
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa

Manual

DSLTrans

Authors:
Cláudio Gomes

Bruno Barroca

Supervisor:
Vasco Amaral

August 30, 2012

2

CONTENTS CONTENTS

Contents

1 Introduction 7
1.1 What is DSLTrans? . 9

1.1.1 A Metaphor . 11
1.2 DSLTrans and Other Transformation Languages 14

1.2.1 QVT . 14
1.2.2 ATL . 14
1.2.3 ATC . 14
1.2.4 ETC . 14
1.2.5 MOLA . 14
1.2.6 RubyTL . 15
1.2.7 UMLX . 15
1.2.8 GReAT . 15
1.2.9 T-Core . 15
1.2.10 DSLTrans . 15

1.3 Assumptions . 16
1.3.1 User . 16
1.3.2 Environment . 16

1.4 About this Manual . 18
1.4.1 Objectives . 18
1.4.2 Structure . 18

2 Installation 21
2.1 Windows7 & Vista . 21
2.2 Mac OS X Lion (10.7.0) . 24

3 Quick Start 25
3.1 Metamodels . 25
3.2 Example Model . 26
3.3 Planning the Transformation 28
3.4 Understanding DSLTrans Overall Semantics 29
3.5 Creating a Blank Transformation 30
3.6 DSLtrans Diagram Editor . 33
3.7 Defining the Transformation 34
3.8 Transformation Partitioning 48

4 Language Definition 57
4.1 A Typical Transformation . 57
4.2 Language Constructs . 58

4.2.1 Objects . 58

3

CONTENTS CONTENTS

4.2.2 Connections . 67

5 Advanced Topics 75
5.1 Finite Deterministic Automata Execution 77

5.1.1 Conclusions . 80
5.2 Turing Machine Step Transformation 85
5.3 High Order Transformations 86
5.4 Prototyping Transformations 87

5.4.1 Identity Generation . 88
5.4.2 Fixed Identity Generation 89

6 FAQ 91

A API Specification 93

4

CONTENTS CONTENTS

Versions

18ndAugust 2011 Initial version.

20ndMarch 2012 DSLTrans’ new constructs documentation. Added T-
Core as a transformation language.

19ndJuly 2012 Added latest version installation instructions in Windows
and Mac OS platforms.

29ndAugust 2012 Added DSLTrans API description.

5

CONTENTS CONTENTS

6

1 INTRODUCTION

1 Introduction

Model transformation is the process of converting one or more input models
to one or more output models [11] where each model conforms to a metamodel
(a set of well formedness rules that specify the abstract syntax of models and
the interrelationships between model elements, i. e., the set of all possible
conformant models [3]) specified using a metamodeling language that in this
case is Ecore.

Ecore is a subset of the Unified Modelling Language (UML) and the main
language for the creation of metamodels in the Eclipse Modelling Framework
(EMF) [13].

EMF provides a modelling framework and code generation facility that
lets us define models, from which then we can generate other models or code
for building tools and other applications [13] 1.

Figure 1 shows the model transformation process. We can see that every
model involved has to conform to some metamodel. At the highest level,
the metametamodel conforms to itself meaning that its structure can be
expressed with the same terms it describes. The rules that make up the
transformation process are also expressed in a model that is interpreted by
some engine that takes some input models and generates some output models.

1For more information about the Ecore language and EMF refer to http://www.

eclipse.org/modeling/emf/?project=emf

7

http://www.eclipse.org/modeling/emf/?project=emf
http://www.eclipse.org/modeling/emf/?project=emf

1 INTRODUCTION

...
MnM0

MMn
...MM0

MMM

...
M'mM'0

MM'mMM'0
MMt

Mt

engine

conforms to

interprets

Figure 1: Model transformation process and required elements.

8

1 INTRODUCTION 1.1 What is DSLTrans?

1.1 What is DSLTrans?

DSLTrans is a language specifically designed to support the definition of
Ecore-based model transformations [6]. It is particularly useful when building
a new language (for instance, a language to describe graphical user interfaces)
whose semantics are not known and it is necessary to express them in terms
of an existing well known language (a Java application2).

The process of assigning meaning to a new language trough transforma-
tions involves coming up with a set of mappings between the terms of the
source language to terms in the target language [6]. In DSLTrans those map-
pings are expressed in the form of rules where the first part of each rule has
a pattern describing some arrangement of terms in the source language and
the second part has the terms to be created in case the first part exists in
some input model.

Figure 2 shows the model transformation process according to the tech-
nologies and tools used throughout this manual. As you can see, DSLTrans
is a metamodel used to express transformations that are interpreted by the
DSLTranslator engine to translate models.

2Java code can be modelled using an Ecore-based metamodel thus making it possible
to treat Java applications as models

9

1.1 What is DSLTrans? 1 INTRODUCTION

M

MM

Ecore

M'

MM'DSLTrans

Mt

DSLTranslator

conforms to

interprets

Figure 2: Model transformation process and required elements used through-
out this manual.

10

1 INTRODUCTION 1.1 What is DSLTrans?

1.1.1 A Metaphor

In order to better understand all these concepts, lets focus on a simple exam-
ple where we have a small language (a.k.a. a metamodel) used to define an
individual’s genealogy tree and we will come up with transformations that
present information from some genealogy tree (a.k.a. model) in different
views.

Figure 3 shows an example of a genealogy tree. We can see that John and
Mary married and had one son: Thomas who in turn married Sarah. . . and
so on.

John

Thomas

Mary

Sarah

Edward William ElisaAnn

George Norah

Figure 3: Genealogy tree example.

How can we find out, given a tree of any size, who are the couples? More
specifically we want as a result of the transformation a set of couples like the
one shown in figure 4.

The transformation rules have to be based on patterns as described earlier
so something like figure 5 should be fine. The transformation is only made of
a single rule, that says the following: Every person that is married to other
person in the source model becomes the same person associated with the same
other person in the target (or output) model. Notice that the connections in
the source model are different than those in the target model.

11

1.1 What is DSLTrans? 1 INTRODUCTION

John Mary

Thomas Sarah

William Ann

Figure 4: Couples set example.

X Y X Y

Figure 5: Genealogy to Couples transformation.

Another way of looking at the transformation is by defining two rules:
one establishing the fact that every married couple in the source metamodel
becomes two individuals in the target and afterwards add the relation between
those two individuals, forming a couple. Figure 6 illustrates this approach.
Notice that the dashed links between the source and target model elements
mean that in the bottom rule we don’t want to create new elements in the
target model: we only want to create a connection between them.

Although partitioning the transformation and referring to elements that
already exist in the output model3 may seem too much work and counter-
intuitive; for complex transformations it is a more natural way since we start
by looking only to each element individually and expressing its meaning in
the target language through simple rules, then we explore more and more
complex patterns saying what those mean.

3because these elements where generated by some previous rule

12

1 INTRODUCTION 1.1 What is DSLTrans?

X Y

X Y

X Y

X Y

Figure 6: Genealogy to Couples transformation - Partitioned.

13

1.2 DSLTrans and Other Transformation Languages 1 INTRODUCTION

1.2 DSLTrans and Other Transformation Languages

There are several papers about transformation languages. Bellow is a brief
description of some of them so you can have an idea about their general
features with respect to DSLTrans.

1.2.1 QVT

Query / View / Transformation is a standard defined by the Object Manage-
ment Group; its implementation is SmartQVT : a tool that compiles model
transformations specified in QVT to produce Java code used to perform these
transformations [8].

1.2.2 ATL

Atlas Transformation Language is a transformation language inspired by the
QVT requisites that uses the OCL formalism. It provides declarative con-
structs as we used in the previous example and, for the most difficult trans-
formations, it allows the user to define imperative rules, which increases its
flexibility and complexity [9].

1.2.3 ATC

Atomic Transformation Code is a low level model transformation language
with the main purpose of being the target for other transformation languages’
specifications allowing for the execution of a diversity of model transforma-
tion languages via translation to ATC [15].

1.2.4 ETC

Epsilon Transformation Language is an hybrid4, rule-based model-to-model
transformation language that has the flexibility of allowing for query, navi-
gation and modification of multiple target and source models [1].

1.2.5 MOLA

MOdel transformation LAnguage, similarly to DSLTrans, is a graphical trans-
formation language that strives to produce readable transformations by com-
bining traditional structured programming in a graphical form with simple
pattern rules [10].

