

#### **DATE Friday Workshop**

April 24, 2009

Universität Karlsruhe (TH)

#### **Computational Fluid Dynamics on Multicore Architectures**

**Jan-Philipp Weiss** 













- Huge memory requirements / fine mesh resolution
- Low computational intensity of order O(1)
- Bandwidth-bound algorithms
- Non-uniform treatment of boundary conditions

Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft







Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft





Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Universität Karlsruhe (TH) Forschungsuniversität • gegründet 1825







# Elements of projection step

- LSE in projection step solved with conjugate gradient method (cg)
- Number of cg-steps per time step depends on N<sup>1/3</sup>
- Each cg-step consists of

| Function            | Occ. | f       | W        | f/w        |
|---------------------|------|---------|----------|------------|
|                     |      | [#flop] | [#words] | Comp. int. |
| Stencil operation   | 1    | 8N      | 2N       | 4.0        |
| Vector norm         | 1    | 2N-1    | N+1      | 2.0        |
| Dot product         | 1    | 2N-1    | 2N+1     | 1.0        |
| Normalization       | 4    | 2N      | 2N       | 1.0        |
| DAXPY vector update | 3    | 2N      | 3N+1     | 0.66       |

Worst performance for DAXPY vector update

- Easy routine with no data dependencies
- Perfectly parallelizable on coarse and fine-grained platforms





|                             | # Cores | Peak Perform. | Bandwidth  |
|-----------------------------|---------|---------------|------------|
|                             |         | Р             | В          |
| AMD Opteron dual core       | 2       | 8.8 GFlop/s   | 10.6 GB/s  |
| Intel Clovertown quad core  | 4       | 37.2 GFlop/s  | 10.6 GB/s  |
| Sun Niagara T2 octo core    | 8       | 11.2 GFlop/s  | 42.6 GB/s  |
| Cell (2 <sup>nd</sup> gen.) | 8+1     | 102.4 GFlop/s | 25.6 GB/s  |
| ClearSpeed CSX600           | 96      | 55.0 GFlop/s  | 3.2 GB/s   |
| nVIDIA GeForce GTX 280      | 240     | 80.0 GFlop/s  | 140.2 GB/s |

Flop per byte ratio on hardware (in double precision):

(Theoretical values)

Forschungszentrum Karlsru in der Helmholtz-Gemeinsch

16 DATE Friday Workshop | April 24, 2009 | J.-P. Weiss

DAXPY performance on hardware



Universität Karlsruhe (TH)

#### In theory, DAXPY performance is only limited by bandwidth

|                             | Bandwidth  | DAXPY        | Experimental |
|-----------------------------|------------|--------------|--------------|
| Intel Clovertown quad core  | 10.6 GB/s  | 0.9 GFlop/s  | 0.54 GFlop/s |
| AMD Opteron dual core       | 10.6 GB/s  | 0.9 GFlop/s  | 0.34 GFlop/s |
| Sun Niagara T2 octo core    | 42.6 GB/s  | 3.5 GFlop/s  | 1.36 GFlop/s |
| Cell (2 <sup>nd</sup> gen.) | 25.6 GB/s  | 2.1 GFlop/s  | 1.70 GFlop/s |
| ClearSpeed CSX600           | 3.2 GB/s   | 0.3 GFlop/s  |              |
| nVIDIA GeForce GTX 280      | 140.2 GB/s | 11.7 GFlop/s | 9.60 GFlop/s |

(Theoretical / experimental values)



## DAXPY efficiency



### Theoretical DAXPY efficiency

|                             | Performance   | DAXPY        | Efficiency |
|-----------------------------|---------------|--------------|------------|
| Intel Clovertown quad core  | 37.2 GFlop/s  | 0.9 GFlop/s  | 0.02       |
| AMD Opteron dual core       | 8.8 GFlop/s   | 0.9 GFlop/s  | 0.10       |
| Sun Niagara T2 octo core    | 11.2 GFlop/s  | 3.5 GFlop/s  | 0.31       |
| Cell (2 <sup>nd</sup> gen.) | 100.0 GFlop/s | 2.1 GFlop/s  | 0.02       |
| ClearSpeed CSX600           | 55.0 GFlop/s  | 0.3 GFlop/s  | 0.01       |
| nVIDIA GeForce GTX 280      | 80.0 GFlop/s  | 11.6 GFlop/s | 0.14       |

(Theoretical values)

Universität Karlsruhe (TH)

Forschungszentrum Karlsru in der Helmholtz-Gemeinsch

18 DATE Friday Workshop | April 24, 2009 | J.-P. Weiss













