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Motivations:
� Direct information flow possible 

between MPA and MH cores

� Fewer preconditions to check

� Facilitates synergies

Design Challenges:
� MH - No support for multi-threaded 

applications

� MH - No support for multi-processor 

platforms

� MPA - Cannot analyze block transfers

� MPA - Not platform-aware
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� Automatic parallelization of sequential 

code

� Scratchpad memory usage optimization 

� Optimization of statically allocated data 

usage and allocation

� Tool for multi-processor platforms

� Natural order:

• First parallelization (MPA)

• Then scratchpad optimization (MH)

Improvements:
�MH core has been made thread-aware

•Reuse opportunities for each thread separately

•Shared variables (arrays) are analyzed globally

�MH core can now model multi-
processor platforms

� Sequential profiling data is 
‘parallelized’ to have accurate 
estimations in each thread

� Automatic BT assignment for 
synchronization

� Shared arrays are correctly analyzed 
and copy sizes are correctly calculated

* This work is developed as a part of the contribution from IMEC in context of the MNEMEE project (European ICT FP7 Embedded Systems Design).
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Cache
•Hardware controlled

•Ad-hoc data selection 
and fetching

Scratchpad + DMA
•Software controlled

•Exploit design-time knowledge 
(data selection, pre-fetching)

Scratchpad optimization with MH[1]:

� Designer provides profiling data and high-level 

platform description

•Array access profiling data

•Platform description

� MH tool analyzes the source code and inserts re-

use buffers and DMA transfers

•Selection of re-use buffers

•Scheduling of DMA transfers

� Execute code

•On scratchpad based platform

•On high-level simulator (HLsim), 
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Functional parallelismData parallelism

Automatic Parallelization with MPA[2]:
� Designer specifies parallelization

•Through a “ParSpec” file

•Assign code-blocks to a thread

•Both functional and data-level parallelism

� MPA tool applies the parallelization

•Create threads

•Insert communication channels

•Insert synchronization constructs

� Execute parallel code

•Using Pthreads-based RTlib on Linux

•Using HLsim with time-annotation

The dividing of a task 
into separate identical 

parts that are executed 
in parallel on different 
items of data.

The dividing of a task 
into separate (different) 

parts that are executed 
in parallel.
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