4 An hybrid transformation language is one that provides both imperative and declar-
ative constructs, as ATL, ETC, and others.

14

1 INTRODUCTION 1.2 DSLTrans and Other Transformation Languages

1.2.6 RubyTL

Ruby Transformation Language is a domain specific hybrid transformation
language embedded in Ruby that provides an extension mechanism based on
plugins [4].

1.2.7 UMLX

UMLX is a graphical transformation language that extends UML through
the use of transformation diagrams that are no more than class diagrams with
additional relations to specify mappings between input and output models
[16].

1.2.8 GReAT

The Graph REwriting And Transformation is a rule-based graphical language
that, as DSLTrans, sees models as labelled graphs and uses graph transfor-
mation formalisms to translate them [2].

1.2.9 T-Core

T-Core [14] is a collection of primitives upon which new (domain specific)
transformation languages can be built. The provided primitives, combined
together, are expressive enough to implement atomicity, sequencing, looping,
branching, non-determinism, recursion, parallelism, back-tracking, hierarchy
and time. If one wants to create a transformation language specifically for
some domain, then designing it on top of T-Core might be a good idea.

1.2.10 DSLTrans

With respect to the described transformation languages, DSLTrans is a rule-
based graphical transformation language5 that uses declarative constructs
and graph formalisms to prescribe transformations. A distinctive character-
istic is that all the transformations specified in DSLTrans are guaranteed to
terminate6. This means the language is not Turing complete and for very
complex transformations it might not be the ideal transformation language.

5The latest version of DSLTrans supports also textual syntax for transformation spec-
ification

6DSLTrans transformations are guaranteed to terminate because the language doesn’t
support loop constructs and no rule can be applied forever. This means the language is
not Turing complete but there are techniques that allows us to build complex and still
readable transformations as you will see.

15

1.3 Assumptions 1 INTRODUCTION

1.3 Assumptions

1.3.1 User

About the reader of this manual and hopefully user of DSLTrans we make
the following assumptions:

Modelling Jargon The reader should be familiar with the modelling terms
like model, metamodel, metametamodel, model transformation, lan-
guage, etc. . . . [3] and [11] give readable overviews of most of the terms
used throughout this manual.

Eclipse Modelling Framework and Ecore The user knows how to use
the EMF main metamodeling language to created metamodels and re-
spective instances. For more information refer to the project’s home
(http://www.eclipse.org/modeling/emf/) or read the EMF book in
[13]. There is also a good tutorial on how to create metamodels here:
http://tinyurl.com/3oo8woz

Advanced System User We assume that the user knows how to change
environment variables and install software in its system.

1.3.2 Environment

In order to succeed in learning DSLTrans and following the examples pre-
sented in this manual it is highly recommended that you have the following
tools:

• Eclipse Modeling Tools, Helios Service Release 2. You should be able to
download it in the eclipse home page http://www.eclipse.org. After
starting eclipse and going to Help, About Eclipse, you should see the
version info shown in figure 7.

• SWI-Prolog version 5.10.4 by Jan Wielemaker. The DSLTranslator en-
gine uses the Prolog language internally to process the transformations.
You should be able to download SWIProlog from the project’s home
page http://www.swi-prolog.org/. Figure 8 shows Prolog’s version
info.

16

http://www.eclipse.org/modeling/emf/
http://tinyurl.com/3oo8woz
http://www.eclipse.org
http://www.swi-prolog.org/

1 INTRODUCTION 1.3 Assumptions

Figure 7: Recomended eclipse version.

Figure 8: Recomended prolog version.

17

1.4 About this Manual 1 INTRODUCTION

1.4 About this Manual

1.4.1 Objectives

After reading this manual the user should be able to:

• Create and read DSLTrans transformations either from scratch or by
using prototyping techniques.

• Understand how higher order transformations work and even better:
create them.

• Understand the advantages and limitations of DSLTrans and when to
use it instead of other transformation languages like ATL [9], SmartQVT
[8] or others presented in page 14.

1.4.2 Structure

If you are new to DSLTrans, you should read this manual from the beginning
to at least section 4. The first sections are the ones that will help you
understand the main concepts behind the DSLTrans and the remaining can
be used as a reference.

This manual is divided in five sections:

Installation Where you will learn how to get the needed tools up and run-
ning so that you can follow the rest of this manual’s examples and
tutorials.

Quick Start This section presents a hands on approach to DSLTrans with
a tutorial on how to create the transformation described in section 1.1.1
in two different ways. While it teaches you how to use DSLTrans, it
explains the main concepts and procedures involved in the creation of
a transformation.

Language Definition Where each element of a transformation is described
and some examples in both graphical and textual syntax are given to
help you understand how it can be used; possible restrictions and good
practices are present. This section can be used as a reference as it
contains the description of every element in the language.

Advanced Topics Once you know how to use DSLTrans well enough you
will want to avoid some repetitive tasks when building most of the
transformations. Since DSLTrans is a metamodeled language it is pos-
sible to use it to transform transformations. This section focusses in

18

1 INTRODUCTION 1.4 About this Manual

teaching you how to use (and build) higher order transformations and
to build complex transformation to simulate the stepping of abstract
machines and even how to create transformations that are specific to
some domain.

FAQ Frequently asked questions and common errors are answered here.

19

1.4 About this Manual 1 INTRODUCTION

20

2 INSTALLATION

2 Installation

DSLTrans is comprised of three main components:

Editor The graphical editor plugins allow the creation of transformations
files. When creating a new transformation sample_trans, two files
are generated: sample_trans.dsltrans that stores the transformation
model and sample_trans.dsltrans_diagram that keeps information
used by the graphical editor.

DSLTranslator DSLTranslator is used to select a transformation file (e.g.,
sample_trans.dsltrans) and launch the Transformer.

Transformer The Transformer is the transformation engine that takes as
input a transformation model (e.g., sample_trans.dsltrans) and ex-
ecutes the rules specified in that transformation.

In order to successfully follow the examples in this manual and use DSLTrans
you have to follow (carefully) the following steps to install it according to your
platform:

2.1 Windows7 & Vista

Download and install SWI-Prolog version 5.10.4.
Download and extract Eclipse Modeling Tools, Helios Service Release 2.
Edit Eclipse’s eclipse.ini file and replace the line that contains -Xmx...

with -Xmx1024m.
Set the environment variables shown in the figures 9 and 10 below. Also

ensure that the JAVA_HOME environment variable is properly set.

Figure 9: Path to add to the user Path variable.

Note that you have to replace C:\Program Files\Java\jdk1.6.0_26\bin

for your system’s Java bin directory. Also, beware that the environment vari-
able you have to edit is the user Path variable.

21

2.1 Windows7 & Vista 2 INSTALLATION

Figure 10: Path to add to the system Path variable.

You have to replace C:\Program Files\pl\bin for your prolog instal-
lation bin directory too. This time the variable to edit is the System Path
variable.

Now you have to copy the jpl.jar file, in the C:\Program Files\pl\lib

directory, and paste it in Java’s lib directory: C:\Program Files\Java\jdk1.6.0_26\lib.

Figure 11: Prolog’s jpl.jar copied to Java’s lib directory.

Finally, you need to install the DSLTrans plugins, placing them in the
eclipse plugins directory (e.g., C:\Users\clagms\Desktop\eclipse\plugins)

22

2 INSTALLATION 2.1 Windows7 & Vista

Figure 12: DSLTrans plugins being copied to eclipse’s plugins directory.

23

2.2 Mac OS X Lion (10.7.0) 2 INSTALLATION

2.2 Mac OS X Lion (10.7.0)

It is known that sometimes, depending on the version of Mac OS, DSLTrans
doesn’t work. You should follow these completely reversible steps to install it
in your system and you should be able to run a transformation. However, if
during the transformation some exception occurs you should refer to section
6 to troubleshooting.

Ensure that the JAVA_HOME environment variable is properly set.
Download and install SWI-Prolog version 6.0.2. You may install it using

MacPorts7.
Download and extract Eclipse Modeling Tools, Indigo Service Release 2.
Make sure Prolog’s binaries are accessible through the PATH environment

variable.
Install DSLTrans plugins, copying them to the eclipse plugins directory

(e.g., /Users/clagms/Desktop/eclipse/plugins).
Edit Eclipse’s eclipse.ini file and replace the line that contains -Xmx...

with -Xmx1024m. Still in eclipse.ini file, add a line containing
-Djava.library.path=/opt/local/lib/swipl-6.0.2/lib/i386-darwin11.4.0/

after the -vmargs line. The /opt/local/lib/swipl-6.0.2 value is Prolog’s
installation directory. Beware that Prolog’s installation directory may not
be exactly as the one shown. You should make sure it is correct for your
system.

