
 
 

Abstract 
 
This paper presents a simulation performance improvement 
of the application of the Multicomponent  Discrete Time 
System Specification (MultiDTSS) formalism to a fire 
spread. Multicomponent choice is explained through both 
Multicomponent systems and networks of systems critical 
study for cell spaces modeling and simulation. A new func-
tion has been appended to the MultiDTSS formalism to 
achieve the Active MultiDTSS formalism extension. This 
function allows reducing the calculation domain of diffu-
sion problems to active cells thus reducing execution time. 
The two formalisms have been implemented and are com-
pared with a qualitative and quantitative analysis.   
 
1. INTRODUCTION 
 

Cellular propagation problems are numerous in envi-
ronmental risks (fire spread, oil spills, floods, gas propaga-
tion, etc.). In this type of phenomena, the amount of data to 
store and the number of operations are so large that com-
puter simulation is the only issue to solve the problem effi-
ciently [1]. However, processing such huge data requires 
high computer performances. Numerous present day simu-
lators, based on simple Rothermel’s semi-empirical model 
[2], have been developed [3, 4, 5] for fire spread simula-
tion. However, there is no environment for modeling more 
precise and complex mathematical models, which require 
high computer capabilities.   
 The mathematical model we used intends to add a physi-
cal dimension to semi-empirical models. The model devel-
oped is based on a reaction-diffusion equation with a non-
linear combustion energy term [6]. This class of equation 
does not admit analytical solution. Therefore, a discrete 
time model is used as an approximation of the continuous 
solution. The temperature of each cell of the propagation 
domain is given by a Partial Differential Equation (PDE). 
After discretizing the PDE model, a Cellular Automaton 
(CA) [7] is obtained. A CA represents an infinite lattice of 
discrete time cells. Each cell uses discrete values that 
change according to a local function. This is computed us-

ing the present value of the cell and a finite set of 
neighbors. 

In a first approach we implemented our fire spread 
model as a simple CA [8]. Despite a resolution algorithm 
capable of reducing the calculation time the resultant code 
was very difficult to modify. More methodology was 
needed to deal efficiently with the model complexity and 
we retained the Discrete Event System Specification 
(DEVS) formalism [9]. This formalism allows a modular 
description of the model behavior encapsulated in the 
model definition. Nevertheless, despite a better capability 
for integrating fire spread model evolutions [10], DEVS 
semantic produced a high simulation time cost and DEVS 
model description was quite complex to achieve discrete 
time simulation. Another way to model and simulate fire 
spread is currently explored with the timed Cell-DEVS 
formalism [11] application. This formalism is a combina-
tion of the DEVS and CA formalisms with timing delays 
[12]. Each cell is defined as an atomic DEVS model, and a 
procedure to couple cells is depicted.  Simulation enhance-
ments are currently investigated with Cell-DEVS quantiza-
tion techniques to reduce the message inter-module com-
munication [13]. 

Always based on DEVS formalism, the Multicomponent 
Discrete Time System Specification (MultiDTSS), pro-
posed in [9], permits the elimination of messages exchange 
overhead between cells and hierarchy levels for discrete 
time systems. A cellular system is described on a single hi-
erarchy level by components (or cells) of a Multicomponent 
model. The components influence each other directly 
through their state transition functions. At each time step, 
the specific transition function of each cell of the infinite 
grid is executed. Hence, message interaction is eliminated 
and reduced to system synchronization improving simula-
tion performances. 

However, scanning all cells in an infinite space is impos-
sible, but even in a finite space, scanning all cells all the 
time is clearly inefficient. To enhance performance we re-
duce the calculation domain (the set of cells which state is 
computed at a given time step) to the active cells of the 
domain. To achieve this goal a new function has been ap-
pended to Multicomponents models defining the new Ac-

Optimization of Cell Spaces Simulation  
for the Modeling of Fire Spreading 

 
 

Alexandre Muzy, Eric Innocenti  
and Jean-François Santucci 

 David R.C. Hill 

University of Corsica 
SPE – UMR CNRS 6134 

B.P. 52, Campus Grossetti 
 20250 Corti FRANCE 

e-mail: a.muzy@univ-corse.fr  

 ISIMA/LIMOS UMR CNRS 6158 
Blaise Pascal University 

Campus des Cézeaux BP 10125, 63177 
Aubière Cedex FRANCE 

e-mail: Hill@isima.fr 



 
 
tive MultiDTSS (AMultiDTSS) formalism. The function 
behavior is implemented by means of an original algorithm 
allowing the limitation of the working space to the active 
cells.  

