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Abstract

Models of physical systems have to be based on physical principles such as conservation
of energy and continuity of power. These principles are inherently enforced by the bond graph

modeling formalism. Often, however, physical components may be best modeled as piecewise
continuous with discrete mode changes, which leads to a violation of continuity principles. To
support such hybrid models, bond graphs can be extended by facilitating a dynamic model
structure, resulting in hybrid bond graphs. Behavior generation then requires computing
continuous-time evolution, detecting the occurrence of events, executing the discrete state
changes, and re-initializing the continuous-time state. This paper presents a comprehensive
representation of these different aspects of behavior using hybrid process algebra. The behav-
ior of a hybrid bond graph can then be studied using a uniform representation while a direct
correspondence with the elements of the bond graph is maintained. Additionally, nondeter-
minism can be included in hybrid bond graph semantics which may alleviate the modeling
task without being detrimental to the required analyses.
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1 Introduction

Computational modeling of physics is an important element in the design of engineered systems.
For example, computational models allow a broad search in the design space for a physical system
under design. As another example, because of their predictive power, models are an essential part
in designing efficient control strategies.

Given that a good model is one that helps solve the particular task at hand, in this broad
spectrum of applications, a given physical system may be represented by many different models.
Each of these models is most efficient for solving the issue to be addressed. To achieve this, only
phenomena observed in the physical system that are considered of importance are embodied by
the model. All other phenomena are best abstracted away.
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For some components, this may result in a model that captures the dynamics by differential
equations that are active in a given mode. Switching logic is used to control the mode switches
and this combination leads to models of a hybrid nature. These hybrid models combine behavior
on a continuous time scale with discrete state transition behavior at given points in time. For
example, an inelastic collision may be modeled by the independent movement of two masses before
the collision and the movement of the combined masses after the collision.

The computational representation of a hybrid model can be called a hybrid system, and behav-
ior generation, analysis, verification, and synthesis based on hybrid systems is an active area of
research (e.g., [1, 2]). A popular hybrid system formalism for verification purposes is the so-called
hybrid automaton [3]. This is a nondeterministic finite state machine with a system of ordinary
differential equations (ODEs) associated with each state. Each state then represents the global
mode of behavior of the system. The ODE that is associated with a mode, a state in the hybrid
automaton, is evaluated during the time at which the state is active.

For modeling physical systems, the explicit global representation of the different modes is,
however, cumbersome. Often, changes in the mode of behavior of a physical component are best
specified at the local, component, level. As such, the mode changes correspond to changes in the
structure of a model.

Bond graphs [4] are a formalism designed for modeling physical systems by capturing the ex-
change of energy between physical phenomena, embodied by bond graph elements. Traditionally,
the structure that captures the energy exchange, however, is static. To extend bond graphs for hy-
brid modeling, the structure of energy exchange can be made dynamic. This has been documented
in ad hoc cases (e.g., the time junction [5]) and later formalized in a general framework [6].

Though changing the energy exchange structure allows modeling of mode changes in a local
sense, as desired, the principles that are inherent in the bond graph modeling formalism may be
violated. For example, abruptly inhibiting the energy exchange between elements of a physical
model may violate the continuity of power principle.

Furthermore, changing the structure of a model may lead to an abrupt exchange of energy
between elements of the model that at a more detailed level is governed by continuous dynamics.
This redistribution of energy can be computed from a global representation of the model as a
system of differential and algebraic equations (DAEs) [7, 8, 9]. The drawback of such global and
dissociate representations is that the required transformations make it difficult to reason about
and understand how the modeled system behaves. However, to obtain deep insight into the system
behavior, a representation directly linked to the bond graph topology is suited better.

Previous work [10, 11] developed a methodology to compute the energy redistribution based on
local equations for each of the model element types. In [10] substitute values for storage elements
and their stored energy are derived. In [11], an iteration scheme would attempt to find an energy
distribution that was consistent with the new model structure while ensuring conservation laws
(e.g., conservation of charge and conservation of momentum) would be satisfied. Part of the work
presented here is a formalization of these approaches.

Related, but different, is the need to capture the entire hybrid behavior in a comprehensive
formulation. The execution of a hybrid system, because of the combination of computational
models, consists of a number of distinct phases: (i) continuous-time simulation, (ii) event detection,
(iii) mode transition, and (iv) reinitialization of the continuous-time behavior [12]. To study
the interaction between these, a formalism that allows capturing the respective parts in a single
language is helpful, if not desired.

This work provides such a unifying representation using hybrid process algebra, which allows a
representation of behavior at a local level. The syntax of the employed language contains elements
to capture the behavior in each of the different phases of hybrid system simulation. Furthermore,
the language supports nondeterminism while adhering to physical characteristics such as not to
create energy spontaneously. This allows abstracting detailed continuous behavior in a gross
sense, without the need for detailed analysis of the specific parameter abstraction or time-scale
abstraction, as discussed in previous work [13].

First, in Section 2, principles of physics modeling are reviewed and bond graphs are introduced
as a formalism for modeling the continuous-time dynamics of physical systems. In Section 3, bond
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graphs are then extended with facilities to model discontinuities, resulting in hybrid bond graphs.
Next, Section 4 gives an overview of the hybrid process algebra HyPA. In Section 5 it is shown
how hybrid bond graphs can be represented in HyPA. In Section 6 a number of examples is given
to illustrate the approach. Finally, Section 7 concludes this work.

2 Modeling of Physical Systems

When modeling physical systems at a macroscopic level (i.e. quantum effects do not play a signif-
icant role), two essential assumptions can be observed: conservation of energy and the possibility
to use a lumped approach. These principles are inherently enforced by bond graphs. Mathematical
languages like Modelica and Simulink are much broader in their conception and do not enforce
conservation laws in models based on their syntax. Therefore, in order to create an understanding
of the modeling principles involved, we study the semantics of bondgraphs and hybrid bondgraphs
in this paper. In future research, our results can be lifted to broader mathematical frameworks,
when practical ease of use starts playing a role.

2.1 Principles of Physics Modeling

Modeling the dynamics of physical systems often takes a lumped parameter approach. This is based
on the notion of reticulation, which allows ideal physical behavior to be captured by a network of
components, each of which represents an ideal behavior described by one or more parameters [14].
In contrast to fields, these components have well defined points of interaction, called ports.

The behavior of each component is then defined by its constitutive relations between external
variables, parameters, and internal variables.

For example, in translational mechanics, three ideal phenomena can be identified: storage of
momentum, storage of displacement, and dissipation. In translational mechanics, the components
that embody these phenomena are typically referred to as masses, springs and dampers, respec-
tively. A mass then gives rise to a constitutive relation between momentum p and velocity v.
A spring gives a constitutive relation between displacement x and force F . A damper gives a
constitutive relation between force F and velocity v. Often, these relations are linear that depend
on the parameters m, k and b respectively

Mass : p = m · v

Spring : F = k · x

Damper : F = b · v

The variables that are employed by the constitutive relations in the translational mechanics
domain then include momentum p, force F , displacement x and velocity v. All mechanical behav-
ior, can be expressed in terms of relations between these variables, and the changes of their values
over time. A change in momentum corresponds to a force, leading to the constitutive differential
equation F = ṗ. A change in displacement corresponds to a velocity v = ẋ.

In addition to the constitutive relations, the connection semantics have to be defined. Since
the behavior of each mechanical component can be captured by having pairs of a force and velocity
variable, the connection relations have to be defined over such a pair. In case of mechanical com-
ponents connected in series, the forces acting on each component are equal whereas the velocities
of the individual components have to be balanced. This leads to the relationships in Eqn. 1:8>>: v1 ± . . . ± vn = 0

F1 = . . . = Fn

9>>; (1)

Likewise, in case of mechanical components connected in parallel, the forces on each of the
components have to be balanced, while the velocities are equal. This leads to the relationships in
Eqn. 2: 8>>: F1 ± . . . ± Fn = 0

v1 = . . . = vn

9>>; (2)
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Therefore, two basic connection semantics can be employed; a parallel and a series connection.
These connection relations are the constitutive relations of those two types of connection compo-
nents.

To illustrate, consider the mass-spring-damper system in Fig. 1 with a force F acting on the
mass. Note that the separate ideal physical phenomena that have been identified such as the
spring and damper effect may correspond to one physical artifact. The constitutive equations
are presented on the right-hand side. All forces and directions are defined to be positive in the
upward direction. This has to be taken into account when writing down the balance relations.
The spring, k, and damper, b, are connected in parallel and so their respective forces, Fk and Fb,
have to balance the difference between the force exerted by the mass, m, and the external force,
F . This leads to Eqn. cont1: 0 = (Fm − F ) + Fk + Fb. The other equation, Eqn. cont2, states
that the velocities of mass, spring and damper should be equal: vm = vk = vb.

