
David Stewart | CEO CriticalBlue | 2009David Stewart | CEO

Minimizing the cost and risk when 
migrating software to multicore 

platforms 
24 April 2009

CriticalBlue | 2009Migrating software to multicore platforms

Agenda

• Mainstream Multicore Programming

• What We Heard From Engineers

• How We Are Addressing These Issues

Page 2



CriticalBlue | 2009Migrating software to multicore platforms

Multicore & Software: State of the Embedded Art (1)

Page 3

Desktop/Server/Telecom

Homogeneous
Shared memory

Coherent memory
eg x86 dual/quad
Sun UltraSparc T2

Embedded

Heterogeneous
Distributed memory

Independent memory
eg TI OMAP

Most baseband ICs

CriticalBlue | 2009Migrating software to multicore platforms

Multicore & Software: State of the Embedded Art (2)

Page 4

• Regular C language
• Threading API
• 1-4 cores
• Shared memory



CriticalBlue | 2009Migrating software to multicore platforms

Multicore & Software: State of the Embedded Art (3)

• Putting lots of cores on silicon is relatively simple

• There are many clever memory and communication 
architectures

• However… the mass market of software developers 
haven’t yet adopted multicore programming…

• Because…

• Software developers didn’t ask for multicore!

• Software developers don’t care about multicore 
block diagrams

• Software developers need motivation to migrate 
aggressively to multicore

Page 5

CriticalBlue | 2009Migrating software to multicore platforms

Feedback From Engineers

• We love the C language
– It’s not that C is the perfect parallel language

– 100s of millions of lines of existing code

– Existing code maintenance is a huge overhead

Page 6

• We love our Compiler/IDE/ISS
– Companies typically standardize on a particular toolchain

– Huge investment in the developers’ desktop

– Real world C/C++ is less portable than you might think

• We need motivation to move software to multicore
– Benefits need to be clear before code changes are made

– Multithreading simple to implement, hard to understand



CriticalBlue | 2009Migrating software to multicore platforms

Feedback From Engineers

• Do not synthesize my code!
– Maintaining sequential code is hard enough already

– Requirement to retain control of source code changes

– Identify minimal set of code changes to deliver benefit

Page 7

• We must have confidence in code changes
– Check that the code modifications deliver expected benefits

– Check that no new problems were added

– Check that the code is ‘safe

• We need education in multicore programming
– Lots of FUD, but also plenty of products in the market

– Plenty of buzzwords, less clear explanation

– How does this relate to my code?

CriticalBlue | 2009Migrating software to multicore platforms

Collating The Data

Page 8

1. Analyze – characterize existing code. Identify 
parallelism determining issues

2. Explore – without code changes, evaluate 
alternative concurrent scenarios

3. Implement – select parallelization strategy and 
write code in existing IDE 

4. Verify – check for code safety, race, 
threading and synchronization issues

5. Tune – inspect for further 
performance opportunities on target platform

What might a practical and 
pragmatic flow look like?



CriticalBlue | 2009Migrating software to multicore platforms

JPEG Encoding

Page 9

write header, image properties, and
decode and quantization tables

foreach macroblock {
convert rgb to ycbcr

transform to DCT frequency coefficients
quantize zig zag coefficients
encode huffman bitstream

}

CriticalBlue | 2009Migrating software to multicore platforms

Analysis 1

• Understand serial code profile call tree

Page 10

int mb_encode(mb_t *mb, image_t *image, int row, int col, huffman_t 
*huffman) {

int err;

if ((err = mb_rgb2ycbcr(mb, image, row, col))) return err;
if ((err = mb_dct(mb))) return err;
if ((err = mb_zzquant(mb))) return err;
if ((err = mb_huffman(mb, huffman))) return err;

return 0;
}



CriticalBlue | 2009Migrating software to multicore platforms

Exploration 1:1

• Force mb_encode to run parallel

Page 11

• Resulting Schedule

CriticalBlue | 2009Migrating software to multicore platforms

Exploration 1:2

• Dependencies between macroblocks

Page 12

• Source and Cause



CriticalBlue | 2009Migrating software to multicore platforms

Coding 1

• Thread the mb_encode function

Page 13

err = 0;
for (r = 0, i = 0; r < mb_rows; ++r) {

for (c = 0; c < mb_cols; ++c, ++i) {
// pack each macroblock arguments and launch thread
mbe_arg_pack(&arg[i], image, r, c, huffman, 0);
// each mb created locally
pthread_create(&thread[i], NULL, mbe_func, &arg[i]);

}
}

// wait for threads to finish
for (i = 0; i < mb_rows * mb_cols; ++i) {

pthread_join(thread[i], (void *)&status);
if (!err && arg[i].err) err = arg[i].err;

}

• “Advise, check, but don’t touch our code!”

CriticalBlue | 2009Migrating software to multicore platforms

Verification 1

• Works on single core, 3.6/4x speedup

Page 14

• Fails on multicore, races in Huffman encoder



CriticalBlue | 2009Migrating software to multicore platforms

Exploration 2

• Removing the macroblock ant-dependency is a 
typical parallel code optimization.

• Huffman has inter macroblock dependencies

• Move down a level and try running sub functions in 
parallel

Page 15

CriticalBlue | 2009Migrating software to multicore platforms

Verification 2

• Clean Schedule

• Most functions scale across cores

• Limited by serial Huffman tail

• Potentially uses more memory

Page 16



CriticalBlue | 2009Migrating software to multicore platforms

Pass 3

• Consider function pipelining
– Stage 1: rgb2ycbcr, dct

– Stage 2: zzquant, huffman

Page 17

• Poor load balancing, DCT dominates.

CriticalBlue | 2009Migrating software to multicore platforms

Tuning 3

• Balance pipeline work:
– Parallelize stage 1, serialize stage 2

Page 18

• Sensitive to DCT efficiency



CriticalBlue | 2009Migrating software to multicore platforms

Summary

• We’ve made a start at a practical & pragmatic path for 
sequential to parallel software migration….

• Visit us at www.criticalblue.com and sign up for an 
evaluation….

Page 19

Give us your feedback and help make Prism even better!

www.criticalblue.comand