The main contribution of the present paper consists in 
applying the MultiDTSS and AMultiDTSS formalisms to a 
fire spread across a fuel bed. The two formalisms have been 
implemented in C++, and  a comparison between Mul-
tiDTSS and AMultiDTSS applications is provided.  

The following section presents the mathematical model 
used to model fire spread. Then, modeling and simulation 
of cellular systems are presented. In the fourth section, the 
Multicomponent formalism improvement for cellular simu-
lation is exposed. The fifth section is devoted to the de-
scription of the reference simulation model of fire spread 
and to the improved simulation algorithm. In the last sec-
tion, results of basic and optimized simulation are com-
pared quantitatively and qualitatively before making the fi-
nal remarks and prospects. 
 
1. Mathematical model of fire spread 
 

Over the last fifty years, several efforts have been made 
in the field of modeling forest fire spread. The problem 
consists in calculating fire spread rate, flame front position 
and temperature distribution in complex fuel. To make real 
time simulation, complexity of fire spread and data volume 
require having simple mathematical models capable of pre-
dicting the main behavioral features of fire. 

Based on Weber’s classification [14], three kinds of 
mathematical models for fire propagation can be identified 
according to the methods used in their construction. The 
first type includes statistical models [15], which do not 
consider physical information. The second one incorporates 
semi-empirical models [2] based on the principle of energy 
conservation but which do not distinguish between the dif-
ferent mechanisms of heat transfer. Finally, physical mod-
els [16] describe the various mechanisms of heat transfer 
and take the finest mechanisms involved in fire spread into 
account. However, solving such models requires very long 
calculation times and thus they are difficult to integrate into 
functional fire-fighting tools.  
 At present, most real-time simulators are based on 
Rothermel’s stationary model. This is a one-dimensional 
semi-empirical model, in which a second dimension can be 
obtained using propagation algorithms integrating empiri-
cally wind and slope. In the last few years, we planned to 
add a physical dimension to the semi-empirical models to 
increase their precision and integrate in a more robust man-
ner the wind and slope effects. This model is a non-
stationary two-dimensional semi-physical model [6]. 

 The model uses elementary cells of earth and plant mat-
ter. The temperature of each cell is represented by a PDE: 

  )(
t

QTKTTk
t
T v

a ∂
∂σ

∂
∂ −∆+−−= in the domain                 (1a) 

σv = σv0  if T < Tig                (1b) 
σv = σv0.e-α(t-tig)  if T ≥  Tig             (1c) 
T(x,y,t) = Ta  at the boundary            (1d) 
T(x,y,t) ≥ Tig  for the burning cells          (1e) 
T(x,y,0) = Ta  for the non burning cells at t=0       (1f) 

 
 Where, considering a cell, Ta (300K) is the ambient tem-
perature, Tig (573K) is the ignition temperature, tig (s) is the 
ignition time, T  (K) is the temperature, K  (m².s-1) is the th-
ermal diffusivity, α (s-1) combustion time constant, σv 
(kg.m-2) is the vegetable surface mass, σv0 (kg.m-2) is the 
initial vegetable surface mass (before the cell combustion). 
 The model parameters are identified from experimental 
data of temperature versus time. The heat transfer of the 
model is schematized in Figure 1. 

t
Q

∂
∂ νσ

( )aTTk −

TK ∆TK ∆
 

Figure 1. Heat transfer of the semi-physical model 
 

Two numerical methods that can be used to discretize 
the model: the Finite Element Method (FEM) and the Finite 
Difference Method (FDM). In a previous study, we applied 
these two methods [17]. Although they provided the same 
results, the FEM appeared more complex to implement, and 
produced longer execution time. Thus, the FDM was cho-
sen because of its simplicity and good performance. 
 The study domain is meshed uniformly with cells of 1-
cm² and a time step of 0.01 s. The physical model solved by 
the FDM, leads to the following algebraic equation: 

( ) k
ji

k
v

k
ji

k
ji

k
ji

k
ji

k
ji dTtcQTTbTTaT ji ,

1
1,1,,1,1

1
, ,/)()( +++++= +

+−+−
+ ∂∂σ   (2) 

 Where Tij is the grid node temperature. The coefficients 
a, b, c and d depend on the time step and mesh size consid-
ered. 
 