7http://www.macports.org/

24

3 QUICK START

3 Quick Start

In this section you will create the two transformations described in page 11
using DSLTrans graphical syntax.

3.1 Metamodels

First step is to build the required metamodels: GenealogyTree and Couples.
Both were built using Ecore Diagram Editor and are shown in figures 13a
and 13b.

(a) GenealogyTree. (b) Couples.

Figure 13: Metamodels.

Notice that in the Couples metamodel the notion of parenting relationship
between Couples is kept. For a given couple to be directly connected to other
couple it means that the first one gave birth to one of the elements of the
second couple.

25

3.2 Example Model 3 QUICK START

3.2 Example Model

To test the transformation you will need an example model. Open the Ge-
nealogyTree.ecore file and click on Create Dynamic Instance. . . . Name the
new file as GenealogyTree.xmi (see figure 14). It is important that you name
it like that to avoid confusion later in this tutorial.

Figure 14: Dynamic Instance Creation.

Then open the created file (GenealogyTree.xmi) and create a model based
on figure 3 in page 11. Your model should look like the one shown in figure 15.
Don’t forget to fill the Children, Husband and Wife properties (in eclipse’s
properties view) for each Marriage, where appropriate.

26

3 QUICK START 3.2 Example Model

Figure 15: GenealogyTree Example Model.

27

3.3 Planning the Transformation 3 QUICK START

3.3 Planning the Transformation

In page 11 we had two ways of expressing the transformation to generate
Couples models: a simple one and an extended, more partitioned, version.

Informally, if we ignore the parenting relationship between couples, we can
say that a couple is a Couple element, together with the respective husband
and wife Persons. So we only have to match the Persons and Marriage
elements in the GenealogyTree metamodel.

It is advised that before you start building the transformation, you write
down the basic rules (or steps if you prefer) that make it up. For this case
study ignore the parenting relationship between Couples and use the follow-
ing rules:

1. Every Marriage, husband and wife Persons in the GenealogyTree be-
comes a Couple, husband and wife Persons in the Couples model;

2. Every Couple generated has to be connected with the CouplesSet (root)
element.

28

3 QUICK START 3.4 Understanding DSLTrans Overall Semantics

3.4 Understanding DSLTrans Overall Semantics

A DSLTrans transformation is composed of multiple layers, each with several
rules. A rule has a match side - where a pattern is matched against some
input model - and an apply side - where a pattern is created in the output
model. It is applied while there are elements in the input model that satisfy
the match pattern. In a layer, all the rules are executed in a non-deterministic
fashion while layers are executed sequentially following the previous source
association.

29

3.5 Creating a Blank Transformation 3 QUICK START

3.5 Creating a Blank Transformation

Now that you have an idea of the rules needed and how a transformation is
processed, you can start creating a blank transformation.

First open the New File Wizard and select DSLtrans Diagram inside the
Examples category (see figure 16).

Figure 16: New File Wizard.

DSLTrans transformations are nothing but models conforming to the
DSLTrans metamodel. According to EMF, the abstract definition of models
is expressed in the XML Metadata Interchange (XMI) [7]. Since you are
using the graphical syntax to build the transformation, the new DSLtrans
Diagram wizard will create two files:

NewTransformation.dsltrans This file contains the transformation model
in XMI format. See figure 17.

NewTransformation.dsltrans diagram This file contains the additional
information needed to create and position the transformation elements
in a diagram. See figure 18.

30

3 QUICK START 3.5 Creating a Blank Transformation

Figure 17: Setting model name.

31

3.5 Creating a Blank Transformation 3 QUICK START

Figure 18: Setting diagram name.

32

3 QUICK START 3.6 DSLtrans Diagram Editor

3.6 DSLtrans Diagram Editor

After creating and opening a new DSLTrans file, you will see a window like
the one shown in figure 19.

While building a transformation you will frequently use:

• The Properties window to set package names and other properties of
the transformation elements;

• The Palette is used to add new elements to the transformation (e.g.,
rules, match classes, etc. . .) and connections among them;

• The Outline view to get an idea of the overall structure of the trans-
formation and navigate easily trough complex diagrams;

Figure 19: DSLTrans Diagram Editor Window.

33

3.7 Defining the Transformation 3 QUICK START

3.7 Defining the Transformation

A transformation can have multiple input and output models but for this
example you only need one input and one output. To set the input for
the transformation you will add a new FilePort by clicking it in the objects
section of the Palette and clicking again in the diagram. After this you should
see something like figure 20.

(a) FilePort Palette. (b) FilePort Diagram.

Figure 20: Adding a new element - FilePort.

Then you should set the FilePort ’s properties in the Properties window
as in figure 21. Notice that the Name property can be anything. Just write
something meaningful for the sake of readability.

Figure 21: FilePort properties.

For every input model of a DSLTrans transformation, the metamodel it
conforms to must be stated. To do that, you add a MetaModelIdentifier
inside the FilePort previously created. Then set the properties as in figure
22.

Beware that Meta Model Name as to be always in the format package.Package.
The package value is the metamodel root package (see figure 23). By default,
this is the name of the metamodel in lower case letters.

34

3 QUICK START 3.7 Defining the Transformation

Figure 22: MetaModelIdentifier properties.

Now that the input is well known and identified, you can proceed to add
a first Layer by the same procedure as described earlier to add elements to
the transformation. As for its properties it is only recommended that you
set the Name and Description to something meaningful.

The next step is to connect the input FilePort to the first Layer using
a PreviousSource association. To add this connection you have to first click
in the PreviousSource in the Palette, then click in the Layer and drag the
connection to the FilePort. The result is in figure 24. Don’t be misled by
the fact that the arrows points downwards while you dragged it upwards. It
shows the flow of the information but its name is PreviousSource.

Each Layer has an output. You can set that output to a file (by setting
the Output File Path URI property) if you want to see the outcome of the
transformation at a specific Layer. This is great for debugging purposes.
You should set the Output File Path URI property to Couples.xmi. Even if
there is no external output set, the outcome of a layer is always validated
against it’s metamodel. Because of it you have to create a MetaModelIden-
tifier pointing to the output metamodel for each layer. Figure 25 shows the
properties of this MetaModelIdentifier.

As for the rules in this layer, we only need one: to create the root element
of the output model. It has to be like this because in the next layers new
elements will be generated and they need to be“attached”to the root element
as described in the Couples metamodel. Don’t worry if you can’t understand
everything yet, keep going, you’re almost there!

Now insert a Rule in the recently created Layer and set its description to
something that describes the main purpose of the Rule (e.g., root element).
After that, insert a MatchModel and an ApplyModel in the top and bottom
parts of the Rule, respectively (see figure 26).

35

3.7 Defining the Transformation 3 QUICK START

Figure 23: GenealogyTree metamodel package name.

According to figure 13 the root element of the GenealogyTree metamodel
is the GenealogyTree element and the root of the Couples metamodel is the
CouplesSet element.

The purpose of this rule is to say that for every GenealogyTree element in
the input model, you want to generate a CouplesSet element in the output
model. Figure 27 shows the AnyMatchClass and the ApplyClass elements
created inside the respective containner models created previously. As for
the properties of each inserted element, set them according to figure 28.

Now would be a good time to test the transformation. The transformation
has one FilePort that points to a GenealogyTree.xmi file where the input
model is (you created it in section 3.2); and one Layer whose output is a file
named Couples.xmi, where the output model will be.

To run the transformation, just right-click in TransformationName.dsltrans,
DSLTranslator and Transform, as in figure 29. You should see some debug-
ging output in the console view. If any error occurs, refer to section 6 in page
91.

If everything went well you should see a new file named Couples.xmi on

36

3 QUICK START 3.7 Defining the Transformation

Figure 24: Transformation after adding the PreviousSource Association.

Figure 25: MetaModelIdentifier properties.

your project. Open it and you will see that the model only contains the
root element (see figure 30). This makes sense since the transformation only
matches GenealogyTree elements to produce CouplesSet elements and there
is only one GenealogyTree element in the input model.