The constitutive equations of the mass are given by Eqn. cont3, for the momentum of this
mass, pm, and Eqn. cont4, for the time-derivative, ṗm. There are two constitutive equations for
the spring as well. The first is Eqn. cont5, which computes the spring force, Fk, with xk being
the spring displacement and the displacement in rest chosen to be 0. The second is Eqn. cont6,
which gives the time-derivative, ẋk, of the displacement. Finally, the constitutive equation of the
damper, Eqn. cont7, is a linear viscous friction relation on the damper force, Fb.

F xm, vm

m
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Ground















































0 = (Fm − F ) + Fk + Fb (cont1)
vm = vk = vb (cont2)
pm = m · vm (cont3)
ṗm = Fm (cont4)
Fk = k · xk (cont5)
ẋk = vk (cont6)
Fb = b · vb (cont7)















































Figure 1: Continuous constitutive equations for a mass-spring-damper system

2.2 Bond Graphs

The dynamics of physical systems can be modeled in a number of physical domains such as the
mechanical domain, the hydraulic domain, and the electrical domain. Two types of variables can
be identified for each domain: (i) an intensive variable and (ii) an extensive variable [15].

Intensive and extensive variables refer to the two types of variables in Gibbs’ free energy law:
dE = vdq + pdq + µdn + ... This states that the change of energy in a system is the change of
the extensive variable in a physical domain against the intensive variable in that domain. With
effort e the intensive variable and stored physical quantity q (also often referred to as generalized
displacement) the extensive variable, this can be written as dE = Σieidqi In terms of power as
the derivative of energy with respect to time, this then becomes P = Σieifi and the flow variable
f is sometimes referred to as extensive variable as well. Strictly speaking this depends on the
domain that is referenced as the intensive variable in one domain may be the time-derivative of
the extensive variable in another domain. For example, in the electrical domain charge is the
extensive variable according to Gibbs’ free energy law. The derivative with respect to time of
charge is current, which can be referred to as the time derivative of the extensive variable in
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the electrical domain, but which is the intensive variable in the magnetic domain with flux the
extensive variable. Details on this duality can be found in [16, 17].

In the translational mechanical domain, the intensity corresponds to the force, F , and the
extensity corresponds to the displacement, x. A mathematical function that is meaningful across
many physical domains, and so provides a unifying notion, is energy. Energy can be defined as the
stored extensity for given intensity. As such, it is the surface underneath the intensity per extensity
function. Any change in energy, dE, corresponds to an area, for example in the mechanical domain
dE = Fdx with F the intensity and x the extensity. To account for the temporal dependency of
x, yields dE = Fvdt with v = ẋ.

These notions are intrinsic to bond graphs [4], a formalism that identifies an effort and flow
variable type in each domain, where the effort corresponds to the intensive variable and the
flow variable to the time derivative of the extensive variable. The product of effort and flow then
corresponds to the change of free energy over time. This provides a unifying approach to modeling
the dynamics of physical systems because of the use of generic constitutive variables. For example,
the bond graph effort variable (denoted e) corresponds to force in the mechanical domain while
the bond graph flow variable (denoted f) corresponds to velocity.

The effort and flow variables are time-derivatives of variables called generalized momentum and
generalized displacement, respectively. So, for the generalized momentum, denoted p, the constitu-
tive relation ṗ = e holds and for the generalized displacement, denoted q, the relation q̇ = f holds.
In the translational mechanical domain, this implies that generalized momentum corresponds to
momentum and generalized displacement to displacement. In the electrical domain, generalized
momentum corresponds to flux and and generalized displacement corresponds to charge. Table 1
summarizes the analogies between different domains, and their bond graph generalizations. The
change in energy is determined by the effort and flow variables through the so-called power relation
Ė = e · f .

Table 1: Bond graph variable analogies

effort e flow f generalized generalized
momentum p displacement q

translational force F velocity v momentum p displacement x

mechanics [N] = [kg m
s2 ] [ms ] [N s] [m]

rotational torque τ ang. vel. ω ang. mom. b angle Θ
mechanics [N m] [ rads ] [N m s] [rad]

electronics voltage u current i flux linkage λ charge q

[V] = [N m
C ] [A] = [Cs ] [V s] [C]

hydraulics pressure P volume-flow Q pressure pp volume V

[ N
m2 ] [m

3

s ] [N s
m2 ] [m3]

Formally, a bond graph is a directed graph, with nodes representing basic physical phenomena
of a system (called elements), and edges (called bonds) that represent the way in which the
phenomena exchange energy and the direction in which energy flows. A bond graph fragment,
potentially with unconnected bonds, or a complete bond graph model may be referred to as a
component.

The semantics of a bond graph is formed by assigning differential equations and algebraic
equations to each of the nodes and edges of the graph. These differential equations and algebraic
equations describe the behavior of the four variables p, q, e and f , for each of the physical
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components in the system. The bonds identify the variables of the nodes they connect.
The elements of a bond graph can be classified in energic elements, those that affect the stored

energy in the model, and junction elements, those that distribute energy without energy storage,
supply, or dissipation.

Energic elements The elements of a bond graph are described by giving a relation between p,
q, e and f . The following list of energic elements are classified, based on the properties of their
constitutive relation. Both the class of elements as well as the constitutive relations are identified
by the same symbol, though in small capitals for the relation. Note that the functions may depend
on other variables of the system than the ones that are explicitly mentioned, as long as the given
constraints are met.

• A resistance (bond graph symbol r), is an element with a constitutive relation e = r(f)
such that the function r satisfies x · r(x) ≥ 0 for all x. Consequently, Ė = e · f ≥ 0, which
models that a resistance dissipates energy. This flow of energy into the thermal domain is
often not explicitly shown.

• An inductance (bond graph symbol i), is an element with a constitutive relation f = i(p).
This models an element that stores energy in the form of generalized momentum. For

intrinsic stability of the element, it is usually assumed that the function i satisfies ∂i(p)
∂p

≥ 0

(see [18]). The intuition behind this is that an effort e leads to an acceleration ḟ = ∂
∂t

i(p) =
∂i(p)
∂p

ṗ = ∂i(p)
∂p

e in the same direction.

• A capacitance (bond graph symbol c), is an element with a constitutive relation e = c(q).
This models an element that stores energy in the form of generalized displacement. For

intrinsic stability, it is usually assumed that the function c satisfies ∂c(q)
∂q

≥ 0.

• A flow source (bond graph symbol sf), is an element with a constitutive relation f = sf . A
flow-source enforces a certain flow, and has an arbitrary effort at its disposition to achieve
this.

• An effort source (bond graph symbol se), is an element with a constitutive relation e = se.
An effort source enforces a certain effort and an arbitrary flow at its disposition to achieve
this.

In this list, the effort and flow source are considered active elements because they can supply
energy. The resistor, capacitor, and inductor are passive elements because they cannot supply
energy. Table 2 summarizes the analogies between the passive elements, their represention in
different physical domains, and standardized notations that are used in the different fields to
denote variables and parameters that characterize the elements.

As mentioned before, a bond graph is a directed graph. The direction of a bond is depicted by
a half arrow. A bond always points in the so-called positive direction of power. In other words, if
the flow and effort are both positive, the arrow points towards the element if it stores or dissipates
energy (as is the case with inertias, capacitances and resistances), and away from the element if
it supplies energy to the system (as is the case with sources of effort and flow). This is depicted
in Fig. 2.

i c r se sf

Figure 2: Power directions for standard bond graph elements
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Table 2: Bond graph element analogies

inductance i capacitance c resistance r

translational mass m spring 1
k

damper b

mechanics [kg] [mN ] [N s
m ]

rotational inertia J spring 1
k

damper c

mechanics [kg m2] [ rad
N m ] [N m s]

electronics inductor L capacitor C resistor R

[H] = [V s
A ] [F ] = [A s

V ] [Ω] = [VA ]

hydraulics fluid-inertia I reservoir C resistor R

[ kg
m4 ] [m

5

N ] [N s
m5 ]

Junctions Section 2.1 discussed that connection in mechanical systems is based on a balance
between forces acting on components with equal velocities, or a balance of velocities of compo-
nents on which equal forces act. In electrical systems, these connections (applied to currents and
voltages) are known as Kirchoff’s laws, and in bond graphs they are known as 1- and 0-juntions. A
1-junction satisfies the following equations, for a set of connected bond graph elements B (where
± is shorthand for + or −, rather than ‘approximately’):8>>:Pb∈B

±eb = 0
∀b,b′∈C fb = fb′

9>>; (3)

Dually, a 0-junction is characterized by the relations:8>>:Pb∈B
±fb = 0

∀b,b′∈B eb = eb′

9>>; (4)

This implies continuity of power, as there is no energy storage by the junctions:8:P
b∈B

Ėb =
P

b∈B
eb · fb = 0

9; (5)

When there are elements connected to a junction of which the power directions point outward,
they have a negative effect on the exchange of generalized momentum or generalized position.
The equations Eqn. 3, Eqn. ?? and Eqn. 5, are therefore for the case where all bond arrows
point inwards, into the junction. Some possible configurations, and the associated constitutive
equations, have been depicted in figure 3.

