Designing for Embedded Parallel Computing Platforms: Architectures, Design Tools and Applications
April 24, 2009

Multicore Challenges and Solutions for Cognitive Radio and Advanced Multimedia Applications
Maryse Wouters
Outline

- Programming multiprocessor platforms
 - Multiprocessor platforms are here today and they are here to stay!
 - Current mismatch between platform and programming model
 - How to map sequential code on a parallel platform?

- IMEC’s MPSoC tool suite
 - Eclipse Code Cleaning plug-in to get your C code in parallel shape
 - MH tool: Memory Hierarchy optimization tool
 - MPA tool: a Multiprocessor Parallelization Assistant

- A concrete case: towards Gbit/s Cognitive Reconfigurable Radio and MPEG4-ENC

- Run time management
Multiprocessor platforms are here today ...
... and they are here to stay!

How to efficiently program them?
What are the fundamental issues?

Platform Evolution – Embedded System

Single processor, sequential programs
- Designer uses sequential C code and assumes a single (shared) memory space
- Platform consist of a single processor with a cache (hierarchy?) and a main memory, interconnected by a bus.
- There’s a good match between programming model and computing platform
- Designer focuses on algorithmic development and code optimizations

Multi processor, parallel programs
- Memory access will not scale up
- Communication and synchronization becomes problematic
- Debugging is a nightmare
- Existing programming model will break
- Parallelization, componentization and composability
- Keep scalability across platform generations (#processors/amount of memory/available bandwidth)
- Keep retargetability to different vendors
- Multi-application predictability
How can we program multi processor platforms?

- Buying a commercial MP-RTOS and use the primitives available
 - Is just an abstraction layer on top of the MPSoC platform … all problems remain
- Pre-parallelized libraries
 - Limited flexibility and no context awareness
 - Platform specific
- Create parallel threaded code using explicit data communication with message passing (MPI)
 - Parallelization is manual and error-prone
 - Explicit data communication needs to be added by designer.
 - A lot of existing algorithms do not map efficiently to a pure message passing model
- Create parallel threaded code assisted by tools like OpenMP.
 - Less manual work, but still error-prone.
 - Coherency problem still exists and is assumed to be solved in HW

This approach is an MPSoC programming showstopper!
We want sequential C programming with a single (shared) memory space

How do we program multi processor platforms now?

- How do we guarantee that it works for a single application
 - Simulation … over and over and over again
- And if it does not work or does not reach the required performance
 - Do it all again
 - And then: Simulation … over and over and over again

Is this how we want to continue?
We want sequential C programming with a single (shared) memory space
What do we need to get back to sequential C programming with a single (shared) memory space?

- Tool that performs parallelization and also adds synchronization, inter-task communication and manages the memory hierarchy
- Explicitly controlling (data) communication to avoid hardware cache coherency problem/scaling bottleneck
- Embedded SW designer remains on the "sequential code with single memory space" level. Designer is responsible for giving parallelization hints.
- Tools make the code-transition to the parallel world and make sure the transition is functionally correct and optimized for a given set of platform parameters.
- Tools that provide fast feedback on a sequential level!

Such tools minimize the error-prone and time-consuming work ... over and over and over again.

Outline

- Programming multiprocessor platforms
 - Multiprocessor platforms are here today and they are here to stay!
 - Current mismatch between platform and programming model
 - How to map sequential code on a parallel platform?