It’s time to add a second Layer to the transformation. Don’t forget to
identify the output metamodel using the MetaModelIdentifier as previously.
The properties of the Layer and MetaModelIdentifier are the same except
theres is a new Previous Source association between the second Layer and
the first one, as figure 31 illustrates.

The second Layer will have rules that match Marriages in order to gen-
erate Couples. The skeleton of the Rule to add is quite simple (see figure
32). Beware that you need to add Match and Apply models to each side of

37

3.7 Defining the Transformation 3 QUICK START

Figure 26: Root Elements rule with empty match and apply models.

the Rule before adding the AnyMatchClasses and ApplyClasses.
On the top of the Rule it is necessary to match a Marriage and the two

associated Persons, so go ahead and set the appropriate properties for three
of the four AnyMatchClasses in the MatchModel (see figure 33). Since a
Couple and two Persons will be generated by this Rule, set the properties
of the ApplyCasses according to figure 33. It is very important that you set
the PackageName property of each Rule element. In this case we set the
PackageName of AnyMatchClasses to genealogytree and the ApplyClasses
with couples (as in the previous Layer).

The generated elements Couple and Person’s need to be associated with
each other and with the root element CouplesSet according to the Couples
metamodel. To create associations between apply elements you have to insert
Apply Associations, click and drag. Insert the needed associations between
the generated elements according to figure 34. Notice that the direction of the
ApplyAssociations and their names correspond to the associations declared
in the metamodel. This is very important since DSLTrans will check the
generated model correctness and won’t allow models that do not conform to
the metamodel.

The generated Couples need to be related to the root element CouplesSet.
Set the properties of the last ApplyClass and insert the association as shown
in figure 35.

If you start asking why do we want to generate more CouplesSet elements,
then you are in the right track! In this rule you want to add new elements
(Couple and Persons) but connect them to the previously generated Coup-
lesSet element. How do you say in DSLTrans that you don’t want to generate
a new CouplesSet element but instead want to use the previously generated
one? The answer is to add a PositiveBackwardRestriction between the gen-

38

3 QUICK START 3.7 Defining the Transformation

Figure 27: AnyMatchClass and ApplyClass elements.

erated element and one of the elements that generated it. In this case the
generator element is the GenealogyTree and the generated one is the Coup-
lesSet. Insert a PositiveBackwardRestriction between the GenealogyTree and
the CouplesSet and set the required properties so that the Rule looks like
the one in figure 36. Don’t forget to set the appropriate Package Names, it’s
one of the most common errors (see section 6).

The apply pattern of the Rule is complete and the match elements only
need associations between them. To express that the two Person’s are in
the same Marriage, you have PositiveMatchAssociations. They work much
in the same way as the ApplyAssociations in the apply pattern, except they
are inserted among match elements. Insert the required associations so that
your match pattern looks like the one in figure 37.

Now the rule (and the transformation) is almost complete. However, an
important detail is missing and without it the transformation won’t work:
when using PositiveBackwardRestrictions you are matching previously gen-
erated and generator elements. DSLTranslator internally keeps track of these
elements but only if you say so, or else executing a large transformation would
consume a lot of memory. In order to tell DSLTranslator to save traceability
links between generated and generator elements you have to place an Ap-
plyAttribute in the generated elements in the moment they are first created
and then use the same ApplyAttribute to refer to them in later Layers. It’s
like using variables inside a transformation. Go back to the first layer in the
transformation and assign an ApplyAttribute to the CouplesSet element and

39

3.7 Defining the Transformation 3 QUICK START

(a) GenealogyTree AnyMatch-
Class properties.

(b) CouplesSet ApplyClass ele-
ment properties.

Figure 28: Match and Apply Pattern properties.

place an Atom inside it with the value Root Element (see figure 38). Note
that you have to leave the Attribute Name property of the ApplyAttribute
empty.

Now in the second Layer, add an ApplyAttribute with the same Atom
value in the CouplesSet element, as in figure 39.

Executing the transformation now should produce a result similar to the
one in figure 40.

All the generated elements’ attributes are missing. Apart from the Ap-
plyAttribute (with no name) that you set for the root element, you didn’t
create any attribute for other elements.

You need to copy the name attribute from each element in the input
model to the output model. To do that, insert an ApplyAttribute, name
it according to figure 41 , insert AttributeRef (Objects) inside each Apply-
Attribute, place MatchAttributes inside the relevant elements in the match
pattern and insert AttributeRefs (Connections) between the ApplyAttributes
and the corresponding MatchAttributes. The resulting Rule is in figure 41.

You just told DSLTranslator to copy the name attributes from the ele-
ments matched in the input model and paste them in the applied elements.

Finally, you can run the transformation against any model (expressed in
GenealogyTree.xmi) and get the set of couples (in the Couples.xmi resulting
file). The result for our case study is shown in figure 42.

With this transformation you are able to obtain a model of the existing
couples in a genealogical tree. But wouldn’t it be great if you were able to see
the relations between couples. Who is the oldest couple? And the youngest?
In the next session you will learn to build a transformation for that.

40

3 QUICK START 3.7 Defining the Transformation

Figure 29: Executing a transformation.

Figure 30: Couples resulting model.

41

3.7 Defining the Transformation 3 QUICK START

Figure 31: New Layer with Previous Source association.

Figure 32: Second Rule Skeleton.

42

3 QUICK START 3.7 Defining the Transformation

Figure 33: Second Rule with class names.

Figure 34: Generated Couple associations.

43

3.7 Defining the Transformation 3 QUICK START

Figure 35: Generated Couple associations with CouplesSet.

Figure 36: Rule with a PositiveBackwardRestriction.

Figure 37: Match pattern with PositiveMatchAssociations.

44

3 QUICK START 3.7 Defining the Transformation

Figure 38: Root elements rule with ApplyAttribute.

Figure 39: CouplesSet element with ApplyAttribute.

45

3.7 Defining the Transformation 3 QUICK START

Figure 40: Couples result model with missing attributes.

Figure 41: Rule with MatchAttributes and AttributeRefs.

46

3 QUICK START 3.7 Defining the Transformation

Figure 42: Final result.

47

3.8 Transformation Partitioning 3 QUICK START

3.8 Transformation Partitioning

In the previous section you learned how to build a simple transformation to
generate a flat list of couples model out of a genealogical tree model. Now
you will learn to do more than that: you will generate a hierarchical set of
couples based on their age, i.e., the oldest couple will the the parent of all
the other couples, and so on.

In order to build this transformation you will follow a slightly different
approach: you will first transform each individual element, then you will
look at groups of elements and create relations in the output model, thus
connecting all the “loose” elements. Figure 43 gives an example of the pro-
cessing stages of a transformation following this approach: first individual
elements are considered, then it looks to bigger and bigger sets of elements;
at the end, all the elements that where generated but are not “attached” to
something are discarded.

Since you already have the required metamodels and an example model
from previous section, all we have to do is to create a new DSLTrans trans-
formation, add a FilePort, a Rule, the MetaModelIdentifiers needed to get a
transformation like the one shown in figure 44.

Has described earlier, in this approach you first identify what each element
in the input model means in the output model.

• Each Person in the GenealogyTree is a Person in Couples ;

• Each Marriage can be seen as a Couple;

• The GenealogyTree element is the CouplesSet element.

With these three mappings you should create three simple rules in the
first layer (see figure 45). Don’t forget to set the Package Name properties
for each AnyMatchClass and ApplyClasses.

Figure 46 shows the result of executing the layer you’ve just built. Notice
that, internally, DSLTranslator keeps trace of the generated elements and
generator elements. We call that traceability links (in the figure they are
represented as dashed lines between generated and generator elements). This
feature makes it possible to later match those elements and complete the
transformation.

Now it is necessary to match the possible relations between elements in the
input model and translate that to association (and sometimes new elements)
in the output model. What does the relation of husband between a Marriage
and a Person in the GenealogyTree mean? Insert a new Layer and all the
elements needed to get it like the one shown in figure 47.

48

3 QUICK START 3.8 Transformation Partitioning

John Mary John Mary

Thomas ThomasSarah Sarah

William WilliamAnn AnnEdward

George Norah

Edward

George Norah

John Mary

Thomas Sarah

William AnnEdward

George Norah

John Mary

Thomas Sarah

William AnnEdward

George Norah

John Mary

Thomas Sarah

William AnnEdward

George Norah

John Mary

Thomas Sarah

William Ann

Figure 43: Transformation partitioning approach.

