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Abstract. Efficient algorithms exist for fault detection and isolation of
physical systems based on functional redundancy. In a qualitative ap-
proach, this redundancy can be captured by a temporal causal graph
(TCG), a directed graph that may include temporal information. How-
ever, in a detailed continuous model, time constants may be present
that are beyond the bandwidth of the data acquisition system, which
leads to incorrect fault isolation because of a difference in observed and
modeled behavior. To solve this, the modeled time constants can be
taken to be infinitely small, which results in a model with mixed con-
tinuous/discrete, hybrid behavior that is difficult to analyze because the
causality of the directed graph may change. In this paper, to avoid the
combinatorial explosion when using a bank of TCGs in parallel, causal
paths are parametrized by the state of local switches. The result is a hy-
brid model that produces parametrized predictions that can be efficiently
matched against observed behavior.

1 Introduction

To reduce cost, improve performance, and to manage the complexity of large
engineered systems, functional redundancy can be employed in fault detection
and isolation (FDI). In this approach, a system model links measured variables
by their functional relations, facilitating the computation of redundant values for
selected system variables. In general, the system model can be of a continuous
or discrete nature. In case of a continuous model, often parameter and state
estimation techniques based on a state space model of the system are used for
FDI [1, 4]. In case of a discrete event approach, models that capture failure modes
and transition sequences are applied [5, 15, 16]. Both these methods have proven
themselves successful in their respective applications.

Previous work [8, 9] has focused on qualitative parameter estimation of con-
tinuous system models. These models are represented by a temporal causal graph
(TCG) that is automatically derived from a bond graph model of a physical sys-
tem [8, 11]. This work revealed the importance to design the model in harmony
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with the data acquisition system, i.e., behavior that is beyond the bandwidth of
the data acquisition system should not be included in the model as it leads to
incorrect fault isolation [2].

Removing large and small parameters from the system model causes the
following model characteristics that complicate the FDI task:

– Algebraic loops may emerge. Because of the passive behavior of physical
processes, these algebraic loops have negative gain, and, therefore, any qual-
itative ± deviation is reversed when propagated around the loop. This, in
turn, leads to many unknown values of system variables in a qualitative
sense.

– In case of abrupt faults that cause mode changes, higher index systems
may arise with algebraic constraints between time derivative behavior. These
systems may exhibit impulsive behavior.

– The direction of the computational causality in the model may change. When
abrupt faults cause component parameter changes to values that are taken
to be infinitely large or small, they are effectively removed from the model,
which changes the model configuration, and, in effect, the model becomes of
a switched continuous, hybrid, nature.

Other work [3, 12], addresses the first two issues whereas this paper focuses on
the hybrid diagnosis problem.

In order to deal with the change of causality, the TCG can be derived for each
possible system configuration or mode. However, in case of many locally acting
switches, the combinatorial explosion quickly leads to an intractable problem.
These problems can be mitigated to some extent by dynamically generating the
TCG of each possible system mode in response to a failure. This may still result
in a problem with large computational complexity which can be further reduced
by measuring system variables that indicate specifically which local switches
may have occurred [13] and predictions for each of the variables that determine
different causal assignments are required to be made and analyzed. Once a set
of possible TCGs is available, Gaussian decision techniques have been applied
to compute the most likely mode of continuous behavior [7].

Recent attention to hybrid diagnosis [7, 14] concentrates on efficiently pro-
cessing a set of TCGs. This paper describes how a hybrid model can be made
amenable to the diagnosis algorithms that were developed in previous work [8, 9]
by systematically generating one parametrized TCG. In this graph, the directed
links are enabled by conditionals that correspond to the mode in which these
links are present. The result is a set of predictions that are parametrized by
the state of the local switches and the diagnosis problem then becomes one of
constraint satisfaction [17]. The solution to this constraint satisfaction problem
contains the possible parameter changes (i.e., the faults) and the effect on the
system mode that this is required to have.