To facilitate the creation of a set of constitutive relations for a bond graph model, each bond
is often furnished with a unique number that is employed as a subscript for all the variables
associated with that bond. As an example, the mechanical system of Fig. 1 is turned into the
bond graph of Fig. 4 as follows. Firstly, the position of the mass is defined relative to the position
of the ground, while the position of the spring and damper refers to the amount with which they
are stretched. The force F is connected to the mass, so their positions are equal. Secondly,
a change of position in the upward direction is defined to be positive. From Fig. 1 it is then
clear that a change in position of the mass, leads to an equal change in position of the force, the
spring and the damper. This suggests a 1-junction between the bond graph elements representing
these components. Thirdly, the power directions of the bond graph elements in Fig. 2 require the
direction of the force F , and the forces generated by the spring and the damper, to be defined
positive in the upward direction. Lastly, because everything is modeled relative to the ground, it
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1

1

2

3

(

e1 + e2 + e3 = 0
f1 = f2 = f3

)

1

1

2

3

(

−e1 + e2 − e3 = 0
f1 = f2 = f3

)

Figure 3: Constitutive equations for junctions with different power directions

is not necessary to model the ground explicitly. The constitutive relations of the components are
considered linear and the parameters of these linear relations are given along with the component
type, separated by a colon. The constitutive relations for this model were presented in Fig. 1.

i : m

mass
se : F

force

1

r : b

damper
c : 1

k

spring

1 2

3 4

Figure 4: Bond graph for a mass-spring-damper system

3 Hybrid Bond Graphs

As presented in Section 2.2, bond graph models inherently embody principles of energy conserva-
tion and power continuity. Indeed, in classical physics, the Heaviside principle [19] captures the
assumption that energy can only be transported from one point in time and space to another,
by a continuous trajectory. Some models of physical systems, though, violate the principle of
continuity of power, as they introduce instantaneous changes as abstractions from brief periods of
time (e.g., models of collisions, switching behavior, and opening and closing of valves).

3.1 Discontinuities in Physical System Models

To illustrate a model of a physical system that violates continuity of power, consider the system
of two bodies, m1 and m2, that engage in an ideal collision as shown in Fig. 5. When a variable x

changes during a discontinuity, its initial value is denoted by x− and its end value by x+. Newton’s
collision rule now states that the difference in velocities of two bodies immediately after a collision,
v+
1 −v+

2 , can be expressed by the difference in velocities immediately before the collision, v−
1 −v−

2 ,
while accounting for a coefficient of restitution, ε, as v+

1 − v+
2 = ε(v−

1 − v−
2 ) with 0 ≤ ε ≤ 1. In

case ε < 1, when the collision occurs, there is an instantaneous dissipation of energy in the system
consisting of the two bodies, which violates the continuity of power assumption.

To restore adherence to the continuity of power principle, the change of momentum of the
two bodies needs to be modeled in more detail so the dissipation occurs continuously over a short
interval of time. For example, the bodies can be modeled as masses that, upon impact, are
momentarily connected via a spring-damper system, as shown in Fig. 6. This reflects the elastic
effects and the dissipation of energy that occur during impact.
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v1 v2
m1 m2

Figure 5: Two colliding bodies

m1 m2

Figure 6: Power continuous model of two colliding bodies

Such a model that adheres to the principle of continuity of power is conceptually easier to design
and provides valuable insight into detailed physical phenomena that may otherwise be overlooked.
However, there are cases where the model that embodies an instantaneous change of velocities is
preferred. For example, the behavior that comes about because of the detailed phenomena often
operates on a time scale that is much smaller than the gross behavior of interest. Therefore, a
numerical solver has to employ relatively small time steps, which slows down numerical simulation.
This is especially problematic in case of real-time simulation, when a fixed upper bound exists for
the computations that can be performed to simulate behavior over a fixed time interval. Therefore,
real-time simulation typically employs a fixed step simulation, which prohibits the presence of
behavior on such small time scales.

Another reason to allow instantaneous changes is because not all parameters of the detailed
physical phenomena may be known. In the example of the impact between bodies, the elasticity
of the bodies, and the precise damping factors that play a role at impact, are difficult to measure,
while their exact value only influences the behavior of the system during a very short time. In
such a situation, it may prove convenient to abstract from this exact behavior, and model it as a
discontinuous change. Note, that in such a case non-determinism may be introduced into the model
behavior, as for example the value of the restitution coefficient ε becomes a (bounded) unknown.
In such a situation, simulators may have to be adapted to explore the different behaviors that
result from taking different values for ε, but this is left as a topic for future research.

3.2 Computing Discontinuous Changes

In this section, the discontinuous changes in model variables are derived. For this, a systematic
and thorough derivation is given in this section.

When computing discontinuous changes in bond graph models, the relation between intensive
and extensive variables changes. In the continuous case, the relation is ṗ = e for inductances and
q̇ = f for capacitances. In the discontinuous case, this time-derivative does not apply. Instead,
the difference of the extensive variables between the start and end of the discontinuity is used as
a starting point to derive a relation that does hold. To reflect the different nature of the relation,
ê and f̂ is written for the intensive variables in the discontinuous equations. Note, that in the
formal semantics that we are about to associate with hybrid bond graphs, e and ê are treated as
different variables.

Given the constitutive relations for continuous behavior, constitutive relations for discontin-
uous behavior can be derived. The discontinuous behavior, from a physical point of view, is an
abstraction from behavior that happens over a very short time interval [τ−, τ+]. Integration of
the constitutive relations for continuous behavior over this time interval may therefore provide
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insight as to what may happen during a discontinuity.
With some abuse of notation,1 for inductances the following relation between discontinuous

intensive variables and their extensive variables can be found: ê =
∫ τ+

τ−
e(t)dt = p+ − p−. For

capacitances, the relation f̂ =
∫ τ+

τ−
f(t) = q+ − q− can be found. Furthermore, the constitutive

relation for conservation of energy, leads to the following definition regarding the discontinuous
behavior:

Σc∈C E+
c − E−

c = Σc∈C

∫ τ+

τ−
Ėc(t) · dt = Σc∈C

∫ τ+

τ−
e(t) · f(t) · dt = 0 (6)

For the derivation of the change of energy in inductances and capacitances, the descriptions
of the continuous behavior is used as starting point again. Using partial integration, the changes
in stored energy based on changes in generalized displacement and generalized momentum can be
calculated.

• For an inductance, integrating the continuous relation Ė = e · f = ṗ · i(p) over the trajectory

of p yields E+
c − E−

c =
∫ p+

p−
i(x) dx for the change in stored energy as a function of the

change in generalized momentum.

• For a capacitance, dual to the inductance, the change is given by E+
c − E−

c =
∫ q+

q−
c(x) dx.

Note, that the integration over a trajectory is only valid if i and c do not depend on other variables
than p or q respectively. More precisely, if i and c depend on other variables, the change in these
variables in the interval [τ−, τ+] should be negligible. This should be verified by the modeler.

For a flow-source, effort-source, and resistance, the partial integration approach is not appli-
cable, because there is no extensive variable to integrate over. The precise amount of energy that
is dissipated or delivered by these elements cannot be derived from the state change of the system
alone. This problem is solved by assuming that the interval [τ−, τ+] that is used to abstract is
sufficiently short to make the energy exchange of these components with their environment neg-
ligible. This indeed constrains the ability to model arbitrary discontinuous behavior, but as will
be seen in Section 6, there are many interesting systems for which this assumption is applicable.
For flow-sources, effort-sources and resistances the change in energy is defined as E+

c − E−
c = 0.