2. Modeling and simulation of cellular systems 
 

Our modeling approach [18] is based on reductionism 
[19]. This concept consists in decreasing the complexity of 
a problem reducing the behavior of the system to the behav-
ior of its parts. Abstraction and description hierarchies help 



 
 
us to achieve this goal. The abstraction hierarchy [20] con-
sists in understanding the complexity focusing on pertinent 
information. At the same abstraction level, the description 
hierarchy [9] allows describing a system by a set of sub-
systems. Our choice to handle this complexity was to retain 
the abstract simulator principles [21]. An abstract simulator 
is an algorithmic description of how to carry out the in-
structions implicit in DEVS models to generate their behav-
ior. Considering a cellular system as a black box, a distinc-
tion has to be made between system structure and behavior. 
Starting from system structure allows understanding its be-
havior. The overall system behavior is performed by enti-
ties communication. However, the multiplication of the 
interfaces configuration for each modular component 
increases algorithmic complexity [22]. It is much easier to 
coordinate the overall behavior in a single algorithm. This 
is the purpose of Multicomponent specification. At the top 
of Figure 2, a first level of description hierarchy is used to 
split the cellular system into component models. Multicom-
ponent modeling eliminates interface configuration because 
components models influence each other directly through 
their state transition functions and the overall behavior is 
managed by the Multicomponent model. As depicted in 
Figure 2, using abstract simulation principles, simulation 
trees independent from the cellular models are automati-
cally generated.  
 In networks of models specification, simulators are in 
charge of managing the atomic cells and a coordinator, cor-
responding to the coupled model, manages the simulators 
communication. Communication between simulators is per-
formed by the exchange of messages. A root processor im-
plements the overall simulation loop by sending messages 
to the coordinator. 

Y0

Yn

.
.
.

Coo

S0

S1
S2

Sn

Root

X YX Y

Root...

SimulationModeling

Abstraction level 2
Network of models

decomposition

Abstraction & Description
level 1

Cellular system

Description level 2
Multicomponent model

*
*

*
*

*

*

* message exchange

...

description

Sim

X0

Xn

.
.

.

Figure 2. Comparison of modular and  
non-modular simulation 

  In Multicomponent models specification, simulators and 
coordinator are imploded in a single simulator correspond-
ing to both components and Multicomponent model. This 
global simulator activates component transition function. 
As a component’s state can be directly calculated accessing 
its influencers, state message interaction between the cells 
is not needed any more. This results in a message overhead 
reduction, and thus in a first simulation time reduction. 
Moreover, canceling interface configuration used for modu-
lar communication reduces algorithmic complexity and 
leads to a second simulation time improvement. 
 
3. Multicomponent improvement 
 

DEVS unicity (or networks of systems) allows modeling 
and simulating all Multicomponent systems. However, 
Multicomponent approach reduces modeling and simulation 
complexity of cellular systems.  
 In our fire spread model the temperature of each cell is 
discretized. This means that if a cell is activated at time t, it 
will be reactivated at time t+h (where h is the time step). 
One solution could consist in applying discrete event simu-
lation to the fire spread model to concentrate simulation to 
active cells. However, for numerous active cells, working 
on a discrete time base, discrete event simulation is ineffi-
cient and produces a high simulation cost [10, 22]. There-
fore, we choose here to use the MultiDTSS formalism for 
modeling and simulation of discrete cell spaces. We pro-
pose a formalism extension to concentrate simulation to the 
cells, which can potentially change state at next time step. 

 
3.1.  MultiDTSS formalism 
 

A Multicomponent Discrete Time System Specification  
(MultiDTSS) for cellular models is a structure: 

MultiDTSS = <X, D, {Mij}, h> 
With 
 X is an arbitrary set of input values,  
 h is the interval to define the discrete time base, 

 is the index set. 
 