2 Preliminaries

This section reviews the qualitative FDI approach developed in previous work [8,
9]. Instead of a temporal causal graph, though, the model representation format
and processing will be in qualitative matrix algebra, which is easier to represent
and to extend with the required notions.

Consider the one-tank hydraulic system in Fig. 1. The functional relation
for flow, fR, through the outflow pipe is given by fR = pR

R
, where pR is the

pressure drop across the pipe and R is the pipe resistance to flow. The pressure
pR depends on the pressure at the bottom of the tank, pC , according to pR = pC

(i.e., the ambient pressure is assumed to be 0). The rate of change in the pressure,
ṗC , at the bottom of the tank is given by ṗC = 1

C
fC , where fC = fin − fR and

fin is the flow into the tank and C is the tank capacity.

C

p

fin

R

fR

Fig. 1. A tank with in- and outflow.

To derive qualitative predictions, the system is written as a directed graph
that captures the causal (directed) relations between system variables. For the
one-tank system, the preferred (integral) causality model description is

[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] [

pC

fC

fR

pR

]

=





0 λ−1C−1 0 0
0 0 −1 0
0 0 0 R−1

1 0 0 0





[

pC

fC

fR

pR

]

+

[

0
fin

0
0

]

(1)

where λ represents the time differentiation operator and λ−1 indicates integra-
tion over time. The corresponding temporal causal graph (TCG) is given in
Fig. 2.

The TCG can be represented by a weighted adjacency matrix where the
columns are cause and rows are the effect variables and the entries capture the
parameters on the graph edges. This is called the temporal causal matrix (TCM),
that is





1 λ−1C−1 0 0
0 1 −1 0

0 0 1 R−1

1 0 0 1





[

pC

fC

fR

pR

]

(2)

for the TCG in Fig. 2.
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Fig. 2. TCG of the one-tank system.

Our diagnosis engine Transcend [6] relies on qualitative information to
achieve diagnosis. In this framework, only the three values −, 0, + are used to
indicate values that are too low, normal, and too high, with respect to some
nominal value, respectively. For example, a value of a model variable that is
measured to be above its nominal value is marked +. In case the outflow of the
tank system in Fig. 1 is too high, this is represented by f+

R .
Note that in a qualitative representation, the parameters R and C correspond

to direct relations between variables, and, therefore, they can be replaced by
value 1. This results in a qualitative system where 1 and −1 represent direct and
reverse relations, respectively.

To find parameter deviations, in previous work a backpropagation algorithm
is used. In qualitative matrix algebra this is equivalent to repeated multiplication
of the initial deviation with the transpose TCM. Here, for f+

R this results in the
sequence of vectors

[

0
0
1
0

]

,

[

0
0
1

R−1

]

,

[

1
0
1
1

]

,

[

1
C−1

1
1

]

,

[

1
1
?
1

]

,

[

1
1
?
?

]

,

[

?
1
?
?

]

,

[

?
?
?
?

]

. (3)

The parameters R−1 and C−1 are fault hypotheses and replaced by 1 after
they are generated because R and C are positive parameters, and, therefore,
in a qualitative framework they represent direct relations. Also, qualitatively
1 − 1 is unknown, “?”. Once all variables are unknown, no further parameter
deviations can be hypothesized (the remaining candidates that are not generated
in Eq. (3) are −R−1 and −C−1). The resulting set of possible faults is, therefore,
R−1 or C−1 too high, i.e., {R−, C−} (the remaining candidates are {R+, C+}).
Physically, these fault candidates correspond to, e.g., leakage in the outflow pipe
(R−) or an object that has fallen into the tank (C−).