For junctions, integration over [τ−, τ+] does not change the nature of the equations. The only
change is syntactic, turning continuous intensive variables into their discontinuous counterparts.
For a the 1-junctions this yields: 8>>:Pc∈C

êc = 0

∀c,c′∈C f̂c = f̂c′

9>>; (7)

and for a 0-junction this yields: 8>>:Pc∈C
f̂c = 0

∀c,c′∈C êc = êc′

9>>; . (8)

It is important to see, that the power relation does not allow a decomposition into a separate
integration over the intensive variables. Formally, the inequality

Σc∈C (E+
c − E−

c ) = Σc∈C

�R τ+

τ−
e(t) · f(t) · dt

�
6= (9)

Σc∈C

�R τ+

τ−
e(t) · dt

�
·
�R τ+

τ−
f(t) · dt

�
= Σc∈C (p+ − p−) · (q+ − q−) = Σc∈C ê · f̂ ,

holds, and, therefore, the power relation and the energy conservation laws have to be made explicit
in treating hybrid bond graphs.

1Technically, it should be written ê
+ = p

+
− p

−, as the intensive variable ê obtains its value during the

discontinuity. But, since the end-value of ê is the only value that is used in the theory that is developed, the

additional + is omitted to avoid cluttering of symbols in the formulae.

10



Using the constitutive relations for discontinuous behavior, the impact of bodies shown in Fig. 5
can be modeled as a discontinuous behavior of two masses. If the linear constitutive differential
equation f = 1

m
· p is used for the colliding bodies, with p the momentum, m the mass, and f the

velocity (we use generalized variables here), the following discontinuous constitutive relations for
the behavior at the point of time of impact are obtained:
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(discr3)

ê1 = p+
1 − p−1 (discr4)

ê2 = p+
2 − p−2 (discr5)

ê1 + ê2 = 0 (discr6)

f̂1 = f̂2 = 0 (discr7)

























































Note that, due to the inequality in Eqn. discr1, these equations may have multiple solutions.
This means that the modeler is not required to determine specific traces corresponding to physical
parameters that may be difficult to obtain. Instead, analysis of classes of behaviors is supported,
alleviating the modeling task. If these classes need to be refined, the modeler has the opportunity
to further constrain the behaviors that are possible.

In the next section, a formalism known as hybrid process algebra is discussed, which allows
the description of systems with mixed continuous and discontinuous behavior. In Section 5,
constitutive hybrid processes, rather than constitutive equations, are employed to describe the
mixed continuous and discontinuous behavior that can occur when discontinuities in bond graph
elements and junctions are allowed. Also, special hybrid junction elements that can be used to
explicitly model switching behavior are discussed.

4 Hybrid Process Algebra

In this section, a short introduction to a subset of the hybrid process algebra HyPA is given. Only
the relevant atoms and operations are discussed. A more complete treatment of the algebra is
presented in other work [20, 21].

4.1 Syntax

HyPA models can capture both continuous and discontinuous behavior of a system. Continuous
and discontinuous behavior are described using predicates over model variables Vm. The following
constants and function symbols need to be introduced for the proceedings:

1. Continuous behavior is described using flow predicates Pf on the model variables Vm and
their derivatives with respect to time V̇m = {ẋ p x ∈ Vm}. A flow clause, (V |Pf), is an
atomic process that models continuous physical behavior. It is denoted as a pair (V |Pf) of
a set of model variables V ⊆ Vm, and a flow predicate Pf ∈ Pf . The set V identifies variables
that are not allowed to change discontinuously while executing the flow clause. The flow
predicate Pf models which flow behavior is executed by the clause.

2. Discontinuous behavior is described by re-initialization predicates Pr on model variables
with a minus superscript, i.e. V−

m , to denote conditions that only hold at the start of a re-
initialization, and on model variables with a plus superscript, i.e. V+

m , to denote conditions
that hold only at the end of a re-initialization. A process re-initialization [V |Pr] � p models
the behavior of a process p where the model variables are first submitted to a discontinuous
change. This change is specified by the set of model variables V ⊆ Vm and the re-initialization
predicate Pr. In the case of process re-initializations, the set V models which variables are
allowed to change. Note that this is the opposite of flow clauses. In this work, changes that
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take place are explicitly modeled using re-initializations. Therefore, V = Vm in all flow-
clauses and re-initialization clauses that are used. To simplify notation, V is not written
explicitly, instead [Pr] for [Vm|Pr] and (Pf) for (Vm|Pf) are used.

3. The alternative composition p ⊕ q models a (non-deterministic) choice between the processes
p and q.

4. The disrupt p I q models that process q may take over execution from process p at any
moment. In other words, it models a mode switch from p to q.

5. The parallel composition p ‖ q models concurrent execution of p and q. For the restricted ver-
sion of HyPA in this work, the intuition behind parallel composition is simply that processes
synchronize the execution of their continuous and discontinuous behavior.

The binding order of the operators of HyPA is as follows: I , �, ‖ , ⊕ , where alternative
composition binds weakest, and the disrupt binds strongest.

More complex processes can be defined using recursive specifications X : p, where X is a
process variable and p is a term possibly containing X and other process variables. Amongst
others, recursion is a powerful way to express repetition in a process.

4.2 Semantics

In addition to the syntax, the semantics of the hybrid process algebra needs to be defined. Two
basic approaches to this are possible: (i) An operational type approach can be employed to capture
how the state and structure of a model evolves using one syntax with transformation constructs.
(ii) A denotational type approach can be employed to define how a model in one syntax can be
transformed into a model in another syntax with a formal semantics.

Here a mathematical formalism called labeled transition systems is used as the target syntax.
Process algebra (also called process theory or process calculus) studies these labeled transition
systems in an algebraic manner, by defining ways to compose labeled transition systems from
smaller ones. The atomic flow clauses in the hybrid process algebra give rise to very basic labeled
transition systems, similar to Sontag-machines [22]. The other operators of the algebra may then
be used to transform these basic transition systems into more complex systems.

Formally, a labeled transition system is defined as follows:

Definition 1 (Labeled Transition System) A labeled transition system <X,Σ,;> is a triple
consisting of a set of states X, a set of observations Σ and a transition relation ;⊆ X × Σ × X.

The transition relation models the dynamic behavior of the system. For example, a transition
(x, σ, x′) ∈;, also denoted < x >

σ
; < x′ >, signifies that the system when in state x may evolve

to state x′, and that an outside observer sees an event σ when this happens. Note, that ; is a
relation, not necessarily a function, and may hence model non-deterministic behavior as well.

As mentioned when explaining the syntax of the HyPA subset, the behavior of a physical
system is described in terms of model variables Vm. With these variables, a time axis T and a
valuation space V is associated (here, the real-line T = V = R). Depending on whether continuous
or discontinuous behavior is described, these variables take a value as either functions of an interval
in time to the valuation space, or as a pair of valuations (before and after the discontinuity). What
is observed, is only the behavior through time. This leads to the definition:

Σ = Vm → (T 7→ V),

abusing the notation 7→ for partial functions from a left- and right-closed interval. The state of
the system depends on the valuation of the variables, as well as on the mode the system is in.
These modes are described by process terms, and denoted by P. The state-space of the labeled
transition system is then defined as:

X = P × Vm.

12



What remains, is to define the transition relation. This is performed using a so-called structured
operational semantics [23], a system of derivation rules in which a hypothesis is denoted above
a line, and a conclusion regarding the transition system below that line. The partial semantics
of HyPA, constrained to the operations and transition relations needed for this paper, is given
in Table 3. Note that variables p, p′, q, q′ ∈ P are used ranging over the process terms, variables
σ,σ′ ∈ Σ to denote flows, variables ν, ν′, ν′′ ∈ V to denote static valuations, variables t, t′ ∈ T

denote times, and there is a variable X for recursion.