For each d ∈  D, the component Md is specified as 
Md  = <Qi,j, Yi,j, Ii,j, δi,j, λi,j > 

Where Qi,j is an arbitrary set of states of outputs of d, Ii,j 
⊆  D is the set of influencers of d,                           is the 
state transition function of d, and          is the 
local output function of d. 

In a MultiDTSS, the set of components jointly generate 
the dynamics of the system. Each of the components owns 
its local state set, a local output set, a local state transition 
and an output function. Based on the state of the influenc-

{ }IjIijiD ∈∈= ,/),(

jiiIiji YxXQX
d

,, : →
∈

λ
jiiIiji QxXQX

d
,, : →

∈
δ



 
 

MultiDTSS Environment

Root

SimulatorSimulator

Multicomponent

Component Component Component

ing components i ∈  Id and on the current input value, the 
component determines its next state and its contribution to 
the overall output of the system.  
 In propagation problems, an individual component has a 
set of influencing components, called its neighbors. Its state 
transition function defines new state values only for its own 
state variables and does not set other component’s states 
directly. It only influences them indirectly because the state 
transitions of the other components depend on its own state. 
Therefore, the next state function of the overall Multicom-
ponent system can be visualized as having all the compo-
nents look at the state values of their individual influencers. 
Each component (or cell) has its own state variables, its in-
fluencers (its neighborhood) and its behavior. 
 
3.2.  Active MultiDTSS extension 
 

In discrete time cellular systems, at every time step only 
a few components generally undergo a state transition. In 
this case all the cells do not need to be scanned at every 
time step as in a CA. Hence, calculating only the future 
state of the active cells improves the simulation perform-
ances. 
 As schematized in Figure 3, we use here the basic ideas 
exposed in [9] to predict whether a cell will possibly 
change state or will definitely be left unchanged in a next 
global state transition: A cell will not change state if none of 
its neighboring cells changed state at the current state 
transition time.  
 We depict here the approach step by step: 

• In a state transition mark, the cells that changed 
state, 

• From those, collect the cells that are their neighbors, 
• The set collected contains all cells that can possibly 

change at next step, 
• All other cells will definitely be left unchanged. 

Global state at time t Global state at time t+h

only that cells need to be
examined

cell that changed state at
last cycle

 
Figure 3. Collecting active cells 

 
Based on these principles, we define here the Active 

Multicomponent Discrete Time System Specification 
(AMultiDTSS) extension of MultiDTSS: 

AMultiDTSS = <X, D, {Mij}, h, Activate> 
 Where  X, h, Mij and D are the same as for the Mul-
tiDTSS system. The only difference with the MultiDTSS 

structure is the Activate function, Activate : D � D’, which 
computes the new index set D’  from the component states 
of the old index set D. The new index set is obtained scan-
ning the state of each cell of the old set:   
            . Hence, component d is 
activated if one of its neighbors or d itself changed state. 
 
4. Simulation models of fire spread 
 
The object oriented simulator we developed enables the di-
rect expression of models in MultiDTSS formalism. As de-
picted in Figure 4, our simulator is composed of four main 
objects: root coordinator, simulator, Multicomponent and 
components. 
 
 

 
 
 
 
 
 

 
Figure 4. The main objects of our simulator 

 
 Based on the numerical model of fire spread (2), basic 
behavior of the cells has now to be specified. Diffusion 
processes spread by degrees. As fire proceeds, diffusion 
slightly heats cells away from the fire front. Neglecting the 
temperature of these cells allows reducing the calculation 
domain, thus saving simulation time.  