The first layer generates a set of loose elements in the output model, the
second one connects people with couples as figure 48 illustrates. The only
thing missing is to connect the couples in a hierarchical fashion so go ahead
and build a third Layer connected to the second one and with the proper
MetaModelIdentifier but without any rule.

How do you know that a couple is a child or a parent? If John is married
to Mary and one (or more) of their children is married to someone else then
John’s Marriage is a parent of its children’s Marriages.

The two rules shown in figure 49 express this concept. Notice that the two
cases have to be considered since there are two ways of being in a marriage
(husband or wife) in the GenealogyTree model.

After executing the transformation (with the rules shown in figure 49

49

3.8 Transformation Partitioning 3 QUICK START

Figure 44: Basic transformation skeleton.

added) you will have as a result something like figure 50.
What about the oldest couple? According to the rules defined previously

the oldest couple (in this case John and Mary) is not contained anywhere
in the model. If you don’t make a rule for this couple none of the other
younger couples will be visible in the output model. Figure 51 shows the rule
you need to add to the third layer in order to match the oldest couple and
connect it to the CouplesSet element.

The rule in figure 51 matches a couple whose individuals (husband and
wife) aren’t children of anyone else. Notice the way to express a nonexistent
class (and association) in DSLTrans.

After the execution of this last rule all the relevant elements are connected
to the output model and hence, are displayed in the final result. The elements
that are generated during the transformation (for instance, George, Edward
and Norah) and are not (in)directly contained in the output model root
element (in this case, the CouplesSet element) do not appear in the final
result as shown in figures 52 and 53.

In the next sections you will be able to learn more about each element of
the DSLTrans language individually. It is up to you to combine the elements
in order to create almost any rule you need in a readable and elegant manner.

50

3 QUICK START 3.8 Transformation Partitioning

Figure 45: First layer direct mappings.

John Mary John Mary

Thomas ThomasSarah Sarah

William WilliamAnn AnnEdward

George Norah

Edward

George Norah

GenealogyTree CouplesSet

Figure 46: Resulting models after executing the mappings layer.

51

3.8 Transformation Partitioning 3 QUICK START

Figure 47: Husband and Wife relations layer.

John Mary John Mary

Thomas ThomasSarah Sarah

William WilliamAnn AnnEdward

George Norah

Edward

George Norah

GenealogyTree CouplesSet

Figure 48: Resulting models after executing the second layer.

52

3 QUICK START 3.8 Transformation Partitioning

Figure 49: Couples hierarchy rules.

John Mary John Mary

Thomas ThomasSarah Sarah

William WilliamAnn AnnEdward

George Norah

Edward

George Norah

GenealogyTree CouplesSet

Figure 50: Resulting models after executing the third layer’s two rules.

53

3.8 Transformation Partitioning 3 QUICK START

Figure 51: Root couple rule.

John Mary John Mary

Thomas ThomasSarah Sarah

William WilliamAnn AnnEdward

George Norah

Edward

George Norah

GenealogyTree CouplesSet

Figure 52: Resulting models after executing the transformation.

54

3 QUICK START 3.8 Transformation Partitioning

Figure 53: Resulting XMI file.

55

3.8 Transformation Partitioning 3 QUICK START

56

4 LANGUAGE DEFINITION

4 Language Definition

4.1 A Typical Transformation

Most DSLTrans transformations have a common subset of elements. Fig-
ure 54 shows some of those. Usually there is one FilePort that points to
some input model XMI file and contains a MetaModelIdentifier that ref-
erences the metamodel of the input model so DSLTrans can validate the
input. Then there are multiple Layers, connected using a PreviousSource
association. Each Layer can have an output model and must have a Meta-
ModelIdentifier and various Rules. Every Rule has a MatchModel and an
ApplyModel, each with the match and the apply pattern respectively.

FilePort

MetaModelIdentifierPreviousSource

Layer

Rule
MatchModel

ApplyModel

AnyMatchClass

ApplyClass

ApplyAttribute
Atom

Figure 54: Example transformation structure.

57

4.2 Language Constructs 4 LANGUAGE DEFINITION

4.2 Language Constructs

Bellow is the description of each DSLTrans element along with its represen-
tation in both visual and textual concrete syntaxes.

4.2.1 Objects

AnyMatchClass The AnyMatchClass is used in a MatchModel to capture
all the elements in the input model. When used within a more complex
pattern the set of matched elements can be reduced. Figure 55 shows an
example where all the Marriage elements are being captured and in figure 56
only those whose attribute name has the value Thomas-Sarah are matched.

Property Description
Class Name Type or Class of the element to be matched.
Description A meaningful description should be used for

documentation purposes.
Package Name This is a very important property that should

always be correctly set. You can find the
correct value by looking to the corresponding
metamodel’s root package as shown in figure
57.

Figure 55: AnyMatchClass example.

ApplyAttribute ApplyAttributes are inserted inside ApplyClasses either
to specify an attribute value or to capture a previously generated element
with some attribute value (if used in an ApplyClass connected with a Posi-
tiveBackwardRestriction). Figure 69 shows one ApplyAttribute with no name
specified. This is usually used to tell DSLtranslator to keep traces in memory
so that the generated element (in this case, a Couple) can be later referenced.

Property Description
Attribute Name Name of the attribute to be applied.

Description A meaningful description should be used for
documentation purposes.

58

4 LANGUAGE DEFINITION 4.2 Language Constructs

Figure 56: AnyMatchClass example combined with MatchAttribute and
Atom.

Figure 57: Root package name property.

ApplyClass The ApplyClass is used to created new elements in the apply
patterns or match previously generated elements (if used with a Positive-
BackwardRestriction).

Figure 69 shows an ApplyClass named Couple.

59

4.2 Language Constructs 4 LANGUAGE DEFINITION

Property Description
Class Name Type or Class of the element to be applied.
Description A meaningful description should be used for

documentation purposes.
Group Name This property helps you to organize your Ap-

plyClasses by groups if you want.
Package Name This is a very important property that should

always be correctly set. You can find the
correct value by looking to the corresponding
metamodel’s root package as shown in figure
57.

ApplyModel An ApplyModel is just a container for the pattern to apply
in case a match is found. Figure 65 shows one.

Atom Atoms are usually used inside MatchAttributes and ApplyAttributes
to express arbitrary values. Figure 61b shows an Atom inside a MatchAt-
tribute and figure 61a an Atom combined with an ApplyAttribute.

Property Description
Value Value that the Atom represents.

AttributeRef The AttributeRef element is used to copy some attribute
value from a matched element to an applied one. Figure 58a shows an At-
tributeRef inside the second part of a Concat together with the AttributeRef
(Connection) that points to the attribute being copied.

Concat The Concat concatenates Atoms, AttributeRefs and WildCards in-
side ApplyAttributes allowing for a flexible value manipulation. Figure 58a
shows a Concat element combined with an Atom and an AttributeRef to give
the “Dr.” title to every Person. In figure 58b shows a complex apply pattern
that captures all Person elements that generated new Person whose name
starts with “J”. It combines a Concat with an Atom and a WildCard.

ExistsMatchClass As the AnyMatchClass element, the ExistsMatchClass
is also used to create match patterns but it only cares about finding one el-
ement, not all of them. It can be combined with MatchAttributes to further
refine the element to be matched. Figure 59b shows an example of a pattern
with an ExistMatchClass. Beware that when combining an ExistMatchClass

60

4 LANGUAGE DEFINITION 4.2 Language Constructs

(a) Concat with At-
tributeRef example.

(b) Concat and wildcard exam-
ple.

Figure 58

and an AnyMatchClass, the AnyMatchClass will always prevail over the Ex-
istMatchClass no matter what the direction of the association between them.
For instance, in pattern 59b the intention is to capture every Marriage with
a wife, not only one Person that is a wife in every Marriage.

Property Description
Class Name Type or Class of the element to be matched.
Description A meaningful description should be used for

documentation purposes.
Package Name This is a very important property that should

always be correctly set. You can find the
correct value by looking to the corresponding
metamodel’s root package as shown in figure
57.

FilePort The FilePort element represents an input model. A transforma-
tion can have multiple FilePorts if it uses multiple input models. An input

61

4.2 Language Constructs 4 LANGUAGE DEFINITION

(a) Two AnyMatch-
Classes

(b) Equivalent pat-
tern using an Any-
MatchClass and an
ExistMatchClass.