Table 3: Partial structured operational semantics of HyPA

Flow
σ |= Pf , dom(σ) = [t, t′], ν = σ(t), ν′ = σ(t′)

<


 Pf



 , ν >
σ
; <



Pf



 , ν′ >

Re-initialization
(ν, ν′) |= Pr, < p, ν′ >

σ
; < p′, ν′′ >

<
[

Pr

]

� p, ν >
σ
; <p′, ν′′ >

Alternative
<p, ν >

σ
; < p′, ν′ >

< p ⊕ q, ν >
σ
; <p′, ν′ >

<q, ν >
σ
; <q′, ν′ >

<p ⊕ q, ν >
σ
; < q′, ν′ >

Disrupt
< p, ν >

σ
; <p′, ν′ >

< p I q, ν >
σ
; <p′ I q, ν′ >

< q, ν >
σ
; <q′, ν′ >

<p I q, ν >
σ
; < q′, ν′ >

Parallel
< p, ν >

σ
; <p′, ν′ >, < q, ν >

σ
; < q′, ν′ >

< p ‖ q, ν >
σ
; <p′ ‖ q′, ν′ >

Recursion
<p, ν >

σ
; < p′, ν′ >

< X, ν >
σ
; < p′, ν′ >

whenever X defined by X : p

The flow semantics state that given a flow σ that complies with the flow predicate Pf and

that holds on the time interval [t, t′], with boundary valuations ν and ν′, the state <


 Pf



 , ν >

evolves into <


Pf



 , ν′ > with σ being observed.

The re-initialization semantics state that a re-initialization <
[

Pr

]

p �, ν > of process p at
value ν evolves into < p′, ν′′ >, if the process p itself can evolve into <p′, ν′′ > starting from the
value ν′, and the pair (ν, ν′) satisfies the re-initialization predicate Pr.

The alternative composition semantics state that if a process p with valuation ν may evolve to
a process p′ with valuations ν′, then the choice between p and q starting in ν can evolve into p′

with valuations ν′ as well, with the same observations. Similarly, the choice between p and q may
evolve into q′ if q can evolve into q′ from the given valuation.

The disrupt semantics state that if a state <p, ν > can transition to a state < p′, ν′ > then, if
the disrupt does not happen, the state <p I q, ν > transitions to the state < p′ I q, ν′ >. In
case the disrupt does happen and the state <q, ν > can transition to the state <q′, ν′ > then the
disrupt state < p I q, ν > transitions to < q′, ν′ >. Note that the semantics are not urgent, and,
therefore, behavior may be nondeterministic.
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The parallel composition semantics state that when two independent state transitions <p, ν >

to <p′, ν′ > and <q, ν > to < q′, ν′ >, with the same observation σ of flows, are composed, then
the composition executes these two transitions synchronously.

The recursion semantics states that when a recursion on X is defined by p, then in case of a
transition from <p, ν > to < p′, ν′ >, a transition from < X, ν > can be found by substituting p to
arrive at < p′, ν′ >.

4.3 Related formalisms

In this paper, we have chosen the hybrid process algebra HyPA as a carrier for the semantics of
hybrid bond graphs. To a certain degree, this was a choice of convenience, as one of the authors
(Cuijpers) is also the main founder of HyPA. But from a process algebraic point of view, HyPA is
in our opinion also the best suited formalism for the task.

Other hybrid process algebras have been developed, such as ACPsrt
hs [24], hybrid χ [25] and

the φ-calculus [26], but they all have a property inherited from hybrid automata theory [27, 28],
requiring that abstract actions are used to represent discontinuities in the physics. HyPA and
BHPC [29] are the only hybrid process algebras that allow discontinuous behavior without explicit
communication between actions. Finally, we chose HyPA over BHPC, because the latter was not
available yet when the research presented in this paper started, but also because it allows us to
prove statements about the general structure of constitutive processes using equational reasoning,
which has not yet been developed for BHPC. (For example, in [21] we prove that a parallel
composition of constitutive processes can always be written as a single constitutive process.)

From a non-process algebraic point of view, one might argue that a formalism like impuls
differential inclusions [30] is in fact closer to what we actually need to describe the semantics
of bondgraphs. This is in fact a valid argument, worthy of future research. However, it is the
possibility of using abstract actions to synchronize between processes, that made us choose for
HyPA over non-process algebraic formalisms. Although we do not need them in our semantics (we
do not even introduce them formally in this paper), they are available in the full language, and
they may be used to model concepts like switches in a bond graph that are controlled by some
abstract algorithm. An simple example of this can be found in [31], where an action is used to
model an impact sensor that triggers a control mechanism.

5 Constitutive Processes instead of Constitutive Equations

This section combines the constitutive equations for continuous and discontinuous behavior into
hybrid constitutive processes. It also describes special bond graph elements, not discussed so
far, that can be used for modeling a change in connection structure [32, 33, 34]. Ultimately, the
parallel composition of constitutive hybrid processes leads to an algebraic description of an entire
bond graph model. This is illustrated in a number of case studies in the next section.

5.1 Resistance

A resistance models dissipation of energy. The continuous behavior is described using the con-
stitutive relation e = r(f), for which it is assumed that x · r(x) ≥ 0 for every x. This ensures
that a resistor models dissipation of energy Ė ≥ 0. As explained previously, during discontinuous
behavior the dissipation of energy by resistors is assumed to be negligible. The index i denotes
the bond to which the resistance is connected in the graph.

Resistancei(r) :









E+
i − E−

i = 0
êi = 0

f̂i = 0



 �









Ėi = ei · fi

ei = r(fi)











 I Resistancei(r).
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5.2 Inductance and Capacitance

The continuous behavior of an inductance is described by the equation fi = i(pi), where ∂i(pi)
∂pi

> 0.
The change in stored energy of an inductance is determined by the momentum-integral over this
constitutive relation. The modeler should verify that the relation i(pi) does not depend on other
variables that change during discontinuous behavior. The index i denotes the bond to which the
resistance is connected in the graph.

Inductancei(i) :
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i − E−

i =
∫ p

+

i

p
−

i

i(x)dx

êi = p+
i − p−i

f̂i = 0






�

















Ėi = ei · fi

ṗi = ei

fi = i(pi)






















I Inductancei(i).

A capacitance is the dual of an inductance, and its constitutive process is:

Capacitancei(c) :





[

E+
i − E−

i =
∫ q

+

i

q
−

i

c(x)dx

f̂i = q+
i − q−i êi = 0

]

�

















Ėi = ei · fi

q̇i = fi

ei = c(qi)



















 I Capacitancei(c),

with ∂c(qi)
∂qi

> 0.

5.3 Sources

A source of flow has the constitutive relation f = sf , while for a source of effort we have e = se.

Flow-Sourcei(sf ) :









E+
i − E−

i = 0
êi = 0

f̂i = 0
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Ėi = ei · fi

fi = sf











 I Flow-Sourcei(sf ).

Effort-Sourcei(se) :









E+
i − E−

i = 0
êi = 0

f̂i = 0
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Ėi = ei · fi

ei = se











 I Effort-Sourcei(se).

5.4 Junctions

The junctions represent the bond graph analogies for Kirchoff’s laws. Bear in mind, that the
positive direction of power determines the sign of the contribution of variables to the summations,
as in the explanation of junctions in Section 2.2. This is also the case for the summation of
energy. To emphasize this, we have used the notation ± (not to be confused with the notation
for ’approximately’) in front of every variable that should be positive when the power direction
points inward and negative when outward.

0-junctionC :









∑

c∈C ±(E+
c − E−

c ) = 0
∑

c∈C ±f̂c = 0
∀c,c′∈C êc = êc′



 �









∑

c∈C ±fc = 0
∀c,c′∈C ec = ec′











 I 0-junctionC ,

1-junctionC :









∑

c∈C ±(E+
c − E−

c ) = 0
∑

c∈C ±êc = 0

∀c,c′∈C f̂c = f̂c′



 �









∑

c∈C ±ec = 0
∀c,c′∈C fc = fc′











 I 1-junctionC .

5.5 Controlled junctions and switches

In this section, several hybrid bond graph elements are discussed, as they were proposed earlier in
literature. The controlled junctions are based on the work of [32, 33]. The switching element, was
proposed in [34]. As will be seen further on, the switch can be expressed in terms of controlled
junctions and 0-value sources.
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Controlled junctions and switches both serve to model changes in the connection structure
between elements. When active, a controlled junction acts like the junction it is associated with.
When inactive, it acts like a collection of 0-effort sources or a collection of 0-flow sources, depending
on the specific type of the controlled junction. The 0/E, and 1/E type act as an effort source when
inactive, while the 0/F and 1/F type act as a flow source.

When switching between modes, laws for the discontinuous behavior apply. The predicates
Act and Inact, model when a controlled junction or switch is active or inactive, respectively, and
hence control the switching. These can be predicates over all the model variables Vm, and hence
may include both extensive and intensive variables (see Section 6 for an example). To denote the
predicate Act where all variables x ∈ Vm are replaced by x−, the notation Act− is employed. The
notation Inact− is handled analogously.

