
KIT- Cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) www.kit.edu

04
.0

8

KIT- Cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe (TH) www.kit.edu

04
.0

8

DATE Friday Workshop April 24, 2009

Computational Fluid Dynamics on Multicore Architectures

Jan-Philipp Weiss

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss1

Outline

Motivation
Mathematical cognition vs. hardware reality

Application prototype of computational fluid dynamics
Model problem
Algorithmic characteristics
Considerations for implementation

Performance model and performance bounds

Theoretical and practical performance results

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss2

Motivation

What are the key issues?What are the key issues?What are the key issues?

Accelerators and coprocessors shall be used
for speeding up computations!

Computational fluid dynamics generates complex problems
Mathematical modeling
Parallel implementation
Data layout
Memory consumption and bandwidth utilization
Computational load
Reliability: accuracy, reproducibility, system stability

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss3

Mathematics vs. Reality
What mathematics is telling …

Use locally adapted grids to resolve solution characteristics
Singularities, accumulated errors, huge domains,…

Optimize number of degrees of freedom by redistribution
Adaptive error control and goal oriented meshing

Benefits in results outweigh grid management overhead (70%?)
Indirect addressing, pointer chasing, …

Implicit solution methods are more favorable than explicit methods
Stability and time step limitations

Good strategy for x86 (or related) multi-core CPUs
with automatic data transfers and caching

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss4

Mathematics vs. Reality
What accelerator reality is answering …

Explicit memory transfers require predictable and structured memory
access patterns

Bandwidth bottleneck can only be mitigated by contiguous,
coalesced and aligned memory access

No random or indirect access to memory

Explicit methods allow temporal blocking techniques
Data reuse across several time steps

Algorithms need to be uniformly structured and simple
for best throughput on accelerators

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss5

Chorin-based Navier Stokes Solver
Model problem

Incompressible Navier-Stokes equations

Chorin-type projection method: iterative scheme, k=0, 1, …

Compute :

Compute :

Compute :

����

���������	
in 0

in)

u

fpu(u u ut

�������
�
��

in)
~ 1

kkkk
kk

fuu(u
t

u u

1~ �ku

��
�

�� �� in ~1 11 kk u
t

p
1�kp

����
�
� �

��

in
~

 1
11

k
kk

p
t
uu1�ku

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss6

Chorin-based Navier-Stokes Solver
Algorithm characteristics

Finite-difference discretization on staggered grids
Global coupling between all variables

Advection step
Projection step

Solve Poisson equation for the pressure
Most time-consuming part
Sparse matrices or stencils
Use (preconditioned) conjugate gradient (CG) method
(or multigrid solver)

Velocity update step

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss7

Chorin-based Navier Stokes Solver
Algorithm characteristics

Four basic operations (typical of solution of PDEs)
Sparse matrix-vector multiplication / stencil
(Non)-linear stencil operations

Nearest neighbor interaction
SAXPY / DAXPY vector updates
Dot products

Encapsulated by iterative methods and time stepping schemes

Characteristics
Huge memory requirements / fine mesh resolution
Low computational intensity of order O(1)
Bandwidth-bound algorithms
Non-uniform treatment of boundary conditions

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss8

3D Laplace stencil

Each node associated with a single value
Each data touched seven times
Implicit matrix-vector multiplication

-1

-1

-1

-1-1

-1

6

-1
-1

-1

-1-1
-1

6

kjikjikjikji

kjikjikjikji

fhuuu

uuuu

,,
2

1,,,1,,,1

1,,,1,,,1,,6

����

���

���

���

Blocking strategies required for data reuse

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss9

Observation

Problems of interest are bandwidth-bound

Dedicated strategies need to be applied to achieve good performance

Algorithms need to be designed structured and simple for best
throughput on accelerators

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss10

Memory transfer reduction strategies

Reduction of precision
64-bit (double) – (32-bit) single – lower-bit
Higher memory throughput
May also speed up computations (e.g. in vectorization)
But what about mathematical quality?

Uniform grids
Stencils instead of matrices / implicit matrices
No matrix data and addressing schemes transferred
Kernels computed on the fly

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss11

Memory transfer reduction strategies

Increase spatial locality
Substructure operations
Cache blocking – register blocking – TLB blocking

Increase temporal locality
Keep local copies of data across several iterations
Time-skewing
Circular queue

�Sizes of panels shrink in each step
�Redundant computation and transfers
�Easily parallelizable

�Temporal blocking
�Often referenced in many benchmarks
�Limited practical applicability – only explicit schemes
�Cannot be used in CG-method
�Well suited for some parabolic problems (e.g. heat equation)

�No redundant data transfers
�Inherently sequential
�Panel sizes vary
�Imbalanced work
�Difficult overlap

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss12

Stencil operations
Easily parallelizable by domain sub-structuring
Two different approaches for implementation:

Streaming in and out planes
Reduces data exchange
Requires intermediate data exchange
Queuing planes for overlapping data transfers and computation
Data exchange in 2 or 4 directions

Applicable to
stream processing?

-1
-1

-1

-1-1
-1

6

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss13

Stencil operations
Easily parallelizable by domain sub-structuring
Two different approaches for implementation:

Blocking in sub-cubes
No intermediate data exchange
Smaller planes
Worse surface-to-volume ratio / larger overlap
Data exchange in 6 directions / discontinuous memory access

-1
-1

-1

-1-1
-1

6

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss14

Simple performance model

Run time : TR � max { TC , TT }
TR … total run time of an algorithm
TC … compute time, TC � f / P
TT … transfer time, TT � 8w / B
Classifies compute-bound or memory-bound algorithms

Hardware characteristics
P … peak performance
B … memory bandwidth

Algorithm characteristics
f … number of floating point operations
w … number of memory transfers (words)

We find: effective performance Peff � f / TR � fB / (8w)
Ratio f / w defines computational intensity

We find: effective performance Peff � f / TR � fB / (8w)
Ratio f / w defines computational intensity

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss15

Elements of projection step

LSE in projection step solved with conjugate gradient method (cg)
Number of cg-steps per time step depends on N1/3

Each cg-step consists of

Worst performance for DAXPY vector update
Easy routine with no data dependencies
Perfectly parallelizable on coarse and fine-grained platforms

Function Occ. f
[#flop]

w
[#words]

f / w
Comp. int.