4.1. Basic simulation model 

Figure 5 depicts a simplified temperature curve of a cell in 
the domain.  We consider that above a threshold tempera-
ture, Tig the combustion occurs and below a Tf temperature 
the combustion is finished. The end of the real curve is pur-
posely neglected to save simulation time. Three phases cor-
responding to cell’s behavior are defined from these as-
sumptions. A cell has phases unburned, on fire and burned. 

 t  (Ta, tig) 

 Tf  = 333 K
 Tig = 573 K 

 T (Kelvin) 

  heating   burnedon fire   unburned  
Figure 5. Simplified temperature curve of a cell of the do-

main 

{ }ht
lk

t
lkji qqIlkjiD +≠∈∋= ,,, /),(/),('



 
 

 
In Figure 6, we present the output and transition state 

functions used to model fire spreading. The output function 
is used to return the temperature of a cell to the root for 
printing. The transition state function allows computing the 
next state of the component. This new state is computed us-
ing current state, input and the influencer set Id of compo-
nents. 

 
//state variables 
temperature = 300; 
ignitionTime = 0; 
temperatureState = ’A’; 
  
//’A’: the cell is at the ambient temp. 
//‘U’: the cell is unburned 
//‘O’: the cell is on fire  
//‘B’: the cell is burned 

 
spreadState=’I’;    
 
//’I’: propagation state = Inactive 
//‘Bo’: bordering state 
//‘H’: heated state 
//‘A’: active state 

 
cellBorder=false; 
 
//output function of the cell 
λ() { return temperature } 
 
//transition state function of the cell 
transitionF(I1,I2,I3,I4,x) 
 
  //equation constants 
  a, d, c, alpha, deltat 
   
  If(!cellBorder)  
  Then       //limit condition 
 Switch(getState()) 
   Case ‘A’: 
     NextTemp � 300 
      EndCase 
 
      Case ‘U’: 

nextTemp�d*temperature+a*(I1+I2+I3+I4)+c*e
xp(-alpha*((x) *deltat))+0.213 

 
        If(nextTemp >= 573) Then 
          setIgnition(time)  
    //record ignition time 
    //-->new state 
          setState(‘B’) 
        Endif 
      EndCase 
    
      Case ‘O’: 
        If(next_temp > 373) Then 

nextTemp�d*temperature+a*(I1+I2+I3+I4)+
c*exp(-alpha*((x)*deltat-
ignition*0.01))+0.213 

        Else 

          setState(‘B’) 
          nextTemp�300 
        EndIf  
       EndCase 
 
      Case ‘B’: 
        nextTemp�300 
      EndCase       
 
    End Switch 
  EndIf 
End Function transitionF(I1,I2,I3,I4,x) 

 
Figure 6. Cells' behavior algorithm 

4.2. Simulation model improvement 

As illustrated in Figure 3, if cells have adjacent 
neighborhood it can be noticed that amongst the cells, 
which need to be examined, some are already active. In this 
case, it is easy to understand that if cells remain active dur-
ing a long simulation time the number of active cells will 
quickly grow requiring more and more computer capabili-
ties. This is the problem of fires, which spread by degrees. 
 To obtain good performance the entire active cells can-
not be tested. A new algorithm, which consists in testing 
only the neighborhood of the active bordering cells of a 
propagation domain, has therefore been defined for this 
type of phenomena. The algorithm is presented in the "ac-
tiveCalculus()" method of Figure 6. For comparison, the 
basic discrete approach calculating all the cells of the do-
main is also described in the "discreteCalculus()" method of 
Figure 7.  
 In discrete approach all the transition functions of the 
cells are calculated at each time step and stored in a tempo-
rary table. Our approach consists in controlling the calcula-
tion domain modifications by testing the temperature gradi-
ent at the edge of the domain. Hence, the domain is 
increased or decreased by testing the temperatures at its 
borders. As long as these temperatures are not very impor-
tant the domain remains the same.  
 Propagation phases, defined in the cell algorithm of Fig-
ure 6, have been added to the cells: 

• inactive at the initialization, 
• heated for the cells in front of the bordering cells, 
• active for the cells behind the bordering cells, 
• bordering for the bordering cells. 
 

discreteCalculus Function() 
 
 For all the cells of the domain Do 
      stateComponent(i,j)�transitionF(i,j,t) 
 EndFor 
 
End Function discreteCalculus() 



 
 
activeCalculus Function() 
 
For all the cells of the index set Do 
 
    stateComponent(i,j)�transitionF(i,j,t) 
 
    If(stateComponent(i,j)<>’B’)  
    Then  
        // the cell is not burned 
  Add the cell to the new index set 
    EndIf 
 