Next, predictions of future system behavior are generated for each of the pos-
sible parameter deviations, R− and C−. From the TCM, their initial deviations
are found to be

R− →









0
0
1
0









, C− →









1
0
0
0









. (4)

To achieve a suffiently high order prediction for the measured variable, fR, the
initial deviation is repeatedly multiplied with the TCM. Here, a second order



prediction requires eight such multiplications and for R− this yields

[

pC

fC

fR

pR

]

=

[

1 λ−1 0 0
0 1 −1 0
0 0 1 1
1 0 0 1

]8 [

0
0
1
0

]

=





−λ−1 + λ−2

−1 + λ−1

1− λ−1 + λ−2

−λ−1 + λ−2



 . (5)

The TCM raised to the power 8 can be computed off-line to be

[

1 λ−1 0 0
0 1 −1 0
0 0 1 1
1 0 0 1

]8

=





1− λ−1 + λ−2 λ−1
− λ−2

−λ−1 + λ−2
−λ−1 + λ−2

−1 + λ−1 1− λ−1 + λ−2
−1 + λ−1

−1 + λ−1

1− λ−1 λ−1
− λ−2 1 − λ−1 + λ−2 1− λ−1

1− λ−1 λ−1
− λ−2

−λ−1 + λ−2 1− λ−1 + λ−2



 (6)

and can be used for efficiently generating predictions for other fault candidates.

The polynomials in λ are equal to the qualitative signatures generated in
previous work [8, 9]. For this example, the signature for the measured variable is
f+−+

R , where the superscripts indicate the qualitative values of the time deriva-
tive behavior with increasing order from left to right, i.e., there is a positive
discontinuous change with negative slope that increases. For the pressure at
the bottom of the tank, the prediction is p0−+

C , i.e., no discontinuous change in
pressure occurs and the pressure is decreasing.

This method works well if the system of equations that describes continuous
behavior is fixed. However, in case discrete switches cause changes in the continu-
ous model, signatures for each mode have to be generated. This quickly becomes
intractable, and, therefore, for these system models a parametrized formulation
is advantageous.

3 Hybrid Models for FDI

For the qualitative FDI approach to be effective, it is imperative that the modeled
time constants are observable, i.e., within the bandwidth of the data acquisition
system. If a parameter that models an abrupt fault changes to a very large or
small value, it may correspond to a time constant that cannot be observed, and,
therefore, this behavior needs to be abstracted from the model. This causes the
model to be of a switched continuous, hybrid nature.

In general, modeled discontinuities result in causal changes. Therefore, the
TCM may take several different forms and so do the corresponding predictions
of future behavior, depending on whether a mode change occurs. Consider for
example a valve that controls the outflow in Fig. 1 in a binary manner, i.e., either
there is an outflow determined by the Bernoulli resistance (α1 = 1) or there is
no outflow (α1 = 0). When the switch is modeled as a discontinuous change,
the corresponding model includes a change in causality when the control valve
switches its state. If it is open, the pressure pC determines the outflow fR and
if it is closed, fR = 0, which determines the pressure drop across the pipe to
be pR = fRR = 0. To handle the change in TCM, the causal relations can be
parametrized to make them dependent on the mode of operation.



To this end, first the system is described in a noncausal form by using implicit
equations. An implicit model of the one tank consists of the following equations

0 = CṗC − fC (7)

0 = fC − fin + fR (8)

0 = RfR − pR (9)

0 = α1(pR − pC) + (1− α1)fR (10)

From Eq. (10), in case the control valve is open, α1 = 1, and pR = pC , when the
control valve is closed, α1 = 0, and fR = 0.

The TCM for this system of equations contains the relations between each
of the variables. For example, Eq. (7) embodies a temporal relation between pC

and fC and Eq. (10) a direct relation between pC and pR that is only active
when α1 6= 0. The TCM then becomes





1 λ−1C−1 0 α1

λC 1 −1 0

0 −1 1 R−1

α1 0 R 1





[

pC

fC

fR

pR

]

(11)

and causal links from pC to pR and from pR to pC are only active when the system
is in mode α1. A special case arises for α1 = 0 which implies fR = 0. This effect is
not present in the TCM because it is not a relation between variables. However,
it contains essential diagnostic information about system behavior that can be
included by an input vector

[

0
0

−(1− α1)
0

]

(12)

where the − sign is because the flow, fR, is positive during normal operation,
and, therefore, its deviation is − when the valve closes (possibly inadvertently).

