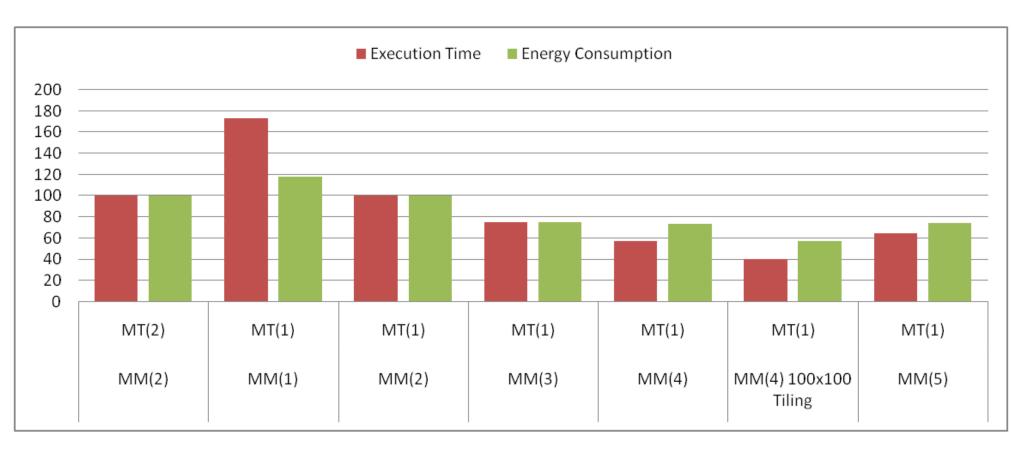


Introduction

- Two main design goals for mobile embedded applica
- High performance
- Low energy consumption \bullet
- Requirements for development tools
- Easy profiling of the performance and energy consumption \bullet
- Easy identifications of energy and performance bottlenec \bullet

Motivations

- Use of power measurement equipments for power pr
- Average embedded software developers are reluctant to understand the software developers.
- They are often too expensive to be widely used \bullet
- Absence of automatic optimization support
 - An efficient implementation often requires to explore a lar \bullet
 - E.g., determining the optimal number of threads for co-rur \bullet


Contributions

- Design of a system development tool, ePRO-MP
 - Profiles both performance and energy consumption of mu
 - Presents the analysis results in the program, thread, and f
- Energy profiling without requiring a power measurem
 - Performance date and a regression-based energy model \bullet
- A limited support for automatic optimization functions
- Two optimization examples are shown

🔶 Prograr	n Vie	w 🔷 Function View	ဓ Thread View 🔀			- 8
						Refresh 🗢
Brief		•				
Thread ID		Cycle	IPC	DL1MissRatio(%)	SPI	Energy(mJ)
thread1	A	228,772,422,056	0.227	3.850	3.390	211,664.800
thread2		229,130,279,563	0.228	3.850	3.399	211,646.840
thread3		228,897,090,718	0.229	3.850	3.365	211,949.190
thread4	IB	423,198,349,513	0.497	0.940	1.013	472,384.910
				 	_	

Optimized target software

Optimization Result of MM-IS Applications

Optimization Result of MM-MT Application

ePRO-MP: energy PRofiler and Optimizer for Multi-Processor

Wonil Choi, Hyunhee Kim, Wook Song, Jiseok Song, and Jihong Kim School of Computer Science and Engineering, Seoul National University, Seoul, Korea