Figure 59

model always has to conform to a metamodel, that is why the FilePort al-
ways contains a MetaModelIdentifier element to tell DSLTranslator which
metamodel the input model conforms to. Figure 60 shows an example of a
FilePort and its MetaModelIdentifier.

Property Description
File Path URI A meaningful name for the current input.

Figure 60: FilePort example.

Layer Layers establish an order to the transformation execution. A trans-
formation can have several sequential Layers or even parallel ones if its pur-
pose is to produce more than one output model. Each Layer has a Previous-
Source association that connects it to another Layer or a FilePort. Figure
63 shows an example of a Layer.

62

4 LANGUAGE DEFINITION 4.2 Language Constructs

Property Description
Description Here you write a brief description on what

the Layer is supposed to do.
Group Name This property helps you to organize your

Layers by groups if you want.
Name A symbolic name for the Layer.

Output File Path URI The relative or absolute path for the resulting
model of the current Layer.

Previous Source This property is automatically filled if you
insert the PreviousSource connection but if
you prefer you can set it manually by writing
the name of the previous Layer or FilePort
here.

MatchAttribute The MatchAttribute element is used when it is necessary
to capture some element’s attribute value or to match an element with a
specific attribute value. Figure 61b shows the MatchAttribute element being
used to say that only the Person elements whose name is John are matched
and figure 61a illustrates a way to copy an attribute value between match
and apply elements by combining the MatchAttribute with ApplyAttribute
and AttributeRef.

(a) MatchAttribute with an
AttributeRef example

(b) MatchAt-
tribute with an
Atom example.

Figure 61

63

4.2 Language Constructs 4 LANGUAGE DEFINITION

Property Description
Attribute Name Name of the attribute to be matched.

Description A meaningful description should be used for
documentation purposes.

MatchModel The MatchModel contains a Rule’s match pattern (see fig-
ure 65). There can be multiple MatchModels in the same Rule although it
is rare: one can actually override the PreviousSource connection of a Match-
Model by setting it’s ExplicitSource property or by creating an ExplicitSource
connection to some FilePort. Figures 62a and 62b illustrate two equal pat-
terns but the left one is split across two MatchModels. This does not seem
very useful and it isn’t but when combined with the ExplicitSource property
lets you parametrize transformations (see section 5.1).

(a) Two separated MatchModels

(b) Equivalent pattern in a single Match-
Model.

Figure 62: MatchModel examples.

Property Description
Explicit Source Name of a FilePort to get an input model

from.

64

4 LANGUAGE DEFINITION 4.2 Language Constructs

MetaModelIdentifier The MetaModelIdentifier element is used inside File-
Ports and Layers to refer to the relevant metamodels. Wherever there is an
input or output model, the MetaModelIdentifier has to be there. Figure 60
shows a MetaModelIdentifier inside a FilePort and figure 63 illustrates it in
a Layer because a Layer can generate an output model.

Property Description
Meta Model Name Specifies the name of the metamodel.

This name usually takes the form of the
root_package_name.Root_package_name

as you have seen in section 3.
Meta Model URI The relative or absolute path to the meta-

model.

Figure 63: Layer with MetaModelIdentifier example.

NegativeMatchClass The NegativeMatchClass is mostly used in combi-
nation with a NegativeMatchAssotiation to express that you don’t want an
element to exist in some pattern. In figure 64 the pattern captures all Person
objects that are not children, i. e., it will match all root elements.

65

4.2 Language Constructs 4 LANGUAGE DEFINITION

Property Description
Class Name Type or Class of the element to be matched.
Description A meaningful description should be used for

documentation purposes.
Package Name This is a very important property that should

always be correctly set. You can find the
correct value by looking to the corresponding
metamodel’s root package as shown in figure
57.

Figure 64: NegativeMatchClass example.

Rule Rules are inserted inside each Layer and they contain a match side
and an apply side. Figure 65 shows an example rule already filled with some
elements. A Rule always needs to contain at least a Match and an Apply
models.

Figure 65: Example rule containing a MatchModel, ApplyModel, AnyMatch-
Class and ApplyClass along with attributes.

Property Description
Description Use this property to describe the purpose of

the rule if you want.

66

4 LANGUAGE DEFINITION 4.2 Language Constructs

Sequencer

Wildcard Wildcards are used most frequently inside ApplyAttributes, com-
bined with Atoms and Concats to restrict the number of matched elements
that where previously generated8. Figure 58b shows an example of a pattern
that will only be applied to Person elements that where previously generated
and whose name starts with a “J”. A Wildcard represents any value.

4.2.2 Connections

ApplyAssociation ApplyAssociations always generate relations between
ApplyClasses in the output model. Notice that they cannot be used to cap-
ture previously generated elements as ApplyAttributes can do. Figure 70
shows an ApplyAssociation between a CouplesSet and a Couple.

Property Description
Association Name The name of the association. This depends

on the input metamodel.

ApplyMayBeSameRelation

AttributeEquality

AttributeInequality

AttributeRef The AttributeRef connection points to a MathAttribute to
copy its value (see figure 58a).

ExplicitSource The ExplicitSource allows the user to connect a Match-
Model directly to a FilePort and match a pattern against an input model.
Figure 66 shows an example of an ExplicitSource connection (it’s the thin
line between the MatchModel and the FilePort).

Import Using the Import element, the user is capable of copying an entire
tree of elements from an input model to an output model by matching the
tree’s root element. DSLTranslator will copy the element along with its
attributes and descendants, keeping all the relations that belong to the tree.
Beware that if any of the imported elements has an association referring

8This means the ApplyClass has to be connected to some match class with a Positive-
BackwardRestriction.

67

4.2 Language Constructs 4 LANGUAGE DEFINITION

Figure 66: ExplicitSource example.

other element that does not belong to the tree (i. e., is not a descendant of
the root matched element), that connection will cease to exist. Naturally,
all imported elements must conform to the same metamodel as the output
model. For instance, if you already had a CouplesHierarchy model (like the
one shown in figure 67) and you wanted to create a new model (as the one
in figure 68) that extends it with information from a GenealogyTree model ,
you could use an Import to copy the Frank-Basie couple along with its child
couples and then attach the imported tree to the output model like figures
69 and 70 illustrate. The MatchModels that capture the imported elements
are directly connected to FilePort that points to the existing Couples model
shown in figure 67.

Figure 67: Couples Hierarchy model.

MatchMayBeSameRelation todo

NegativeIndirectAssociation The NegativeIndirectAssociation is used to
create patterns where a containment association of any depth between two

68

4 LANGUAGE DEFINITION 4.2 Language Constructs

Figure 68: Couples Hierarchy extended model.

connected elements cannot exist. It usually is combined with a Negative-
MatchClass to capture elements that are not contained in other elements by
any depth. Figure 71 shows a pattern with the same meaning of the one
shown in figure 72 but disregarding the containment association’s name.

Property Description
Association Name This can be any name you want.

NegativeMatchAssociation As the PositiveMatchAssociation, the Neg-
ativeMatchAssociation is used to connect match classes allowing for more
complex match patterns. Unlike the PositiveMatchAssociation, it expresses
that an association must not exist between two elements and it is often com-
bined with a NegativeMatchClass to say that an element cannot exist in
some pattern. Figure 72 shows an example where Persons (and respective
Marriages) that have no parents are being matched.

Property Description
Association Name The name of the association. This depends

on the input metamodel.

PositiveBackwardRestriction The PositiveBackwardRestriction associ-
ation is used to generate associations between output model elements gen-
erated in previous layers. It connects match elements to apply elements in
order to match the generated and generator elements. For instance, in fig-
ure 73 a new relation named husband is being created between any Couple
and Person that were previously created and whose creators (Marriage and
Person) are related by the husband association.

69

4.2 Language Constructs 4 LANGUAGE DEFINITION

Figure 69: Import existing couples tree rule.

PositiveIndirectAssociation The PositiveIndirectAssociation is used to
abstract long containment relationships9 between two elements. For instance,
in the GenealogyTree metamodel, the association marriages between a Ge-
nealogyTree and a Marriage is a 1-level containment and the pattern shown
in figure 74a matches the two elements. But what if the metamodel allowed
Marriages inside Marriages by adding an containment association between
Marriage elements? The resulting models could have long lists of Marriages
inside Marriages, all connected with containment relationships. In that sce-
nario, the pattern shown in figure 74b would match all Marriages inside the
John-Mary Marriage. Notice that all containment relations (of any depth)
will be matched, even if they haven’t got the same name.