    If(getSpreadStateComponent(i,j)==’Bo’)Then 
      If (all the neighbors<>‘H’) Then 
    setSpreadStateComponent(i,j,’A’) 
      EndIf 
    Else 
      If (one of the neighboring cell is heated) 
         stateComponent(i,j)�transitionF(i,j,t) 
     
         If(spreadTest(nextTemp)) Then 
            setSpreadState(i,j,‘Bo’) 
            add the cell to the new index set 
         EndIf 
      EndIf 
    EndIf 
EndFor 
 
Replace the old set by the new one 
 
End Function ActiveCalculus() 
 
bool spreadTest(temp) Function 
 
 If(temp >= (300 + x)) 
  return true 
 Else 
  return false 
 EndIf 
 

End Function spreadTest(temp) 
 

Figure 7. Discrete and active calculus functions  
embedded in the simulator 

 
As depicted in Figure 8, only the bordering cell tests its 
neighborhood, this allows reducing the number of testing 
cells. The test, described in the spreadTest() function of 
Figure 7, depends on the temperature of the heated cells. If 
the temperature of a heated cell is greater than Ta + x Kel-
vin, the cell becomes a bordering cell. When a bordering 
cell has not heated neighbors any more the cell becomes ac-
tive.  
 

The cells of the calculation domain (inactive and border-
ing cells) correspond to the index set of the simulator. At 
the initialization, the index set is composed of all the ig-
nited cells. At each time step, new heated cells are added to 
the index set and the burned cells are removed from the for-
mer to achieve the new index set. 

t t+1 t+2
?

? ?

active

bordering

heated
 

Figure 8. Calculation domain evolution  
  
5. Simulation results 
 

We used experimental fires conducted on Pinus Pinaster 
litter, in a closed room without any air motion, at the INRA 
(Institut National de la Recherche Agronomique) laboratory 
near Avignon, France [23]. These experiments were per-
formed to observe fire spread for point-ignition fires under 
no slope and no wind conditions. The experimental appara-
tus was composed of a one square meter aluminum plate 
protected by sand. A porous fuel bed was used, made up of 
pure oven dried pine needles spread as evenly as possible 
on the total area. 

As depicted in Figure 9, a point-ignition has been 
simulated by initializing center cells with a temperature 
gradient. This gradient avoids not to create thermal shock 
having more homogenous initial conditions for the semi-
physical model. The simulated fire front obtained igniting 
the center of the plate is represented in Figure 10. Fire 
spreads circularly and symmetrically up to the plate bor-
ders. 

active

bordering

heated

873

773

673

573

473

373

 
Figure 9. Initial evolving calculation domain 

 
Figure 11 depicts the simulation time gain for different 

temperature gradient and a real propagation of 200s on a 
processor AMD Duron 500 MHz. With basic discrete simu-
lation, the propagation is simulated in 160s. For a tempera-



 
 

0
20
40
60
80

100
120
140
160
180

0 10 20 30 40 50 60 70

temperature gradient (K)

ex
ec

ut
io

n 
tim

e 
(s

)

active simulation

discrete simulation

0

1000

2000

3000

4000

5000

0 50 100 150 200

simulation time (s)

nu
m

be
r o

f a
ct

iv
e 

ce
lls 1 K

30 K

40 K

ture gradient of only 1K, the performance improves by 20s. 
From a temperature gradient of 10K to 30K, the perform-
ance gain remains about 30s. The simulation time drops to 
100s for temperature gradients greater than 40K 

0

25

50

75

100

X

0

25

50

75

100

Y

X Y

Z
949
905
862
819
776
732
689
646
603
559
516
473
430
386
343

T (K)

 
Figure 10. Fire spread simulation of a point ignition 
 
 
 
 
 
 
 

 
 

Figure 11. Execution time gain over temperature gradient of 
the test for a real propagation of 200s 

 
Figure 12 compares the fire fronts generated for differ-

ent temperature gradients. For temperature gradients of 1K 
and 0K the fires fronts are similar. Up to a 30K gradient the 
fire fronts obtained with active simulation are slightly 
ahead of the fire front obtained without temperature gradi-
ent. Above a temperature gradient of 40K, we observe that 
the simulated fire front suddenly becomes incoherent. 
Small fire fronts propagate according to cardinal directions. 