Note, once again, that the intensive variables as they are used to describe continuous behavior
are different from the intensive variables as they are used to describe discontinuous behavior. In
other words, e and ê are different elements of Vm. In particular, this means that the when a
continuous intensive variable e occurs as e− in Act−, this should be understood as ‘the last value
the continuous intensive variable took before the switch occurred’ rather than ’the value of the
discontinuous intensive variable’.

A change in connection structure between components may give rise to a dissipation of energy.
For example, the collision that was discussed in Section 3 can be modeled as a change in connection
structure between two masses, but can also be modeled in more detail by including a spring-damper
interaction model fragment. In this model fragement, the damper represents the loss of energy
because of deformation of the masses in a continuous model. In our constitutive process for a
controlled junction, this dissipation of energy is obtained from an inequality regarding the energy
balance. When switching from Act to Inact, or vice versa, it is found that a controlled junction
may dissipate energy (i.e.,

∑

c∈C (E+
c − E−

c ) ≥ 0). The discontinuous behavior of the other
variables during this decrease is governed by either the equations for the discontinuous behavior of
the associated junction or the equations for the 0-effort source or 0-flow source. In the equations
below, the same notation (±) as with junctions is employed, to emphasize the dependence of signs
on the power direction of the bonds.

The following hybrid constitutive process for the (0/E)-junction is obtained:

(0/E)C(Act,Inact) :

















Act−
∑

c∈C ±(E+
c − E−

c ) = 0
∑

c∈C ±f̂c = 0
∀c,c′∈C êc = êc′
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Act
∑

c∈C ±fc = 0
∀c,c′∈C ec = ec′















⊕
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∀c∈C
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c = 0
êc = 0

f̂c = 0
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Inact
∀c∈C ec = 0









⊕
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∑

c∈C ±(E+
c − E−

c ) ≥ 0
∑

c∈C ±f̂c = 0
∀c,c′∈C êc = êc′
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Act
∑

c∈C ±fc = 0
∀c,c′∈C ec = ec′















⊕
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∑

c∈C ±(E+
c − E−

c ) ≥ 0
∑

c∈C ±f̂c = 0
∀c,c′∈C êc = êc′









�









Inact
∀c∈C ec = 0

















I (0/E)C(Act,Inact)

It is straightforward to construct the dual definitions for 1/E, 0/F and 1/F.
A switch acts like a 0-effort source when active and as a 0-flow source when inactive. As before,

when switching modes, energy may be dissipated while the other variables behave according to the
equations of one of the sources. Because the power bond of a switch is always pointing outward,
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the decrease in energy is associated with the constitutive equation E′
i ≤ 0. The constitutive hybrid

process of a switch has a similar structure as that of a controlled junction.

Switchi(Act,Inact) :
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i = 0
êi = 0

f̂i = 0
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⊕
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⊕
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êi = 0

f̂i = 0
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Inact
fi = 0

















I Switchi(Act,Inact)

Note, that a switch can also be represented as a 0-effort source acting on a controlled 1/F-
junction. Dually, representing a switch as a 0-flow source acting on a controlled 0/E-junction
(with the switching predicates reversed), is possible as well. If the variables associated with bonds
2 and 3 are abstracted, the three bond graphs depicted in Fig. 7 are found to be equivalent.

Switch:(Act,Inact)

rest of the system

1

Se : 0

(1/F):(Act,Inact)

rest of the system

2

1

Sf : 0

(0/E):(Inact,Act)

rest of the system

3

1

Figure 7: Three equivalent switches

Switch:(Act,Inact)

1

2 3

(1/F):(Act,Inact)
2 3

Figure 8: Two non-equivalent switches

The two bond graphs depicted in Fig. 8 are not equivalent. In the left bond graph, there is
a situation where the total energy of bonds 2 and 3 may decrease, while the switch acts like a
0-effort source. Still, some energy may go from 2 to 3, or vice versa. The constitutive hybrid
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process of this partial bond graph contains the following subprocess as one of its alternatives:








Act−

(E+
2 − E−

2 ) + (E+
3 − E−

3 ) = −(E+
1 − E−

1 ) ≥ 0

f̂1 = f̂2 = f̂3 = 0
ê1 = ê2 = ê3 = 0









�









Inact
f2 = f3 = 0









In the right bond graph, given that same situation, the energy of each of the bonds, separately,
has to decrease, clearly indicating that the elements are disconnected. For this bond graph, the
following subprocess is found as an alternative:













Act−

(E+
2 − E−

2 ) ≥ 0
(E+

3 − E−
3 ) ≥ 0

f̂2 = f̂3 = 0
ê2 = ê3 = 0













�









Inact
f2 = f3 = 0









This detail motivates a slight preference for the use of controlled junctions over switching elements.
However, the physical consequences of each have to still be investigated in more detail, so no
definitive answer can be given yet as to which is better. In the examples in Section 6, the controlled
junction is used to model discontinuities.

Intermezzo For standard bond graph theory, there is a set of graph reduction rules, that lead
to equivalent bond graphs, modulo elimination of variables associated with connections between
junctions [35]. It is conjectured, that those rules are still valid for the hybrid case, perhaps with the
exception that special elements, such as resistors of value 0, and infinite resistances, inductances
and capacitances, need special treatment. A technical detail, however, prevents a formal proof
at this point, since the notion of bisimulation - that is used on the processes involved does not
support the elimination of variables yet. For the formal derivation of bond graph reduction rules, a
notion of abstraction from continuous variables is needed in HyPA. Such a notion of abstraction is
currently being developed (see for example [36, 37]). Using this notion, also new rules for dealing
with hybrid elements, like the informal rule of figure 7, can be developed. Even without these
abstraction rules, it can be proven, for example, that 1-junctionC - (1/E)C(true,false), which
illustrates that a controlled junction behaves like an ordinary junction if it is always activated.

5.6 Transformers and gyrators

Two standard bond graph elements that have not been discussed so far, are the transformer and
the gyrator. They are used to model transformation between different physical domains. Examples
are motors, levers, pumps etc. Transformers and gyrators always define a certain ratio m between
the flow and effort on the one, and on the other side of the element. As before, the modeler
should verify that this ratio does not change significantly during discontinuous behavior. The sign
contribution on variables used in transformers and gyrators, depends on the positive direction of
power. In the case of transformers and gyrators, all variables are negated when the direction of
power of a certain bond is outward.

Transformer{i,j}(m) :








±(E+
i − E−

i ) ± (E+
j − E−

j ) = 0

±êi = m · ±êj

±f̂j = m · ±f̂i



 �









±ei = m · ±ej

±fj = m · ±fi











 I Transformer{i,j}(m),

Gyrator{i,j}(m) :








±(E+
i − E−

i ) ± (E+
j − E−

j ) = 0

±êi = m · ±f̂j

±êj = m · ±f̂i



 �









±ei = m · ±fj

±ej = m · ±fi











 I Gyrator{i,j}(m).
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6 Case Studies

To illustrate, first an impact control unit, as produced by Assembleon and Philips CFT (see also
[21, 31]), in which the collision plays an important role, is presented. Next, a model of an electrical
circuit containing diodes is studied. For this model, it is shown how so-called implicit switching
leads to a model with less modes of operation than one might expect on first sight.

6.1 Impact Control at Assembleon

In the manufacturing of printed circuit boards (PCB), it is important to bring a component as fast
as possible to the PCB, and then press it on the PCB for a sufficient time, with sufficient force,
to make the adherent that is used for connection stick. In the actual mounting machine a number
of components can be placed at the same time, using several impact modules. A simplified model
of one such an impact module is drawn in Fig. 9. Because the nature of the components and the
PCBs that are used varies significantly, it is not desirable to model the impact in too much detail.
However, one of the requirements on the module is to prevent cracking of the component, which
can be related to the energy that is absorbed upon impact. Therefore, modeling the amount of
energy that is absorbed during the actual impact of the component on the PCB is a measure of
likelihood that a crack occurs.

Fc

qc

qp

ms

mp

kpbp

Ground

Figure 9: Schematic model of the impact module

The bond graph that is associated with the schematic model of Fig. 9 is presented in Fig. 10.
This bond graph model is based on the assumption that the detailed dynamics of the impact
behavior that could be modeled by a spring damper model fragment are not of interest. Further-
more, it is assumed that the effect of the external force on the detailed behavior is not of interest
either. The actual validation of those assumptions is beyond the scope of this paper.

