Source-to-source optimizations
of statically allocated data

Arindam Mallik, Maryse Wouters, Peter Lemmens, Eddy De Greef, Thomas J. Ashby
(arindam, woutersm, lemmensp, degreef, ashby)@imec.be
IMEC vzw, Smart Systems and Energy Technology

Application

Memory Hierarchy Tool

interconnect interconnect

Scratchpad + DMA

*Software controlled

*Exploit design-time knowledge
(data selection, pre-fetching)

Cache

eHardware controlled
*Ad-hoc data selection
and fetching

O Designer provides profiling data and high-level
platform description

*Array access profiling data

Platform description
0 MH tool analyzes the source code and inserts re-
use buffers and DMA transfers

«Selection of re-use buffers

*Scheduling of DMA transfers
0 Execute code

*On scratchpad based platform

*On high-level simulator (HLsim),

MH
C code Data Reuse Copy Candidate
‘ Analysis Graphs
Profiling Life-time
Data Analysis Info
Platform, Cycle and Power|
Model

Automatic Selectiol
and Mapping of

Estimates
Automatic Insertion|
of DMA Transfers
40% 30% 55%

less L2 bandwidth

T

less power

Motivations:

U Direct information flow possible
between MPA and MH cores

U Fewer preconditions to check

U Facilitates synergies

Design Challenges:
U MH - No support for multi-threaded
applications

U MH - No support for multi-processor
platforms

U MPA - Cannot analyze block transfers
U MPA - Not platform-aware

Application
Sequential
ANSI C code

Cleaning tools

Application

Sequential

Clean C code

o
pr

Mapping tools

Platform description
(memory hierarchy)

Parallelization
specification

Application
Parallel
threads C code

k2
Compiler n ‘

L2 ¥
| Compiler 1 | | Compiler 2

¥
Cersatsse) (o) o+ (Ereotven

{ (]} {

Run-time Library API

MP-MH Tool

U Automatic parallelization of sequential
code
U Scratchpad memory usage optimization
U Optimization of statically allocated data
usage and allocation
U Tool for multi-processor platforms
U Natural order:

* First parallelization (MPA)

* Then scratchpad optimization (MH)

Data parallelism

EECN

Functional parallelism

[AN N

immom ! OgEODO
EECE EmER

The dividing of a task
into separate identical
parts that are executed
in parallel on different
items of data.

The dividing of a task
into separate (different)
parts that are executed
in parallel.

Q Designer specifies parallelization
*Through a “ParSpec” file
*Assign code-blocks to a thread
*Both functional and data-level parallelism
Q MPA tool applies the parallelization
*Create threads
eInsert communication channels
«Insert synchronization constructs
Q Execute parallel code
*Using Pthreads-based RTlib on Linux
*Using HLsim with time-annotation

Based on instruction-accurate CoWare ARM11 model

Imp ements:

O MH core has been made thread-aware

*Reuse opportunities for each thread separately
) are analyzed globally
0 MH core can now model multi-
processor platforms

U Sequential profiling data is
‘parallelized’ to have accurate
estimations in each thread

U Automatic BT assignment for
synchronization

U Shared arrays are correctly analyzed
and copy sizes are correctly calculated

*This work is developed as a part of the contribution from IMEC in context of the MNEMEE project (European ICT FP7 Embedded Systems Design).

[1] R Baert, E De Greef, E Brockmeyer, G Vanmeerbeeck, P Avasare,] Mignolet, M Cupak. ratch pad memory management tool and MPEG-4 encoder case study”, in DAC,
[2] R Baert, E Brockmeyer, T Ashby, S Wuyt “Exploring parallelizations of applications for MPSoC platforms using MPA”, in DATE, 2009
[3] J.-Y Mignolet, R Wuyts, “Embedded multi-processor systems-on-chip programming”, To be published in Software, IEEE , vol.26, no.3, May-June 2009