 
 
 
 
 

 
 

 
 
 
 

 
Figure 12. Simulated fire fronts obtained for different 

temperature gradients 
  

Figure 9 helps to comprehend this result. We under-
stand that the gradient test condition becomes too important 
above 40K. The bordering cells of the point ignition con-
tinuously test the heated cells. Until the heated cells do not 
satisfy the temperature gradient test, the fire does not 
propagate. Hence, because of cardinal neighborhood the 
corner cells next to the heated ones are not ignited. This re-
sults in four linear fire fronts propagation. Below a tem-
perature gradient of 40K, initial ignition is boosted by the 
evolving conditions and the fire front is speeded up.  

 
 
 
 
 
 
 
 
 

 
Figure 13. Evolution of the number of active cells during 

the simulation for different temperature gradients 
 
The evolution of the number of active cells during the 

simulation for different temperature gradients is presented 
in Figure 13. We notice that even with a temperature gradi-
ent of 1K the number of active cells never exceeds 5000 
cells i.e. less than one half of the total number of cells. Un-
der 50s fire speed grows quickly, this is the transitory state 
[6]. Above 50s, fire front speed reaches a steady state. This 
explains the change of slope at 50s for the number of active 
cells. Above 150s, the number of active cells decreases be-
cause fire reaches the plate borders. 
  
6. Conclusion 
 

A high performance fire spreading simulation based on 
Multicomponent formalism has been proposed which facili-
tates the modifications of cells behavior. The Multicompo-
nent formalism has been improved by adding an active 
function. An original algorithm has been implemented to 
focus the simulation on active cells of an infinite lattice for 
diffusion problems. The boundary test of the algorithm al-
lows a generic simulation of diffusion problems whilst in-
curring slightly controlled error. Fire spread simulation al-
lowed us to study finely active algorithm performance 
through physical phenomena. Relevance and domain of va-
lidity of the algorithm have been studied through the num-
ber and percentage of active cells. According to different 
gradient tests, the error has been quantified. 



 
 
 Interesting time improvements and a very few errors 
have been obtained for small gradient temperatures. Since 
there were few active cells during the simulation, perform-
ance gain are excepted to be more effective for higher do-
main sizes.  The combination of the Multicomponent for-
malism with our algorithm enables us to obtain 
performances under real-time deadlines. We need now to 
develop a more sound and formal approach enabling to 
model and simulate cellular systems undergoing structural 
changes.  

Currently, few works exist in structurally dynamic dis-
crete time cellular systems. The most relevant are Structur-
ally Dynamic Cellular Automata (SDCA) [24]. Neverthe-
less, SDCA are highly restricted by the finite state of 
cellular automata. Hence, we aim to use the Dynamic Struc-
ture Discrete Time System Specification (DSDTSS) for-
malism [25] for modeling and simulating multicomponent 
discrete time systems undergoing structural changes (calcu-
lation domain restriction, neighborhood changes etc.). Fire 
spreading applications will allow us to validate this new 
approach. 
 
10. References 
 
[1] D. Hill “Object-Oriented Analysis and Simulation”, Addison-
Wesley, 1996. 
[2] R.C. Rothermel “A mathematical model for predicting fire 
spread in wildland fuels”, USDA, Forest Service Research, Paper 
INT-115, 1972. 
[3] M. Finney and K.C. Ryan “Use of the FARSITE fire growth 
model for fire prediction in US National Parks”, in Proceedings of 
the International Emergency Management and Engineering Con-
ference, San Diego, CA: SCS, 1995, pp. 183-189. 
[4] P.L. Andrews “Behave: Fire behavior prediction and fuel 
modelling system-BURN Subsystem”, part1, USDA Forest Ser-
vice, Intermountain Forest and Range Experiment Station, General 
technical Report INT-19, 1986. 
[5] J.D. Miller and S.R. Youl “Modelling fire in semi-desert 
grassland/oak woodland: the spatial implications”, Ecological 
Modelling, volume 153, issue 3, 2002, pp.229-245. 
[6] J.H.  Balbi and P.A. Santoni “Dynamic modelling of fire 
spread across a fuel bed”, Int. J. Wildland Fire, 1998, pp. 275-
284. 
[7] S. Wolfram “Theory and applications of cellular automata”, 
Advances series on complex Systems, 1, World Scientific, Singa-
pore, 1986. 
[8] P.A. Santoni “Elaboration of an evolving calculation domain 
for the resolution of a fire spread model”, Numerical heat transfer, 
Part A, (33), 1998, pp. 279-298. 
[9] B.P. Zeigler, H. Praehofer and T.G. Kim “Theory of model-
ling and simulation”, 2nd Edition, Academic Press, 2000.  