	Model-Based En			
ations •	Power mode	el developr	nent procec	lure
			Random Pr	ogram G
			Automatic Rur	∳ ∩ of Ranc
on of applications				
cks in the application level			Mod	el Genera
			Using Reg	
rofiling			Mod	el Verific
use them		F	Procedure for I	Derivin
•	Power mode	el for ARM	11 MPCore	
	• Constraint:	no per-core	e level power	meası
rge design space	• Power = A	X (Instr / til	те) + В Х (<i>L</i>)L1Acc
nning applications		,	<i>p / time</i>) + E 2	
		```	PLASH-2 be	Υ.
	U		Measured	
ulti-threaded applications function levels ent equipment are used		1.2 1.0 1.0 0.8 0.6 0.4 0.2 0.2 0.0 RADI		1 LU
			parison of Mea	
Developing target software		& a	Exect palyzing Performance Profiling Module Performance Monitoring Program (perfsuite)	<i>iting</i> per
		Interface (PAPI)	HW Control Driver Kernel Extension	Ρ

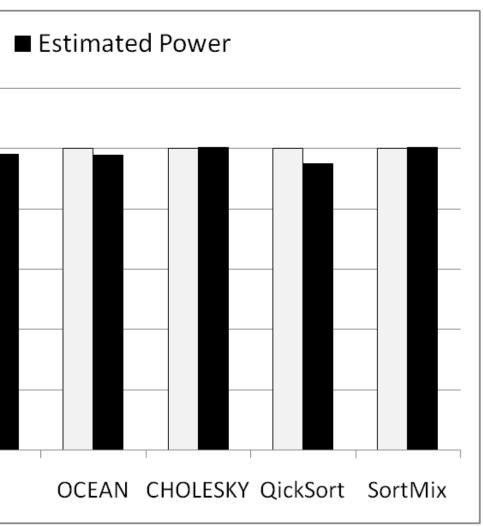
### nergy Profiler

#### Generation

dom Programs

ation Analysis

cation


ng Energy Model

## urement

cess / time) + C X (L2Access / time)

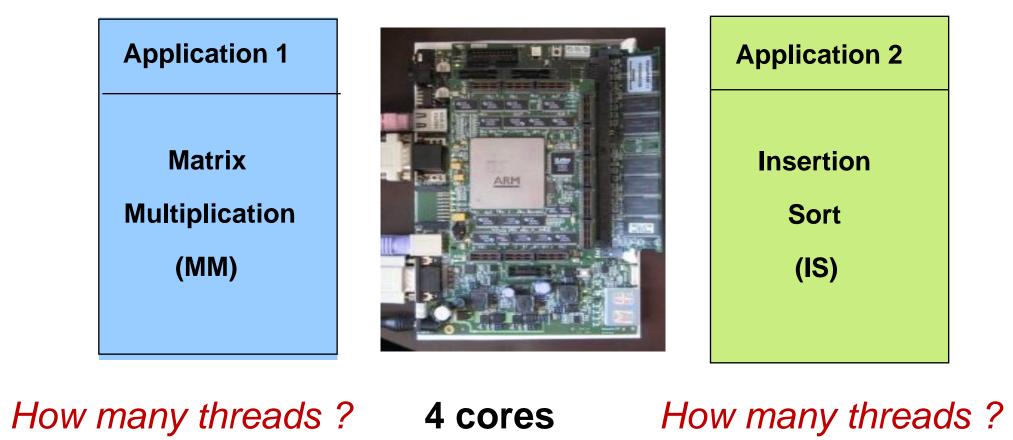
#### hTrans / time) + Fconst

#### ark programs



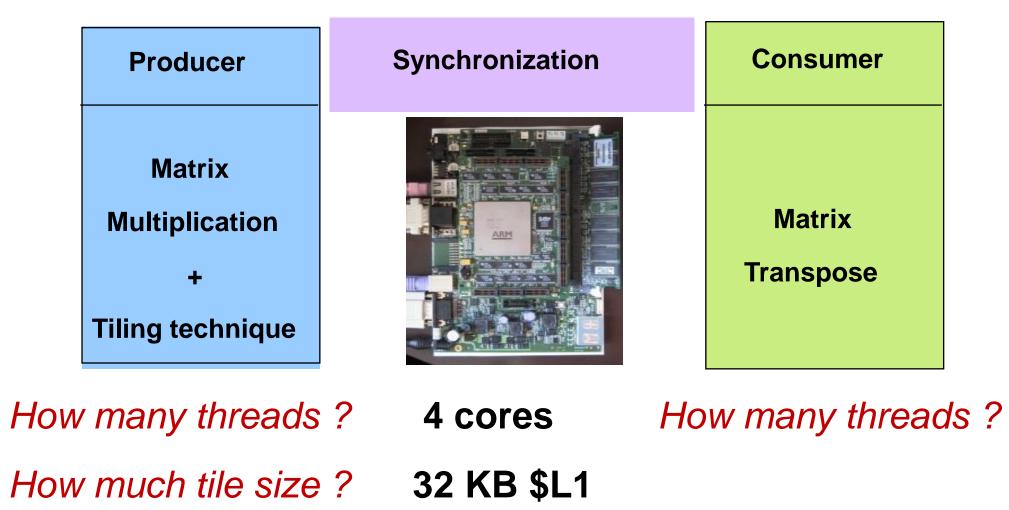
**Power and Estimated Power** 

(perfctr)