Stencil operation 1 8N 2N 4.0
Vector norm 1 2N-1 N+1 2.0
Dot product 1 2N-1 2N+1 1.0
Normalization 4 2N 2N 1.0
DAXPY vector update 3 2N 3N+1 0.66

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss16

Performance bounds on hardware

Flop per byte ratio on hardware (in double precision):

Cores Peak Perform.
P

Bandwidth
B

AMD Opteron dual core 2 8.8 GFlop/s 10.6 GB/s

Intel Clovertown quad core 4 37.2 GFlop/s 10.6 GB/s

Sun Niagara T2 octo core 8 11.2 GFlop/s 42.6 GB/s

Cell (2nd gen.) 8+1 102.4 GFlop/s 25.6 GB/s

ClearSpeed CSX600 96 55.0 GFlop/s 3.2 GB/s

nVIDIA GeForce GTX 280 240 80.0 GFlop/s 140.2 GB/s

(Theoretical values)

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss17

DAXPY performance on hardware

In theory, DAXPY performance is only limited by bandwidth

Bandwidth DAXPY Experimental
Intel Clovertown quad core 10.6 GB/s 0.9 GFlop/s 0.54 GFlop/s

AMD Opteron dual core 10.6 GB/s 0.9 GFlop/s 0.34 GFlop/s

Sun Niagara T2 octo core 42.6 GB/s 3.5 GFlop/s 1.36 GFlop/s

Cell (2nd gen.) 25.6 GB/s 2.1 GFlop/s 1.70 GFlop/s

ClearSpeed CSX600 3.2 GB/s 0.3 GFlop/s
nVIDIA GeForce GTX 280 140.2 GB/s 11.7 GFlop/s 9.60 GFlop/s

(Theoretical / experimental values)

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss18

DAXPY efficiency

Theoretical DAXPY efficiency

Performance DAXPY Efficiency
Intel Clovertown quad core 37.2 GFlop/s 0.9 GFlop/s 0.02

AMD Opteron dual core 8.8 GFlop/s 0.9 GFlop/s 0.10

Sun Niagara T2 octo core 11.2 GFlop/s 3.5 GFlop/s 0.31

Cell (2nd gen.) 100.0 GFlop/s 2.1 GFlop/s 0.02

ClearSpeed CSX600 55.0 GFlop/s 0.3 GFlop/s 0.01

nVIDIA GeForce GTX 280 80.0 GFlop/s 11.6 GFlop/s 0.14

(Theoretical values)

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss19

Memory considerations

Main memory size
GPUs 512 MB to 4 GB
Cell 256 MB to 16 GB
ClearSpeed 512 MB to 2 GB

Local memory size
Cell 256 KB (private)
nVIDIA GPUs 16 KB (shared)
ClearSpeed 6 KB (private)

Spatial blocking?

3D simulation?

Memory layout
Data alignment
Memory access patterns
NUMA effects

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss20

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 2 3 4 5 6 7 8

saxpy
daxpy

Performance on Multicore-CPUs

Intel Xeon Cluster (X5355 Clovertown), 1 node, 2 sockets, 8 cores
2.7 GHz, 16 GB per node, 2 GB per core

G
Fl

op
/s

Cores

DAXPY / SAXPY Stencil

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss21

Performance on Cell
BladeCenter QS21 / NUMA with RapidMind (single precision)
Transfer cubes of size 163, N=2683 (73 MByte)

0 50 100 150 200 250
0

1

2

3

4

5

6

size of the vector in MByte

G
Fl

op
/s

Performance − saxpy − IBM BladeCenter QS21

Cell BE:0; MEM:0
Cell BE:0; MEM:1
Cell BE:0; interleave
Cell BE:0,1; interleave

0 50 100 150 200 250
0

2

4

6

8

10

12

14

size of the vector in MByte

G
Fl

op
/s

Performance − Laplace Stencil (2) − IBM BladeCenter QS21

Cell BE:0; MEM:0
Cell BE:0; MEM:1
Cell BE:0; interleave
Cell BE:0,1; interleave

SAXPY Stencil (3D CFD)

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss22

Performance on GPU

nVIDIA GTX 280 GPU with 240 stream processors, CUDA

DAXPY Dot product

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss23

Summary

Don’t get blinded by pure GFlop/s performance numbers
What are BLAS 3 kernels good for?
Be aware of mathematical quality of the implementation!

Bandwidth and its efficient utilization are far more important

Critical issues
Data and memory layout
Coalesced and aligned memory access
Blocking techniques for data re-use

Memory size and slow connection to host are limiting factors for
accelerators in applications of computational fluid dynamics

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss24

Acknowledgements

The SRG is granted by Hewlett-Packard and the Concept for the
Future of the Karlsruhe Institute of Technology (KIT) within the
framework of the German Excellence Initiative.

Thanks to Werner Augustin, Dimitar Lukarski, and Michael Rückauer.

DATE Friday Workshop | April 24, 2009 | J.-P. Weiss25

Contact

Further information available at
http://srg-multicore.rz.uni-karlsruhe.de
jan-philipp.weiss@kit.edu

Thank you for your attention.