[10] A. Muzy, T. Marcelli,  A. Aiello,  P.A. Santoni, J.F. Santucci 
and  J.H.  Balbi “Application of DEVS formalism to a semi-
physical model of fire spread across a fuel bed, 13th European 
Simulation Symposium and Exhibition (South France), 2001, pp. 
641-643. 
[11] G. Wainer and N. Giambiasi “Application of the Cell-DEVS 
paradigm for cell spaces modelling and simulation”, Simulation, 
76 (1), 2001, pp. 22 - 39. 
[12] N. Giambiasi and A. Miara “SILOG: A practical tool for 
digital circuit simulation”, Proceedings of the 16th D.A.C., U.S.A., 
1976.  
[13] A. Muzy, E. Innocenti, G. Wainer, A. Aiello and J.F. San-
tucci  “Cell-DEVS quantization techniques in a fire spreading ap-
plication”, proceedings of the Winter Simulation Conference 2002 
– Exploring new frontiers, San Diego, USA, 2002, pp. 542-549. 
[14] R.O. Weber “Modelling fire spread through fuel beds”, 
Progress in Energy and Combustion Science, 17, 1990, pp. 67-82. 
[15] A.G. McArthur “Weather and grassland fire behaviour, Aus-
tralian Forest and Timber Bureau Leaflet, 100, 1966. 
[16] F.A. Albini “A model for fire spread in wildland fuels by ra-
diation”, Combustion Science and Technology, 1985, (42) 229 - 
258. 
[17] P.A. Santoni “Propagation de feux de forêt, modélisation dy-
namique et résolution numérique, validation sur des feux de li-
tière”, PhD thesis of the University of Corsica, 1997.  
[18] A. Aiello, J.F. Santucci, P. Bisgambiglia and M. Delhom “An 
object oriented simulation framework based on hierarchical multi-
views modelling concepts”, in proceedings of Object Oriented 
Simulation, SCS, Sherton Crescent Hotel, Phoenix, Arizona, 1997, 
pp. 73-78. 
[19] H. Simon “The sciences of the artificial”, Cambridge MIT 
Press, 1969. 
[20] C. Oussalah,  N. Giambiasi and R. Lbath “A framework for 
modelling and linking the structure and the behavior of a system”, 
in P. Born, Artificial Intelligence in Scientific Computation : To-
wards Second Generation Systems. J.C. Baltzer AG, Scientific 
Publish. Comp. Basel-Switzerland, 1989. 
[21] B.P. Zeigler “Multifacetted modelling and discrete event 
simulation”, Academic Press, London and Orlando, FL, 1984. 
[22] A. Muzy, G. Wainer, E. Innocenti, A. Aiello and J.F. San-
tucci  “Comparing simulation methods for fire spreading across a 
fuel bed”, in proceedings of the AIS 2002 – Simulation and plan-
ning in high autonomy systems conference, Portugal, 2002, pp. 
219-224. 
[23] J.H. Balbi, P.A. Santoni and J.L. Dupuy “Dynamic modelling 
of fire spread across a fuel bed”, Int. J. Wildland Fire, 1998, pp. 
275-284. 
[24] Hilachinski and P. Halpern “Structurally dynamic cellular 
automata”, Complex Sytems, 1987 , (1), pp. 503-527. 
[25] F. Barros “Dynamic Structure Discrete Event System 
Specification Formalism”, Transactions of the Society for Com-
puter Simulation, 1996, (1), pp. 35-46. 