Property Description
Association Name This can be any name you want.

PositiveMatchAssociation It is often necessary to create match patterns
with more than one element. The PositiveMatchAssociation is a possible
connection between two match classes that expresses that a relation has to
exist between those elements in the input model. In figure 75 a Person that
is a wife and a child simultaneously is being matched; on the other hand, the
rule will not be applied to a Person that is not a child.

9Long containment relationships mean that there can be several elements in between.

70

4 LANGUAGE DEFINITION 4.2 Language Constructs

Figure 70: Connect imported couples tree rule.

Figure 71: Negative Indirect Associations together with Negative Match
Classes.

Property Description
Association Name The name of the association. This depends

on the input metamodel.

PreviousSource PreviousSource is an association that connects a Layer
to another Layer or FilePort. It controls the flow of the transformation.
Figure 76 shows two PreviousSource connections.

71

4.2 Language Constructs 4 LANGUAGE DEFINITION

Figure 72: Negative Match Associations together with Negative Match
Classes.

Figure 73: Positive Backward Restriction example.

72

4 LANGUAGE DEFINITION 4.2 Language Constructs

(a) Positive
Indirect
Association
between Ge-
nealogyTree
and Marriage.

(b) Positive Indirect Associ-
ation between Marriages.

Figure 74

Figure 75: PositiveMatchAssociation examples.

Figure 76: PreviousSource connections between Layers and FilePort.

73

4.2 Language Constructs 4 LANGUAGE DEFINITION

74

5 ADVANCED TOPICS

5 Advanced Topics

Models can be used to describe the dynamic aspects of a system and trans-
formations can be built in order to simulate the changes in that system along
it’s lifetime. Thus, model transformations can be viewed as a kind of declar-
ative programming where a set of rules define computations as changes in
the information present in the system model [5].

T T T T
T

Figure 77: Executing a system by applying the same set of rules T several
times.

In figure 77 an example of the changes occurred in a system by applying
the same set of transformations is shown. In this particular case, the system
is represented as the tape of a cellular automaton10 and it’s behaviour is
defined by the set of rules T . The next color of a matched cell is defined
according to its own color and its neighbour’s. Figure 77 shows the state of
the cellular automaton’s tape across four transformations. Curiously, with
the set of rules T , if you look to several more transformation applications
(with a bigger tape than the one shown in the figure) you will see that no
pattern arrises in the automaton’s behaviour [17].

As you have seen in section 1, DSLTrans transformations are no more than
models conforming to the DSLTrans metamodel. If DSLTrans allows one to

10In the context of this manual, a cellular automaton is a abstract device with an
infinite tape divided in cells that can have two colors. Its behaviour is defined by means
of transformation rules involving a cell and its nearest neighbours.

75

5 ADVANCED TOPICS

create model transformations, then why can’t one build a transformation
that handles transformations? In fact, it is perfectly possible and opens a
wide range of possibilities as you will see in this section.

76

5 ADVANCED TOPICS 5.1 Finite Deterministic Automata Execution

5.1 Finite Deterministic Automata Execution

In this section an example of how a transformation can be used to simulate
the behaviour of an abstract mathematical system.

A representation of a Finite Deterministic Automaton (FDA) is shown
in figure 78 and consists of a reader that crosses a tape in one way, in this
case, from left to right, reading a symbol at a time and, depending on the
symbols read, it will accept (or not) the sequence present in the tape. Figure
79 shows an automaton that has accepted the sequence read from the tape.

Tape

FDA

0 1 0 1 1 0 1...

Figure 78: A representation of an automaton system with it’s tape and cur-
rent pointed cell. The red light indicates that the automaton has accepted
the sequence read yet.

Tape

FDA

0 1 0 1 1 0 1...

Figure 79: A representation of a FDA that has accepted the sequence read
from the tape.

The acceptance criteria of an automaton can be defined by a labelled
graph (hence, a model) with multiple states, an initial state and final/accep-
tance states. Figure 80 shows a specification of an automaton that accepts
only sequences with an even number of 1’s.

From a transformation point of view, each step of an automaton execution
depends on the current state, the current symbol read from the tape and the

77

5.1 Finite Deterministic Automata Execution 5 ADVANCED TOPICS

0

1

A B

10

Figure 80: The behaviour of an automata based on a labelled graph. There
are two states, A and B, and four transitions, each occurring depending on
the current state and the current read symbol (0 or 1).

transitions available at the current state. The result is a new automaton with
the same states and transition from the previous one but with a new current
state (that is the target of the executed transition) and a different current
symbol. For more information about automata refer to [12].

In order to show how DSLTrans can be used to execute any possible
FDA models are needed to represent the state of the automaton across its
states. We can either model the tape and the automaton together, or have
two separate models: one to represent the tape and the other the automaton.
In this example we will opt to follow the second approach. In a latter section
(5.2) we use a single model.

Figure 81: Automata Metamodel.

The metamodel for the automaton is shown in figure 81. It has various
states, transitions with labels that are 1 or 0. Pointers are needed to rep-
resent to the initial, current and final (acceptance) states. These pointer
could be attributes of a state but the last are more difficult to change in a
transformation but it is perfectly doable.

78

5 ADVANCED TOPICS 5.1 Finite Deterministic Automata Execution

Figure 82: Word (a.k.a. Tape) Metamodel.

Figure 82 shows the metamodel used to define a word to be read by the
automaton. Notice that to keep a relation of order between the symbols (0
or 1) a next symbol relation is used. The Next pointer indicates the symbol
to be read by the automaton in the next step.

In both metamodels, the pointers, states and transitions have names so
the models are more readable, they have no influence in the automaton be-
haviour.

The transformation has two independent flows as can be seen in its outline
in figure 83. That makes sense since there are two models that have to
be changed and each flow applies those changes to each model. The tape
will have it’s Next pointer changed according to the automaton and the
automaton will have it’s Current state changed according to the tape, it’s
current state and the available transitions.

The complete transformation is in the files that come with this manual,
please refer to them in the next paragraphs.

Since only the pointers of each model will change and the rest of the
elements have to remain intact from the input to the output, the first layer
of each flow has the mappings for the elements that remain the same, and
copies their attributes.

The second layer of the left flow (the one that changes the word model)
has four rules: two of them keep the consistency of the model (order of
elements and their connection to the root element) and the other two change
the Next pointer referring to the current automaton state and the available
transitions.

In the right side of the transformation, the second layer has several rules
but only two of them actually add any dynamic behaviour to the automaton
since the other ones exist only to keep the consistency between input and

79

5.1 Finite Deterministic Automata Execution 5 ADVANCED TOPICS

output models. In those two rules, the Current pointer is set according to
the current state of the automaton, it’s transitions and the symbol read from
the word model.

Figures 84 and 85 show the main rules that define the behaviour of this
system. All the other rules and layers exist so that the output model remains
the same as the input model (except for its pointers).

To see how the models change, figures 86 and 87 show the automata and
the word models before and after two transformation executions.

5.1.1 Conclusions

Apart from the automaton behaviour simulation using DSLTrans, the main
ideas to retain from this section are:

• How to execute two transformations simultaneously using the Previ-
ousSource association and different FilePorts.

• How to use the ExplicitSource association of a MatchModel to control
which rules are applied according to an external model. This technique
is used in the rules shown in figures 85 and 84.

• How to take advantage of class hierarchies in models to reduce the
set of rules needed when matching previously generated elements. An
example of this technique is shown in figure 88 where the left side shows
a concrete Symbol (N1) being generated and the right side shows a rule
with a BackwardLink matching any Symbol generated previously.

80

5 ADVANCED TOPICS 5.1 Finite Deterministic Automata Execution

Figure 83: Automata execution transformation outline.

81

5.1 Finite Deterministic Automata Execution 5 ADVANCED TOPICS

Figure 84: The two Word rules the define the Next pointer.

Figure 85: The two Automata rules the define the Current state pointer.

82

5 ADVANCED TOPICS 5.1 Finite Deterministic Automata Execution

(a) (b)

Figure 86: Initial system state.

(a) (b)

Figure 87: Final system state.

83

5.1 Finite Deterministic Automata Execution 5 ADVANCED TOPICS

(a) Rule in the first layer.

(b) Rule in the second layer.