There are switching conditions in Fig. 10 that determine when two masses exchange momen-
tum. The switching condition determining when the masses are in contact, (q1 = q5 ∧ f1 >

f5) ∨ (q1 = q5 ∧ f1 = f5 ∧
1

ms
· (e1 + e3) ≥

1
mp

· (e2 − e4)), depends not only on the position of the

masses, but also on their velocity and the normal forces between the masses [38]. The latter is
formulated on the possible difference in acceleration of the masses (given by a = e

m
). The reason

for this, is that the two masses should not only connect when their position is equal, but they
should also disconnect as soon as the interaction force becomes negative, which corresponds to
accelerations that cause the masses to distance from each other.

From the bond graph in Fig. 10, the following parallel composition of constitutive processes is
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i : ms

mass sled
se : F

steering force
1

(1/E):(Act,Inact)

1
i : mp

mass PCB

r : b

friction PCB

c : 1
k

stiffness PCB

1 2

3

4
5 6

7

Act : (q1 = q5 ∧ f1 > f5) ∨ (q1 = q5 ∧ f1 = f5 ∧
1

ms
· (e1 + e3) ≥

1
mp

· (e2 − e4))

Inact : (q1 ≤ q5)

Figure 10: Bond graph model for the impact module

constructed.

Module : 1-Junction{1,2,3} ‖ (1/E){3,4}(Act,Inact) ‖ 1-Junction{4,5,6,7}

‖ Inductance1(ms) ‖ Inductance5(mp) ‖ Effort-Source2(F )

‖ Capacitance6(
1

k
) ‖ Resistance7(b)

Process algebraic calculations as described in [20, 21], allow the elimination of the parallel
compositions in this description. The result is the following bisimilar constitutive hybrid process
for the impact module as a whole. Indeed, it can be proved that: Module - Module′. Note, that
the equations Ėi = ei · fi, ṗi = ei and q̇i = fi, as well as p+

i − p−i = ê and q+
i − q−i = f̂ , remain

implicit.

Module′ :0BBBBBBBBBBBBBB@
2666666666666664

(E+
1 − E−

1 ) = −(E+
3 − E−

3 ) =
(p+

1
)2−(p−

1
)2

2·ms

(E+
4 − E−

4 ) = (E+
5 − E−

5 ) =
(p+

5
)2−(p−

5
)2

2·mp

(E+
1 − E−

1 ) + (E+
5 − E−

5 ) = (E+
2 − E−

2 )
= (E+

6 − E−

6 ) = (E+
7 − E−

7 ) = 0
ê1 = −ê3

ê4 = ê5

ê1 + ê5 = ê2 = ê6 = ê7 = 0

f̂1 = f̂2 = f̂3 = f̂4 = f̂5 = f̂6 = f̂7 = 0
Act−

3777777777777775�

8>>>>>>>>>>>>>>>>>>>>>>>>>:
p1 = ms · f1

p5 = mp · f5

q6 = 1
k
· e6

e2 = F

e7 = b · f7

e2 − e1 = e3 = e4 = e5 + e6 + e7

f1 = f2 = f3 = f4 = f5 = f6 = f7

Act

9>>>>>>>>>>>>>>>>>>>>>>>>>; ⊕

266664 (E+
1 − E−

1 ) = (E+
2 − E−

2 ) = (E+
3 − E−

3 )
= (E+

4 − E−

4 ) = (E+
5 − E−

5 ) = (E+
6 − E−

6 ) = (E+
7 − E−

7 ) = 0
ê1 = ê2 = ê3 = ê4 = ê5 = ê6 = ê7 = 0

f̂1 = f̂2 = f̂3 = f̂4 = f̂5 = f̂6 = f̂7 = 0
Inact−

377775�

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
p1 = ms · f1

p5 = mp · f5

q6 = 1
k
· e6

e2 = F

e7 = b · f7

e2 − e1 = e3 = 0
e4 = e5 + e6 + e7 = 0
f1 = f2 = f3

f4 = f5 = f6 = f7

Inact

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>; ⊕
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2666666666666664
(E+

1 − E−

1 ) = −(E+
3 − E−

3 ) =
(p+

1
)2−(p−

1
)2

2·ms

(E+
4 − E−

4 ) = (E+
5 − E−

5 ) =
(p+

5
)2−(p−

5
)2

2·mp

(E+
1 − E−

1 ) + (E+
5 − E−

5 ) ≤ (E+
2 − E−

2 )
= (E+

6 − E−

6 ) = (E+
7 − E−

7 ) = 0
ê1 = −ê3

ê4 = ê5

ê1 + ê5 = ê2 = ê6 = ê7 = 0

f̂1 = f̂2 = f̂3 = f̂4 = f̂5 = f̂6 = f̂7 = 0
Inact−

3777777777777775�

8>>>>>>>>>>>>>>>>>>>>>>>>>:
p1 = mc · f1

p5 = mp · f5

q6 = 1
k
· e6

e2 = F

e7 = b · f7

e2 − e1 = e3 = e4 = e5 + e6 + e7

f1 = f2 = f3 = f4 = f5 = f6 = f7

Act

9>>>>>>>>>>>>>>>>>>>>>>>>>; ⊕

2666666666666664
(E+

1 − E−

1 ) = −(E+
3 − E−

3 ) =
(p+

1
)2−(p−

1
)2

2·ms

(E+
4 − E−

4 ) = (E+
5 − E−

5 ) =
(p+

5
)2−(p−

5
)2

2·mp

(E+
1 − E−

1 ) + (E+
5 − E−

5 ) ≤ (E+
2 − E−

2 )
= (E+

6 − E−

6 ) = (E+
7 − E−

7 ) = 0
ê1 = −ê3

ê4 = ê5

ê1 + ê5 = ê2 = ê6 = ê7 = 0

f̂1 = f̂2 = f̂3 = f̂4 = f̂5 = f̂6 = f̂7 = 0
Act−

3777777777777775�

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
p1 = mc · f1

p5 = mp · f5

q6 = 1
k
· e6

e2 = F

e7 = b · f7

e2 − e1 = e3 = 0
e4 = e5 + e6 + e7 = 0
f1 = f2 = f3

f4 = f5 = f6 = f7

Inact

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
1CCCCCCCCCCCCCCA I Module′ .

In other work [31], this constitutive hybrid process is used as a starting point for the design
and analysis of a safe control strategy for the pick-and-place module, intended to limit the forces
and energy exchange that may occur during impact.

6.2 An Electrical Circuit

In this section, the electrical circuit depicted in Fig. 11 is studied. The bond graph associated with
this circuit, is depicted in Fig. 12. This model is taken from [39], and uses controlled junctions to
model the electrical switch and the diode. The state of the diode depends on the flow and effort
in the bond, or bonds, connected to it. For the electrical switch, we use the predicate Closed to
represent a closed switch, and the predicate Open to represent an open switch.

V

(On,Off) R

L

Figure 11: Electrical circuit with switch and diode

se : V

voltage
(1/F):(Closed,Open)

switch

r:R
resistor

(0/E):(e4 ≤ 0, f3 ≥ f4)
diode

i:L
inductor

1

2

3 4

Figure 12: Bond graph model using controlled junctions
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Calculation on the parallel composition of constitutive hybrid processes of the bond graph
depicted in Fig. 12 show that there are six possible re-initializations and four possible flow clauses.
Combinations of these re-initializations and flow clauses are restricted by the switching predicates.
The following constitutive process is obtained for the circuit:

Circuit ≈
((

d1 ∧
[

f−
3 ≥ f−

4

]

∧
[

Closed−
])

� c1

⊕
(

d1 ∧
[

f−
3 ≥ f−

4

]

∧
[

Closed−
])

� c2

⊕
(

d3 ∧
[

f−
3 ≥ f−

4

]

∧
[

Closed−
])

� c3

⊕
(

d4 ∧
[

f−
3 ≥ f−

4

]

∧
[

Closed−
])

� c4

⊕
(

d1 ∧
[

f−
3 ≥ f−

4

]

∧
[

Open−
])

� c1

⊕
(

d1 ∧
[

f−
3 ≥ f−

4

]

∧
[

Open−
])

� c2

⊕
(

d4 ∧
[

f−
3 ≥ f−

4

]

∧
[

Open−
])

� c3

⊕
(

d1 ∧
[

f−
3 ≥ f−

4

]

∧
[

Open−
])

� c4

⊕
(

d3 ∧
[

e−4 ≤ 0
]