**Operating System (Linux)** 

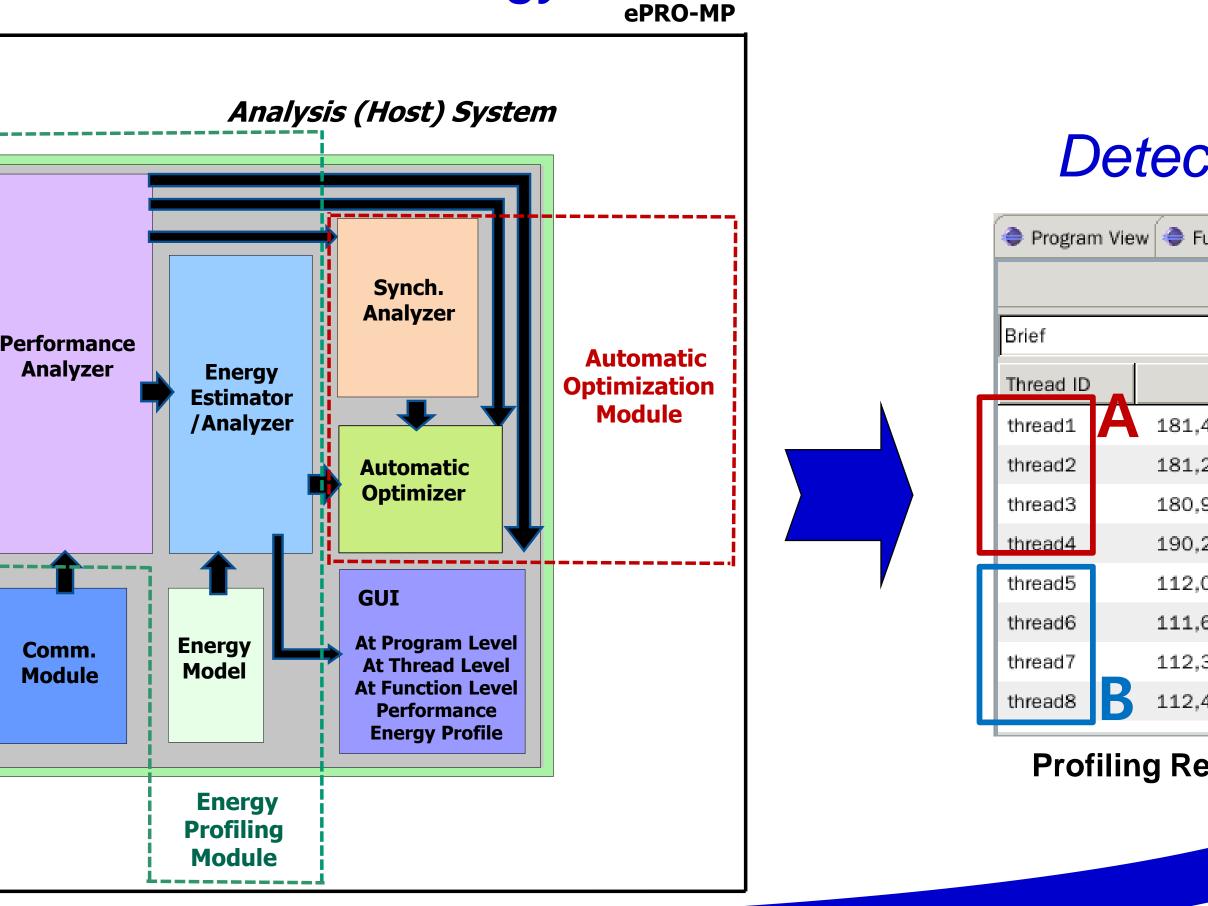
**ARM11 MPCore** 

**Hardware Performance Counters** 


## **Profile-Based Automatic Optimizer**

#### **Optimization Example 1: Co-Running Applications Optimization**




- Results

#### **Optimization Example 2: Producer-Consumer Application Optimization**



- Results

#### 7 target software rtormance and energy







• Three threads for MM(A) and one thread for IS(B) • Performance improvement 6.1% and energy improvement 4.1%

Four threads for MM, one thread for MT, and the tile size close to L1 cache size • Performance improvement 60.5% and energy improvement 43.3%

#### Detecting bottlenecks and hot-spots

Function View 😂 Thread View 🖾 🗖 🗖							
				Refresh 🗢			
Cycle	IPC	DL1MissRatio(%)	SPI	Energy(mJ)			
,402,407,285	0.215	3.870	3.678	163,708.420			
,258,645,863	0.216	3.880	3.498	166,260.150			
,923,039,271	0.216	3.870	3.653	163,642.690			
,283,707,395	0.205	3.890	3.505	174,946.740			
,002,049,989	0.470	0.990	1.159	121,288.450			
,668,147,760	0.471	0.980	1.134	121,507.060			
,392,556,940	0.469	0.990	1.131	122,356.300			
,420,600,848	0.468	0.990	1.162	121,818.490			

Profiling Result of (4, 4) Thread Allocation Shown in Thread Level