Figure 88: Using class hierarchy and BackwardLinks to reduce the set of
rules needed.

84

5 ADVANCED TOPICS 5.2 Turing Machine Step Transformation

5.2 Turing Machine Step Transformation

85

5.3 High Order Transformations 5 ADVANCED TOPICS

5.3 High Order Transformations

86

5 ADVANCED TOPICS 5.4 Prototyping Transformations

5.4 Prototyping Transformations

87

5.4 Prototyping Transformations 5 ADVANCED TOPICS

5.4.1 Identity Generation

88

5 ADVANCED TOPICS 5.4 Prototyping Transformations

5.4.2 Fixed Identity Generation

89

5.4 Prototyping Transformations 5 ADVANCED TOPICS

90

6 FAQ

6 FAQ

Error Opening Model File If you get an error like the one shown in figure
89 it means the metamodel for the model you are trying to open is not loaded.
The easiest way to solve this issue is to run a transformations that reads or
creates the model you are trying to open. DSLtrans will automatically load
the required metamodels and after the transformation finishes, you will be
able to open the model.

Figure 89: Error Opening Model File

Could Not Initialize Prolog When running a transformation, if you get
an error like the one shown in figure 90 you should go back to section 2 and
see if you installed DSLTrans correctly.

Other Error Regarding Prolog If you get any error regarding prolog,
you should check if you missed some step in the installation section (2) and
if the environment variables are all appropriately set.

Loading Metamodel Error When executing a transformation, code is
generated from the input models and if there’s any error like the one shown

91

6 FAQ

Figure 90: Could Not Initialize Prolog Error

in figure 91 then there might be a compatibility problem between your system
and DSLTranslator. You should try creating a simple application that uses
the DSLTrans API to run the transformation. Please refer to appendix A.

Figure 91: Compilation Error

CLass Not Found Exception If a ClassNotFoundException is thrown
and it is not a compilation error as described in the previous paragraph,
then you should check if the metamodel names in the transformation model
(MetaModelIdentifier properties) are correct. Please see figure 23 to recall
the metamodel package naming conventions adopted by DSLTrans.

92

A API SPECIFICATION

A API Specification

An API exists so that applications can run DSLTrans directly without Human
intervention. Multiple transformation models can be generated automatically
and executed using DSLTrans from the same application.

Since most of the transformation information is stored in the transforma-
tion model, the API is really simple, serving only to point the Transformer
to the right transformation model and launch its execution.

import java . i o . F i l e ;
import t rans fo rmerProce s so r . ∗ ;
import t rans fo rmerProce s so r . except i ons . ∗ ;

public class Main {

private stat ic f ina l St r ing PROJECT DIR = ”PATH/TO/PTOJECT/DIR” ;
private stat ic f ina l St r ing TRANS = ”PATH/TO/TRANSFORMATION/FILE” ;

public stat ic void main (St r ing [] a rgs) {

F i l e t rans fo rmat ion = new F i l e (TRANS) ;

// I n i t i a l i z e Transformer Processor
TransformerProcessor tP = new TransformerProcessor (PROJECT DIR) ;

// Load trans format ion model
tP . LoadModel (t rans fo rmat ion . getAbsolutePath ()) ;

try {
// Execute t rans format ion .
tP . Execute () ;

} catch (Inval idLayerRequirement e) {
System . e r r . p r i n t l n (”Error execut ing : ”

+ trans fo rmat ion . getAbsolutePath ()) ;
e . pr intStackTrace () ;

} catch (TransformationSourceExcept ion e) {
System . e r r . p r i n t l n (”Error execut ing : ”

+ trans fo rmat ion . getAbsolutePath ()) ;
e . pr intStackTrace () ;

} catch (TransformationLayerException e) {
System . e r r . p r i n t l n (”Error execut ing : ”

+ trans fo rmat ion . getAbsolutePath ()) ;
e . pr intStackTrace () ;

}
}

}

Listing 1: Sample class that uses the DSLTrans API.

93

REFERENCES REFERENCES

Listing 1 shows an example of a class that uses the DSLTrans API do
execute a transformation.

As can be seen, it is really easy to use DSLtrans API but there are some
conditions that must be met in the project that uses DSLTrans.

First you have to make sure that DSLTrans is installed by following the
instructions described in section 2. Then, the project that uses the DSLTrans
API must have in its build path the following plugin jars (most can be found
under eclipse plugins folder):

• DSLTransEditor

• jpl.jar (found in prolog’s installation folder)

• org.eclipse.emf.codegen (version 2.6+)

• org.eclipse.emf.codegen.ecore (version 2.7+)

• org.eclipse.emf.common (version 2.7+)

• org.eclipse.emf.ecore (version 2.7)

• org.eclipse.emf.ecore.xmi (version 2.7)

• Transformer

The last step is to add to the run configuration of the project the follow-
ing virtual machine argument:
-Djava.library.path=/opt/local/lib/swipl-6.0.2/lib/i386-darwin11.4.0/

where /opt/local/lib/swipl-6.0.2 is the path to the swi-prolog installa-
tion folder.

If any error occurs, please review the setup and/or check section 6.

References

[1] Epsilon transformation language. http://www.eclipse.org/gmt/

epsilon/doc/etl/.

[2] Daniel Balasubramanian, Anantha Narayanan, Chris vanBuskirk, and
Gabor Karsai. The graph rewriting and transformation language: Great.

[3] Jean Bézivin. On the unification power of models.

[4] Jesús Sánchez Cuadrado, Jesús Garćıa Molina, and Marcos Menarguez
Tortosa. Rubytl : A practical, extensible transformation language.

94

http://www.eclipse.org/gmt/epsilon/doc/etl/
http://www.eclipse.org/gmt/epsilon/doc/etl/

REFERENCES REFERENCES

[5] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer.
Fundamentals of Algebraic Graph Transformation. Springer, 2006.

[6] Roberto Felix, Bruno Barroca, Vasco Amaral, and Vasco Sousa.
Dsltranslator: providing tool support for language’s transformational
semantics.

[7] Object Management Group. Xml metadata interchange. http://www.

omg.org/spec/XMI/.

[8] I.Arrassen, A.Meziane, R.Sbai, and M.Erramdani. Qvt transformation
by modeling - from uml model to md model.

[9] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. Atl:
A model transformation tool. Science of Computer Programming, 72(1-
2):31 – 39, 2008. Special Issue on Second issue of experimental software
and toolkits (EST).

[10] Audris Kalnins, Janis Barzdins, and Edgars Celms. Model transforma-
tion language mola.

[11] Shane Sendall and Wojtek Kozaczynski. Model transformation: The
heart and soul of model-driven software development.

[12] Michael Sipser. Introduction to the Theory of Computation. Boston,
1997.

[13] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
Emf eclipse modeling framework.

[14] Eugene Syriani and Hans Vangheluwe. De-/re-constructing model trans-
formation languages. Graph Transformation and Visual Modeling Tech-
niques, 29, 2010.

[15] Victor Sánchez. Atc user guide. http://www.modelset.es/atc/

atcdownload.html.

[16] Edward D. Willink. Umlx : A graphical transformation language for
mda.

[17] Stephen Wolfram. A New Kind of Science. 2002.

95

http://www.omg.org/spec/XMI/
http://www.omg.org/spec/XMI/
http://www.modelset.es/atc/atcdownload.html
http://www.modelset.es/atc/atcdownload.html

	Introduction
	What is DSLTrans?
	A Metaphor

	DSLTrans and Other Transformation Languages
	QVT
	ATL
	ATC
	ETC
	MOLA
	RubyTL
	UMLX
	GReAT
	T-Core
	DSLTrans

	Assumptions
	User
	Environment

	About this Manual
	Objectives
	Structure

	Installation
	Windows7 & Vista
	Mac OS X Lion (10.7.0)

	Quick Start
	Metamodels
	Example Model
	Planning the Transformation
	Understanding DSLTrans Overall Semantics
	Creating a Blank Transformation
	DSLtrans Diagram Editor
	Defining the Transformation
	Transformation Partitioning

	Language Definition
	A Typical Transformation
	Language Constructs
	Objects
	Connections

	Advanced Topics
	Finite Deterministic Automata Execution
	Conclusions

	Turing Machine Step Transformation
	High Order Transformations
	Prototyping Transformations
	Identity Generation
	Fixed Identity Generation

	FAQ
	API Specification

