Model-Based Embedded System Design

Pieter J. Mosterman
Senior Research Scientist
The MathWorks, Inc.
Agenda

- Introduction
- Embedded Systems Design
- Demo
- A Design Activity
 - Dynamic Voltage Scaling
- Summary
What is the problem?

- “Hardware verification is itself become more challenging. Verification times have increased with rising gate count and as overall design complexity grows. According to a survey by Collett International Research in 2002 only 39% of designs were bug free at first silicon, while 60% contained logic or functional flaws. More than 20% required 3 or more silicon spins. A Collett survey also showed that nearly **50% of total engineering time was spent in verification.**”

- Hardware/Software Co-verification by Dr. Jack Horgan
What are the pains?

1. **Time and effort to verify a design:** As designs get more complex, the test benches are an order of magnitude more complex, and **consume 40-60% of project resources.**
 - Test bench HDL code will *not* be synthesized – i.e., will not be a part of the shipping product – “throw-away” code
 - HDL test benches need to run in HDL simulators, and HDL simulators are *extremely* slow

2. **Time and effort to construct and maintain test benches:** For each line of HDL design code in a design, a user typically **needs 10 lines of HDL test bench code to simulate, test, and verify that 1 line of HDL code.**
 - Constructing a test bench in a textual language is at least as complex as the original design itself
 - Maintaining the test bench from one generation of a design to the next is very resource-intensive
Agenda

- Introduction
- Embedded Systems Design
- Demo
- Mixed Signal Simulation
- Summary
What are the pains?

- Engineers need to verify that ASIC/FPGA implementations correctly match their system specifications

\[y = f(x) \]

I/O vectors, functional specification
ASIC/FPGA design flow beings in HDL

```verbatim
1 //Verilog Model of a D Flip Flop
2 module flipflop (dout, din, clock, reset);
3 output dout;
4 input din, clock, reset;
5
6 reg dout;
7
8 always @(posedge clock)
9 begin
10     if (reset)
11         dout <= 1'b0;
12     else
13         dout <= din;
14 end
15 endmodule //flipflop
```
What are the solutions?

- Engineers need to verify that ASIC/FPGA implementations correctly match their system specifications

- Using co-simulation with a cycle accurate simulator, these engineers can analyze hardware components at a system level
Link for ModelSim makes system-level hardware verification possible

- **Fast and bidirectional** cosimulation interface between MATLAB and Simulink, and ModelSim
Agenda

- Introduction
- Embedded Systems Design
- Demo
- A Design Activity
 - Dynamic Voltage Scaling
- Summary
Demo

- Edge detection demo
 - Design space exploration using floating point
 - Conversion to fixed point
 - Elaboration to facilitate streaming data
 - Co-simulate with HDL
Simulink co-simulation
Link for ModelSim allows engineers to share models instead of I/O vectors.

- The HDL is verified in the context of an entire system and not just as a stand-alone component
- System performance metrics, e.g. Packet Error rate (PER), Bit Error Rate (BER), Signal to Noise (S/N) ratio can be measured
Agenda

- Introduction
- Embedded Systems Design
- Demo
- A Design Activity
 - Dynamic Voltage Scaling
- Summary
Dynamic Voltage Scaling

- Simulate AT90S8535 microcontroller
- Dynamic Voltage Scaling (DVS) based on online gradient estimation
 - Infinitesimal perturbation analysis (IPA)
- Average cost per job
 - \(J(\theta) = w \ P(\theta) + S(\theta) \)
 - \(J(\theta) = w \ c_2[V_t / (1 - c_1/\theta)]^2 + S(\theta) \)
- \(\theta \), average service time; \(w \), weighting; \(P \), average energy consumption; \(S \), average system time for a job; \(c_1 \) and \(c_2 \), device constants; \(V_t \), minimum input voltage
Agenda

- Introduction
- Embedded Systems Design
- Demo
- A Design Activity
 - Dynamic Voltage Scaling
- Summary
Summary

- Integrate system level design with implementation
 - Cycle accurate simulation
- No duplication of testbench design effort
- Analysis of system level properties