Diagnosis now proceeds to predict future behavior, yf , for each hypothesized
fault, f , and both possible configurations (α1 = 0 and α1 = 1). To this end, the
TCM, A, raised to a sufficiently high power, n, operates on the sum of the input
vector, u, and each of the initial deviations, df , generated from the hypothesized
faults,

yf = An(df + u) (13)

These predictions are then compared against actual observations to prune the
fault hypotheses and find the correct fault.

Note that, to facilitate a qualitative algebra, the (1 − α) construct with
α ∈ {0, 1} cannot be used to (de)activate relations because in a qualitative sense
(1−α) is unknown instead of 0. Therefore, ¬α is used to indicate a quantitative
evaluation of (1− α) so that ¬α produces a value {0, 1}.

For the initial deviation that corresponds to R− in Eq. (4) and the input
vector in Eq. (12), after multiplying with the TCM five times, the prediction
becomes





α1 − λ−1

α1λ − 1 + α1λ−1

−α1λ + 1− α1λ−1

−α1λ + 1− α1λ−1



 (1− ¬α1) (14)



Compared with the prediction derived from the explicit system in Section 2 this
shows impulsive behavior because of the positive powers of λ and other spurious
behavior because all possible relations are present in the TCM. In other words,
for a given causal assignment all other relations are present as well even though
these may not be consistent with the given causal assignment.

To demonstrate that such an extensive set of relations quickly leads to con-
tradiction, consider an implicit relation 0 = x1 + x2 + x3 with TCM

[

1 −1 −1
−1 1 −1
−1 −1 1

] [

x1

x2

x3

]

(15)

Because in a qualitative sense 1−1 is unknown, this leads to unknown predictions
as soon as the TCM is raised to a power > 1 (e.g., x+

1 → x−2 → x+
3 → x−1 ,

and x1 is unknown). This problem can be circumvented by committing to one
causal assignment only. In matrix form, this is achieved by using binary selection
variables, ki ∈ {0, 1},

[

1 −k1k2 −k1k2

−k1¬k2 1 −k1¬k2

−k2¬k1 −k2¬k1 1

]

(16)

and the matrix is invariant under multiplication.
In summary, to design an approach for diagnosis based on hybrid models, the

TCM is derived from an implicit model formulation that includes mode selection
parameters, αi, to switch between equations. The possible causal assignments of
ternary and higher relations are then made mutually exclusive by introducing
selection parameters, ki. If possible, the parameters αi can be related to ki and
the TCM contains only mode selection parameters, αi, and, therefore, produces
fault hypotheses and predictions that are parametrized by αi only.

4 A Case Study

To make the implicit approach suitable for diagnosis, it must deal with additional
causal paths and the possible conflicts. Consider the two tank system in Fig. 3
with externally controlled outflow valves on the left and right and a pressure
controlled valve between the left and right tank. An implicit quantitative model
of this system could look like

0 = −fin + fC1
+ fRb1

+ fR12

0 = α1(−pC1
+ pR12

+ pC2
) + (1− α1)fR12

0 = α2(pC1
− pRb1

) + (1− α2)fRb1

0 = α3(pC2
− pRb2

) + (1− α3)fRb2

0 = fC2
+ fRb2

− fR12

0 = C1ṗC1
− fC1

0 = C2ṗC2
− fC2

0 = pRb1
−Rb1fRb1

0 = pRb2
−Rb2fRb2

0 = pR12
−R12fR12

(17)



where αi are mode selection parameters and α1, α2, and α3 correspond to the
state of the middle, left, and right valves in Fig. 3, respectively, where αi = 0
implies the valve is closed and αi = 1 that the valve is open.

R12

p

C1 C2

Rb2Rb1 pC1

fin

fR12 fRb2fRb1

pC2

Fig. 3. Two tanks with outflow valves and a pressure controlled connecting valve.

