
Source-to-source optimizations

of statically allocated data

mapping on

MPSoC platforms*

Arindam Mallik, Maryse Wouters, Peter Lemmens, Eddy De Greef, Thomas J. Ashby

(arindam, woutersm, lemmensp, degreef, ashby)@imec.be

IMEC vzw, Smart Systems and Energy Technology

Motivations:
� Direct information flow possible

between MPA and MH cores

� Fewer preconditions to check

� Facilitates synergies

Design Challenges:
� MH - No support for multi-threaded

applications

� MH - No support for multi-processor

platforms

� MPA - Cannot analyze block transfers

� MPA - Not platform-aware

Sequential
Application

Atomium/Analysis

Instrumented
Application

MPA core

MH core

Parallelized
Code Model (AST)
+ annotations

Parallelized
Application with
Scratchpad Mgmt.

Stimuli

Profiling
Data Platform

Model

Par.
Spec.

Atomium/MPMH

Thread
Mapping

MP-MH Tool
� Automatic parallelization of sequential

code

� Scratchpad memory usage optimization

� Optimization of statically allocated data

usage and allocation

� Tool for multi-processor platforms

� Natural order:

• First parallelization (MPA)

• Then scratchpad optimization (MH)

Improvements:
�MH core has been made thread-aware

•Reuse opportunities for each thread separately

•Shared variables (arrays) are analyzed globally

�MH core can now model multi-
processor platforms

� Sequential profiling data is
‘parallelized’ to have accurate
estimations in each thread

� Automatic BT assignment for
synchronization

� Shared arrays are correctly analyzed
and copy sizes are correctly calculated

* This work is developed as a part of the contribution from IMEC in context of the MNEMEE project (European ICT FP7 Embedded Systems Design).

[1] R Baert, E De Greef, E Brockmeyer, G Vanmeerbeeck, P Avasare, J Mignolet, M Cupak, “An automatic scratch pad memory management tool and MPEG-4 encoder case study”, in DAC, 2008

[2] R Baert, E Brockmeyer, T Ashby, S Wuytack, “Exploring parallelizations of applications for MPSoC platforms using MPA”, in DATE, 2009

[3] J.-Y Mignolet, R Wuyts, “Embedded multi-processor systems-on-chip programming”, To be published in Software, IEEE , vol.26, no.3, May-June 2009

CPU

Cache

interconnect

L2

memory

Application

CPU
Scratch-

pad
memory

interconnect

L2

memory

Memory Hierarchy Tool

Cache
•Hardware controlled

•Ad-hoc data selection
and fetching

Scratchpad + DMA
•Software controlled

•Exploit design-time knowledge
(data selection, pre-fetching)

Scratchpad optimization with MH[1]:

� Designer provides profiling data and high-level

platform description

•Array access profiling data

•Platform description

� MH tool analyzes the source code and inserts re-

use buffers and DMA transfers

•Selection of re-use buffers

•Scheduling of DMA transfers

� Execute code

•On scratchpad based platform

•On high-level simulator (HLsim),

C code
Data Reuse
Analysis

Automatic Selection
and Mapping of
Copy Candidates

Automatic Insertion
of DMA Transfers

Profiling
Data

Platform
Model

Copy Candidate
Graphs

Cycle and Power

Estimates

MH

Transformed
C code

Life-time
Analysis Info

0

50

100

150

200

250

SPM 16k D$ 16k D$ 64k

M
il
li
o
n
s

C
y
c
le
s

Active Halt Stall

0

10

20

30

40

50

60

70

SPM 16k D$ 16k D$ 64k

P
o
w
e
r
 [
m
W
]

Processor L1 L2 DMA

0

5

10

15

20

25

SPM 16k D$ 16k D$ 64k

M
il
li
o
n
s

L
2
 A
c
c
e
s
s
e
s

Read Write

40%
higher performance

30%
less power

55%
less L2 bandwidth

0

50

100

150

200

250

SPM 16k D$ 16k D$ 64k

M
il
li
o
n
s

C
y
c
le
s

Active Halt Stall

0

10

20

30

40

50

60

70

SPM 16k D$ 16k D$ 64k

P
o
w
e
r
 [
m
W
]

Processor L1 L2 DMA

0

5

10

15

20

25

SPM 16k D$ 16k D$ 64k

M
il
li
o
n
s

L
2
 A
c
c
e
s
s
e
s

Read Write

40%
higher performance

30%
less power

55%
less L2 bandwidth

Time

D
a
ta

Time

D
a
ta

Functional parallelismData parallelism

Automatic Parallelization with MPA[2]:
� Designer specifies parallelization

•Through a “ParSpec” file

•Assign code-blocks to a thread

•Both functional and data-level parallelism

� MPA tool applies the parallelization

•Create threads

•Insert communication channels

•Insert synchronization constructs

� Execute parallel code

•Using Pthreads-based RTlib on Linux

•Using HLsim with time-annotation

The dividing of a task
into separate identical

parts that are executed
in parallel on different
items of data.

The dividing of a task
into separate (different)

parts that are executed
in parallel.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7

#threads

s
p
e
e
d
u
p
-1

ME

MC

TC

TU

EC

VLC

MC

TC

TU

EC

VLC

ME

MC

TC

TU

EC

VLC

ME ME ME

MC

TC

TU

EC

VLC

ME

MC

ME

MC

EC

VLC

ME ME ME ME

MC MC MC MC

TC

TU

EC

VLC

ME ME ME ME

MC MC MC MC

TC

TU

TC

TU

ME

EC

VLC

MEME

MC MC

TC

TU

TC

TU

A B C D E F G

Based on instruction-accurate CoWare ARM11 model