∧
[

Closed−
])

� c1

⊕
(

d4 ∧
[

e−4 ≤ 0
]

∧
[

Closed−
])

� c2

⊕
(

d2 ∧
[

e−4 ≤ 0
]

∧
[

Closed−
])

� c3

⊕
(

d5 ∧
[

e−4 ≤ 0
]

∧
[

Closed−
])

� c4

⊕
(

d4 ∧
[

e−4 ≤ 0
]

∧
[

Open−
])

� c1

⊕
(

d1 ∧
[

e−4 ≤ 0
]

∧
[

Open−
])

� c2

⊕
(

d5 ∧
[

e−4 ≤ 0
]

∧
[

Open−
])

� c3

⊕
(

d1 ∧
[

e−4 ≤ 0
]

∧
[

Open−
])

� c4

)

I Circuit

The following abbreviations were used:

d1 =





(E+
1 − E−

1 ) = (E+
2 − E−

2 ) = (E+
3 − E−

3 ) = (E+
4 − E−

4 ) = 0
ê1 = ê2 = ê3 = ê4 = 0

f̂1 = f̂2 = f̂3 = f̂4 = 0





d2 =













(E+
1 − E−

1 ) = (E+
2 − E−

2 ) = (E+
3 − E−

3 ) = (E+
4 − E−

4 ) = 0
ê1 = ê2 = 0
ê3 = ê4

f̂1 = f̂2 = f̂3 = f̂4 = 0
(p+

4 )2 = (p−4 )2













d3 =













(E+
1 − E−

1 ) = (E+
2 − E−

2 ) = 0

(E+
3 − E−

3 ) = (E+
4 − E−

4 ) =
(p+

4
)2−(p−

4
)2

2·L ≤ 0
ê1 = ê2 = 0
ê3 = ê4

f̂1 = f̂2 = f̂3 = f̂4 = 0













d4 =













(E+
1 − E−

1 ) = (E+
2 − E−

2 ) = 0

(E+
4 − E−

4 ) =
(p+

4
)2−(p−

4
)2

2·L ≤ (E+
3 − E−

3 ) ≤ 0
ê1 = ê2 = 0
ê3 = ê4

f̂1 = f̂2 = f̂3 = f̂4 = 0













d5 =













(E+
1 − E−

1 ) = (E+
2 − E−

2 ) = (E+
3 − E−

3 ) = 0

(E+
4 − E−

4 ) =
(p+

4
)2−(p−

4
)2

2·L ≤ 0
ê1 = ê2 = 0
ê3 = ê4

f̂1 = f̂2 = f̂3 = f̂4 = 0
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c1 =







































e1 − e2 = e3 = e4

f1 = f2 = f3 = f4

e1 = V

e2 = R · f2

p4 = 1
L
· f4

e4 ≤ 0 ∧ Closed







































c2 =































e2 = e3 = e4

f1 = f2 = f3 = f4 = 0
e1 = V

p4 = 0
e4 ≤ 0 ∧ Open































c3 =







































e1 − e2 = e3 = e4 = 0
f1 = f2 = f3

e1 = V

e2 = R · f2

p4 = 1
L
· f4

f3 ≥ f4 ∧ Closed







































c4 =































e2 = e3 = e4 = 0
f1 = f2 = f3 = 0
e1 = V

p4 = 1
L
· f4

f4 ≤ 0 ∧ Open































Again, the equations Ėi = ei · fi, ṗi = ei, q̇i = fi, p+ − p− = ê, and q+ − q− = f̂ have been left
implicit.

Further study on the flow clauses shows a peculiarity in the behavior of c2. Using calculation
on derivatives, e4 = ṗ4 = 0 is obtained. As it turns out, the only case where time progresses in c2,
is when both the voltage over the diode, and the current through the diode are zero. Interestingly,
the set of solutions of c2 is a subset of the set of solutions of c4, indicating that the diode can be
interpreted as both conducting and blocking.

Process algebraic manipulation of the constitutive hybrid process allows combining the flow
clauses c2 and c4, showing the character of implicit switching more clearly. The complete derivation
is outside the scope of this paper, and can be found in [21]. The central observation in the
derivation is that all solutions from c4 that start with p4 = 0, are also solutions from c2. This
allows combining certain process terms and the following alternative description of the circuit is
obtained:

Circuit′ :
((

d1 ∧
[

f−
3 ≥ f−

4

]

∧
[

Closed−
])

� c1

⊕
(

d3 ∧
[

f−
3 ≥ f−

4

]

∧
[

Closed−
])

� c3

⊕
(

((d1 ∧ p+
4 = 0) ∨ d4) ∧

[

f−
3 ≥ f−

4

]

∧
[

Closed−
])

� c4

⊕
(

d1 ∧
[

f−
3 ≥ f−

4

]

∧
[

Open−
])

� c1

⊕
(

d4 ∧
[

f−
3 ≥ f−

4

]

∧
[

Open−
])

� c3

⊕
(

d1 ∧
[

f−
3 ≥ f−

4

]

∧
[

Open−
])

� c4

⊕
(

d3 ∧
[

e−4 ≤ 0
]

∧
[

Closed−
])

� c1

⊕
(

d2 ∧
[

e−4 ≤ 0
]

∧
[

Closed−
])

� c3

⊕
(

((d4 ∧ p+
4 = 0) ∨ d5) ∧

[

f−
3 ≥ f−

4

]

∧
[

Closed−
])

� c4

⊕
(

d4 ∧
[

e−4 ≤ 0
]

∧
[

Open−
])

� c1

⊕
(

d5 ∧
[

e−4 ≤ 0
]

∧
[

Open−
])

� c3

⊕
(

d1 ∧
[

e−4 ≤ 0
]

∧
[

Open−
])

� c4

)

I Circuit′

Indeed, it can be proved that Circuit - Circuit′.
From this description, it becomes clear that, when the switch is opened, this enforces that the

diode starts conducting. If the current through the inductance is negative, the implicit switch from
blocking to conducting, leads to an energy loss, such that after the discontinuity, the generalized
momentum of the inductance, and the current through the inductance, are zero. This phenomenon
of implicit switching has been observed in other work [40, 41] and is consistent with the results
computed from the hybrid process algebra description.
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7 Conclusions

To remain competitive, computational models are becoming essential in the design of engineered
systems. Such systems typicallly consist of a significant physical part. Modeling physics at a
macroscopic level is often well done by means of algebraic and differential equations. The inherent
continuity constraints of physics are inherently reflected by such a system of equations. To provide
additional insight and support analysis, bond graphs have shown to be a useful language that still
is independent of the physical domain, has a rigorous mapping onto a system of equations, while
enforcing energy conservation constraints.

In many cases, the abstraction of reality to arrive at useful models results in with piecewise
continuous behavior interspersed with discrete state changes. For example, an electrical switch
may be modeled to operate in one of two modes, open and closed, with disctinctly different
behavior in each of these modes.

To support such mode changes, bond graphs can be extended by a controlled junction that
allows capturing dynamic changes to the model structure. The resulting behavior then is of a
hybrid nature, mixing continuous-time and discrete state transition evolution. The combined
behavior also requires the discrete model part to detect events in the continuous model part as
well as re-initialization of the continuous states when discrete changes occur.

Previous work has developed hybrid bond graphs as a formal framework to express such mod-
els. In this work, a formal semantics is given to hybrid bond graphs in a unifying underlying
representation based on a hybrid process algebra. This facilitates formal reasoning about the
comprehensive system behavior. Furthermore, because it is not necessary to transform a hybrid
bond graph in a set of global representations for the piecewise continuous behavior, the analysis is
directly linked to the hybrid bond-graph topology. Maintaining the model structure is essential for
analysis purposes. This also preserves the hierarchy properties of the hybrid bond-graph model,
allowing upscaling towards industrial-sized models.

An additional benefit of using a process algebra is the support for nondeterministic behavior.
When fast continuous behavior is abstracted into a discrete mode change, the details of the un-
derlying behavior may be difficult to capture quantitatively. Nondeterminism allows analysis of a
set of possible behaviors, within constraints that are specified. In the broadest sense, for example,
this constraint is not to generate energy when a discrete state change occurs. Hence, in early
phases of the design process, proper models can be made, which can be detailed out in a later
phase, when necessary.

Case studies illustrate the applicability and power of this approach. Analysis of complicated
phenomena that would result in dynamic changes of the continuous-time state space was effectively
conducted using the approach documented in this work.
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