This model contains a number of ternary relations (input variables are not
considered as fault candidates) and when a deviation is propagated, multiple
possible paths are taken. To prevent this, the paths can be parametrized as
demonstrated in Section 3 (the binary relations are mutually consistent),

























1 −k1k2 −k1k2 0 0 λC1 0 0 0 0

−k1¬k2 1 −k1¬k2 0 0 0 0 0 R
−1

b1
0

−k2¬k1 −k2¬k1 1 k3k4 k3k4 0 R
−1

12
0 0 0

0 0 k3¬k4 1 −k3¬k4 0 0 λC2 0 0

0 0 k4¬k3 −k4¬k3 1 0 0 0 0 R
−1

b2

λ−1C
−1

1
0 0 0 0 1 α1k5k6 α1k5k6 α2 0

0 0 R12 0 0 α1k6¬k5 1 −α1k6¬k5 0 0

0 0 0 λ−1C
−1

2
0 α1k5¬k6 −α1k5¬k6 1 0 α3

0 Rb1 0 0 0 α2 0 0 1 0

0 0 0 0 Rb2 0 0 α3 0 1









































fC1
fRb1
fR12
fC2

fRb2
pC1

pR12
pC2
pRb1
pRb2

















(18)
For this model, the causality of some of the binary relations is fixed for each
possible mode and incorporating this a priori knowledge leads to a more con-
strained model. For example, the relation 0 = α2(pC1

−pRb1
) leads to two entries

in the TCM, one for pC1

α2→ pRb1
and one for pRb1

α2→ pC1
. Analysis reveals that

the latter causal relation is never used for any configuration of valve states, and,
therefore, the corresponding entry in the TCM can be removed. The matrix en-
tries in Eq. (18) that vanish because of pre-processing are marked by a bounding
box.

The causality of the ternary relations can be analyzed exhaustively because
it only involves a limited number of local constraints. Causal analysis of the
system of equations shows that although the causality of the ternary equations
may change, the changed causality corresponds to the vanishing (deactivating)
of an edge. For example, the causality of 0 = α1(−pC1

+pR12
+pC2

) changes when
α1 changes its value. But, for the state ¬α1, the equation is not active anymore.
Therefore, this need not be explicitly modeled, and the relation between the αi



and ki degrades to the fixed values k1 = 1, k2 = 1, k3 = 1, k4 = 0, k5 = 0, and
k6 = 1.

pC1 pC2fC1
C1 λ−1−1

α2

α1

α1

−α1

α3
−1 −1

C2 λ−1−1

Rb2
Rb1

R12

-1

-1

1

1

fC2

fRb1 fR12

pR12

fRb2 pRb2pRb1

Fig. 4. The temporal causal graph of the two-tank system.

In Fig. 4 the temporal graph of the TCM is shown to clarify the relations
between system variables. The dashed edges are those that are present in the
original implicit formulation because of ternary relations but that are removed
based on a mode dependent causal analysis. The undirected edges are implicit
binary relations and can be decomposed into two edges with opposite direction
(corresponding to the two entries in the TCM) to be compatible with the tem-
poral causal graph format used in previous work [8, 9]. Note that in many cases,
graph propagation is more efficient than matrix multiplication, especially in case
of sparse matrices.

After replacing the parameters with their qualitative equivalent, the resulting
TCM is given by

























1 −1 −1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0

0 0 1 0 0 0 1 0 0 0
0 0 1 1 −1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 1

λ−1 0 0 0 0 1 0 0 0 0

0 0 1 0 0 α1 1 −α1 0 0

0 0 0 λ−1 0 0 0 1 0 0

0 1 0 0 0 α2 0 0 1 0

0 0 0 0 1 0 0 α3 0 1











































fC1

fRb1
fR12

fC2

fRb2
pC1

pR12

pC2

pRb1
pRb2



















(19)

where the boxed entries are those that correspond to bidirectional, non-causal,
edges (in this particular case, these could still be made mode-dependent, where
the entries above the diagonal become αi and below become ¬αi).

