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0 MH tool analyzes the source code and inserts re-
use buffers and DMA transfers
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Motivations:

U Direct information flow possible
between MPA and MH cores

U Fewer preconditions to check

U Facilitates synergies

Design Challenges:
U MH - No support for multi-threaded
applications

U MH - No support for multi-processor
platforms

U MPA - Cannot analyze block transfers
U MPA - Not platform-aware
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Run-time Library API

MP-MH Tool

U Automatic parallelization of sequential
code
U Scratchpad memory usage optimization
U Optimization of statically allocated data
usage and allocation
U Tool for multi-processor platforms
U Natural order:

* First parallelization (MPA)

* Then scratchpad optimization (MH)

Data parallelism
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The dividing of a task
into separate identical
parts that are executed
in parallel on different
items of data.

The dividing of a task
into separate (different)
parts that are executed
in parallel.

Q Designer specifies parallelization
*Through a “ParSpec” file
*Assign code-blocks to a thread
*Both functional and data-level parallelism
Q MPA tool applies the parallelization
*Create threads
eInsert communication channels
«Insert synchronization constructs
Q Execute parallel code
*Using Pthreads-based RTlib on Linux
*Using HLsim with time-annotation

Based on instruction-accurate CoWare ARM11 model

Imp ements:

O MH core has been made thread-aware

*Reuse opportunities for each thread separately
) are analyzed globally
0 MH core can now model multi-
processor platforms

U Sequential profiling data is
‘parallelized’ to have accurate
estimations in each thread

U Automatic BT assignment for
synchronization

U Shared arrays are correctly analyzed
and copy sizes are correctly calculated

*This work is developed as a part of the contribution from IMEC in context of the MNEMEE project (European ICT FP7 Embedded Systems Design).
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