- IMEC’s MPSoC tool suite
 - Eclipse Code Cleaning plug-in to get your C code in parallel shape
 - MH tool: Memory Hierarchy optimization tool
 - MPA tool: a Multiprocessor Parallelization Assistant
 - Application on MPEG4-ENC

- A concrete case: towards Gbit/s Cognitive Reconfigurable Radio

- Run time management
CleanC: promoting an MPSoC-friendly coding style

- Static analysis of arbitrary C code has its limitations
- IMEC promotes a coding style that is MPSoC-friendly → CleanC
 - 28 guidelines and restrictions on how to write C code
 - Can analyze code for parallelization purposes
- To help convert arbitrary C code to CleanC code, IMEC develops a tool suite
 - Analyzes code for adherence to CleanC coding style
 - Provides code transformation support to “clean” C code
 - Integrated in Eclipse 3.3 / CDT 4.0 IDE
CleanC tool box

- Analysis tool implemented
 - Eclipse 3.3 / CDT 4.0 IDE plug-in
 - Restrictions implemented
 - Number of warnings reduced
 - First transformation implemented
 - Lots of visibility in the press
 - Free download available
- Future work
 - Support user specified “regions of interest” to focus on most relevant parts of code
 - Further implement code transformation support

Multi-Core Association

- Multicore Programming Practice (MPP)
 - “[...] has a goal to develop a multicore software programming guide for the industry that will aid in improving consistency and understanding of multicore programming issues. Initially the group is working on best practices leveraging the C/C++ language to generate a guide of genuine value to engineers who are approaching multicore programming. [...]”.

- Officially Working Group Member since end of September
 - Objective is to promote the CleanC guidelines and rules
Memory hierarchy: cache versus scratchpad

- Costly (power, cycles, BW, ...)
- Unpredictable access latency
- Poor scaling to MP
- Simple to program

- More efficient (power, cycles, BW, ...)
- More predictable
- Better scaling to MP
- Harder to program

Tool support needed!

Why is SPM even more important for multi processor systems

- Cache requires more BW than SPM
- Cache coherency → write through → more BW
- No direct L1-L1 communication → more BW
- Main memory becomes central bottleneck → Bad scalability
- Cache usage is implicit for the designer
 - Does not need programming
 - Hard to control → need for simulation/trial and error
MH: A compiler like tool exploiting scratchpad

Copy candidate graphs:
- O(1000) copy candidates
- Too much to manually select and map

Life-time Analysis:
- SPM utilization (in-place mapping)
- Block transfer scheduling (pre-fetch)

Selected Copy Candidates:
- Reuse buffers in SPM

MPEG-4 part 2 SP encoder results:
- 24 copies selected
- 42 block transfers introduced
- 80% of transfer latency hidden
 (i.e. in parallel with processing)

MH Results

- MPEG-4 p2 SP encoder (±8950 lines of C code)

![Execution time and Power charts](chart.png)

- 40% reduction in execution time
- 22% reduction in power
MPA user assisted parallelization tool

- Parallelizes sequential Clean-C source code
 - Correct-by-construction multi-threaded code
 - Higher level than openMP (=less work, exploration ease)
 - Directives in separate file
- Supported types of parallelism
 - Functional split
 - (Coarse) Data-level split
 - Combinations
- Dumps parallel code
- Dumps parallel code
- Sets up communication
 - Communication by means of FIFO's
 - FIFO sizes determined by tool

MPA on MPEG-4 p2 SP encoder

- Prototype tool used to explore different parallel software architecture for MPEG-4 p2 SP encoder
 - 10 parallelization alternatives explored in half a day
 - 20 to 30 lines of parallelization directives

- mc (97M)
- mc (26M)
- ic (92M)
- ic (17M)
- de (8M)
- re (47M)
- te (8M)
- subdata (408M)
- dp (2M)
- packing (18M)
 - ~123 Mcycles
 - ~109 Mcycles
 - ~62 Mcycles

- 3 processors speed x 2.75
- 5 processors speed x 3.11
- 7 processors speed x 5.45
Outline

• Programming multiprocessor platforms
 – Multiprocessor platforms are here today and they are here to stay!
 – Current mismatch between platform and programming model
 – How to map sequential code on a parallel platform?