The predictions of the TCM are parametrized by the active mode. This leads
to more efficient diagnosis compared to the use of a bank of TCMs, which, in this
case of three switches, would consist of eight TCMs that need to be processed
separately. For example, in case of a measurement f+

Rb2
, R−b2 is one of the fault



hypotheses that results in the prediction





















−α1λ−1 + α1λ−2

−α1α2λ−2

α1λ−1
− α1λ−2

−1 + α1λ−1 + α3λ−1
− α1λ−2

1− α3λ−1 + α3λ−2

−α1λ−2

α1λ−1
− α1λ−2

−λ−1 + α3λ−2

−α1α2λ−2

1− α3λ−1 + α3λ−2





















. (20)

In addition, the input vectors for ¬α1, ¬α2 and ¬α3 are determined to be

¬α1 →



















0
0
−1
0
0
0
0
0
0
0



















,¬α2 →



















0
−1
0
0
0
0
0
0
0
0



















,¬α3 →



















0
0
0
0
−1
0
0
0
0
0



















, (21)

and their effect is propagated as well. For ¬α1, this leads to the prediction for pC1

to be ¬α1λ
−1−¬α1α2λ

−2−¬α1α1λ
−2, or ¬α1λ

−1−¬α1α2λ
−2. The combined

prediction for pC1
becomes

¬α1λ
−1 − ¬α1α2λ

−2 − α1λ
−2 (22)

The parametrized predictions can be matched against further measurements
(e.g., p0+

C1
, where the second order derivative is not measured). In case α1, i.e.,

the pressure controlled connecting valve remains open, the prediction for pC1 is
−λ−2, a falling level of liquid in C1 with second order behavior. This is incon-
sistent with the p0+

C1
observation and the fault R−b2 [α1] is rejected as a possible

explanation of the anomalous system behavior. If the new pressure in C2 causes
the connecting valve to close, the predicted behavior of pC1

changes. This can be
derived by evaluating the prediction with ¬α1, which yields λ−1−α2λ

−2, i.e., the
liquid level in C1 rises. In case the left outflow valve remains open, α2, the rate
of increase decreases but if this outflow valve closes, the level continues to rise. It
is easily verified that the predictions of both fault hypotheses (R−b2[¬α1α2] and
R−b2[¬α1¬α2]) are consistent with the p0+

C1
measurement, and, therefore, possible

causes of the observed anomalous behavior. Further measurements are needed
to prune this set of candidates, as described in detail elsewhere [8, 9].

5 Conclusions

Algorithms and hybrid models for diagnosis of physical systems are required to
deal with configuration changes between modes of operation but the combinato-
rial explosion prohibits a global enumeration approach. This papers shows that
mode changes can be modeled by locally activating and deactivating relations



between system variables. When relations are (de)activated, the causal effect
between system variables may change. This is handled by including all possi-
ble relations between system variables. Because of the presence of relations not
describing system behavior in a given mode, the model may foster conflicting
relations, which is solved by introducing parameters to enforce mutual exclusion
between different causal assignments on individual relations. Performing local
analyses establishes the relation between these parameters and mode selection
parameters. The resulting method generates conditional predictions that depend
on the mode of the system which allows for efficient execution of the diagnosis
algorithms.

The presented method allows for a declarative prediction of future system
behavior. It has not taken yet taken into account imperative mode switching
functionality (e.g., a switching constraint such as p1 > p2 causes α2 = 1). In-
cluding this may constrain possible mode changes, and, therefore, further prune
the set of hypothesized candidates.

Note that the analysis of interacting local switches is automated in HyBr-

Sim [10] based on analysis of causal areas in a bond graph. This forms the basis
for future research into automatically performing the pre-processing of the re-
lations between mode selection parameters and those that ensure mutual exclu-
sion of different causal assignments. This should facilitate scaling the approach,
because the complexity increases exponentially only with interacting switches
within one causal area. So, e.g., for k causal areas with m switches, instead of
2km modes, k2m modes have to be analyzed, and typically if a hybrid bond graph
modeling approach is useful, the number of switches that interact directly, i.e.,
without dynamic behavior, is low.
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