding or removing a serial or parallel319

connections, etc.320

5.2 Allocation Problem321

In the second example, we have a set of communicating software functions which322

need to be assigned to a set of Electronic Control Units (ECUs) connected by323

a communication bus. An example of such an allocation problem is shown in324

Figure 9. The corresponding meta-model is shown in Figure 8. It contains a325

SWC (Software Component) with a Name, a Period and a WCET (Worst Case326

Execution Time) describing the maximum time a task could be executed on a327

specific ECU. A SWC can be mapped to a single ECU. When a SWC is mapped328

to an ECU the Load attribute of the ECU is increased by (WCET/Period) of329

the mapped software function. A similar calculation is used for the Load on the330

Bus, based on the Size of the communication messages (Comm) and the Period331

of the sending software function. The Load on the Bus only increases when the332

sending and receiving SWC are mapped to a different ECU.333

Name: String
Period: Int
WCET: Float

SWC Size: Int
Comm

*

*

Name: String
Load: Float

ECU
Load: Float

Bus
1

M
apping

ToCom

FromCom

1

busCon

Fig. 8: Meta-model of the allocation problem
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Fig. 9: Example of an allocation problem

Zheng et al. [16] approach the problem by searching for a mapping where the334

total load of the different ECUs are below a threshold of 69 % (the schedulability335

test for rate-monotonic systems [17]). The goal-function or fitness-function for336

finding an optimal solution is to minimise communication between the different337

ECUs because the communication on the bus introduces delays that impact338

the timing behaviour of the final solution. Therefore, the goal-function can be339

formulated by Equation 2. The penalty for unfeasibility is one order magnitude340

higher than the communication cost.341

Score = Eff. Communication Cost + Penalty (2)

This design problem lends itself for chaining two design patterns: the model342

generation pattern followed by the dedicated search representation pattern. Since343

the design problem can easily be transformed to a list representation, the choice344

of the dedicated search representation pattern is obvious. The list index defines345

the software component, the value defines the ECU on which the component is346

mapped. We use a genetic algorithm with a single cross-over point to generate347

new allocations. The preliminary model generation pattern is used for generating348

an initial population of models. This population of models is a precondition when349

searching for candidate solutions using Genetic Algorithms.350

6 Conclusions and Future Work351

Resulting from our own experiences with DSE and a literature survey, we pre-352

sented an initial pattern catalogue which categorizes different approaches of353

Model-Driven Design Space Exploration. We described the patterns by the use354

of the FTG+PM to visualise the involved formalisms and their relations using355

model transformations. We demonstrated the use of those patterns by references356

to the literature and by means of two examples.357



With the support of the community, it is our ambition to extend this towards358

a more complete this initial pattern catalogue, similar to the widely available359

software design patterns used in software engineering. Finally, we would like to360

investigate the parts of patterns that can be fully or partially automated.361
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