• IMEC’s MPSoC tool suite
 – Eclipse Code Cleaning plug-in to get your C code in parallel shape
 – MH tool: Memory Hierarchy optimization tool
 – MPA tool: a Multiprocessor Parallelization Assistant

• A concrete case: towards Gbit/s Cognitive Reconfigurable Radio

• Run time management

The need for reconfigurable radio platforms: functional and techno-economical constraints

“>6 radios/terminal in 2009”
Technology roadmaps (2014 horizon):
 Intel, Nokia, TI, Infineon, NXP, ST, Motorola

Advantage 1: lower cost
Advantage 2: higher flexibility
IMEC’s flexible baseband platforms:
From 200 Mbps Software Defined Radio to …

Scaldio
- DFE tile
- SyncPro
- BW optimized scalable interconnect

BASE (Baseband Engine for Adaptive Radio)
- Control (ARM)
- BB engine
- FEC engine
- L2 Periph and HI

... Gbps cognitive reconfigurable radio

Sensing-enabled Digital Front-end
- Crucial ‘Must-have’ Block for CR
- Large scope for innovation
- Need for algorithm-architecture co-design
- (Virtual) silicon proof-of-concept
- Specifications under definition

Baseband/Inner Modem
- Target: 4G requirements (performance and concurrency)
- Power Budget: 250-300mW?
- Performance Budget: 20GOPS
- 20X increase in performance
 - 3X with architecture-extensions
 - 4X with increased cores (Multi-threading and/or more cores)
 - 2X with increased arch-friendly algorithms

FEC/Outer Modem
- FlexFEC will do the job!
- Scale further with specific extensions (DG-LDPC) and to higher data rates

Cognitive Aspects
- More complex system software (platform-level)
 - High-level PHY and time-critical MAC features
 - CR control functionality
 - Run-time support (scheduling and management of tasks)
 - 1 or 2 processors? ARM?
Two ways to higher throughput (Gbps): Exploring multi-threading and multi-processing with MPA

Goal: balanced load and minimal communication overhead

- **Multi-threading** Split per antenna
 - Fork
 - Join
- **Multi-processing** Split per symbol
 - Fork

MAIN Partition

Checked for FFT-only: 2 cycle overhead on 694 cycles; IPC=24.2 out of 32
 Needed: fast switching between threads

Confidential Until Published (submitted to ISSCC 2009)

Needed: low communication between symbols due to lower inter-ADRES communication bandwidth than intra-ADRES

Outline

- **Programming multiprocessor platforms**
 - Multiprocessor platforms are here today and they are here to stay!
 - Current mismatch between platform and programming model
 - How to map sequential code on a parallel platform?

- **IMEC's MPSoC tool suite**
 - Eclipse Code Cleaning plug-in to get your C code in parallel shape
 - MH tool: Memory Hierarchy optimization tool
 - MPA tool: a Multiprocessor Parallelization Assistant

- A concrete case: towards Gbit/s Cognitive Reconfigurable Radio

- Run time management
Run-time manager integrated in the flow

A glimpse of the future

- **What the future brings**
 - More and more run-time solutions required
 - Multi-core evolves to many-core
 - Applications and usage patterns grow increasingly dynamic
 - Advanced CMOS processing technology becomes a source of unpredictability: run-time mitigation of variability/reliability issues
 - Advances in integration technologies
 - 3D-stacking of devices with Through-Silicon-Via
 - Will radically change the way we build memory hierarchies and hence multi-core architectures
Variability in process technology

- All chips are equal – but some will be more equal
- Ageing: degradation of performance over time
- Solutions:
 - Develop software for the worst-case?
 - Adaptive system?
Conclusion

- IMEC’s MPSoC tool suite automates the mapping of single-threaded applications on multi-processor platforms
 - Eclipse Code Cleaning plug-in to get your C code in parallel shape
 - MH tool: Memory Hierarchy optimization tool
 - MPA tool: a Multiprocessor Parallelization Assistant

- The tool suite is used by IMEC and its partners for multi-processor platforms targeting gigabit/s wireless communication.

- The MPSoC technology is currently being transferred to two semiconductor companies, and is available for transfer to others.