
Weaving of Domain-Specific modelling Languages
A literature review

Rafael Ugaz
rafael.ugazriofrio@student.uantwerpen.be

January 30, 2014

Abstract

As the use of Domain Specific modelling Languages (DSLs) in model-
driven engineering (MDE) increases, so does the need for their combina-
tion. The combination of DSLs allows for the re-use of existing DSLs so
that designers do not have to start from scratch. It also enables the use
of smaller DSLs to specify a complete system, where each DSL provides a
different view of it. These features, already present in the programming
languages world, provide reusability and modularity, which in turn can
increase the productivity and overall quality of the final product. The
term weaving is inspired by aspect oriented modelling (AOM) where as-
pect models are combined or weaved into a base model. In this paper, a
literature review of the current techniques for DSL weaving is provided,
along with a classification of approaches in order to discover areas for
future research.

1 Introduction

As the use of Domain Specific modelling Languages (DSLs) [14] in model-driven
engineering (MDE) [34] increases, so does the need for their combination. The
combination of DSLs allows for the re-use of existing DSLs so that designers
do not have to start from scratch. It also enables the use of smaller DSLs
to specify a complete system, where each DSL provides a different view of it.
These features, already present for programming languages, provide reusability
and modularity, which can increase the productivity and overall quality of the
final product. We define DSL weaving as the combination or composition of
two or more DSLs together. The term weaving is inspired by aspect oriented
modelling (AOM) where aspect models are combined or woven into a base model.
In this paper, a literature review of the current techniques for DSL weaving is
provided, along with a classification of approaches in order to discover areas for
future research.

A DSL is formed by three main elements: abstract syntax, concrete syn-
tax and semantics. The main idea of DSL weaving in this paper is that, since

1

the three elements can be represented as models, the strategy for DSL combi-
nation decomposes into three different model combinations. DSL weaving has
many applications in the area of DSL engineering since it is required for any
approach that follows the separation of concerns principle. This principle states
that a system can be modelled by multiple models where each one represents
an important view or aspect of it. Modelling a system in this manner provides
modularity and reusability, two important aspects of MDE. The main contribu-
tion of this paper is a comparison of the current model combination techniques
according to several relevant criteria in order to lay the groundwork for future
work focused on DSL weaving.

The paper is organized as follows: section 2 gives some background informa-
tion and terminology in the context of the combination of modelling and DSLs,
section 3 lists the model and language combination techniques obtained from
the literature review, section 4 lists the criteria used for the classification of
these techniques, section 5 analyses the results of the classification and finally,
section 6 concludes the paper with some final considerations and future work.

1.1 Domain Specific modelling

Domain-Specific modelling (DSM) aims to raise the level of abstraction beyond
current programming languages by specifying the solution in a language that
directly uses concepts specific to the problem domain [14]. This allows domain-
experts (possibly with no programming expertise) to play active roles in devel-
opment efforts by modelling the solution using only familiar domain constructs
[22]. The final products of a DSM solution are complete artifacts equivalent to
those that developers used to write by hand (e.g. executable programs, docu-
mentation, test cases or other models). These artifacts are automatically gen-
erated from their high-level specifications via domain-specific transformations.
These transformations can have as result another model (of an intermediate
modelling language) or they can generate code (of a textual general purpose
language), at which level no further transformations are usually performed.

This automation avoids the need to perform error-prone and time-consuming
mappings from domain to design and to programming language concepts. Since
this translation is automated, it can be repeated effortlessly,
it effectively raises the level of abstraction to the domain-specific modelling level
and it hides all the other lower levels from the user.

DSM can also provide translation in the other direction, i.e. from artifacts
(e.g. code) to domain specific model, that can be useful for inspecting the system
at runtime, debugging, formal analysis results, etc. This is possible by means of
traceability links between the different levels of abstraction that allow obtaining
the equivalent of a certain concept at a higher or lower level of abstraction of
the DSM solution process.

2

1.2 Domain Specific modelling Language

The raise in abstraction is achieved by the specification of a Domain Specific
Language (DSL). A DSL is a modelling language that contains concepts and
rules that represent the application domain. They provide the abstraction for
development and are therefore the most visible part for developers of a DSM
solution.

Just like languages in general, a modelling language is formally defined in the
following way: it consists of syntax and semantics. The syntax, which defines
the form of a language, is divided into abstract and concrete syntax. The former
defines the concepts and rules of a language and specifies what a valid instance
of a language looks like. The latter takes care of the notation used to represent
these concepts, be it textually or visually. Finally, the semantics define the
meaning of the modelling concepts of the language. A formal definition of a
DSL can be found in section 2.

The next subsections explain the three components of a DSL and its impor-
tance in more detail.

1.2.1 Abstract Syntax

The abstract syntax describes the concepts of a language and their properties,
the legal connections between them, the model hierarchy structures, and also
grammatical rules that enforce model correctness. These rules can significantly
reduce the possible design space which helps in designing correct applications.

The abstract syntax of a modelling language is normally specified with a
meta-model [19]. The prefix ”meta” is used to denote that an operation, in this
case modelling, is applied twice. In other words, a meta-model is a conceptual
model of a modelling language. A meta-model provides a formal specification
of the language which, supported by tools (e.g. AToMPM, MetaEdit+), is used
to create and modify models as well as generating code from them.

1.2.2 Concrete Syntax

The concrete syntax provides a representation of the abstract syntax of a meta-
model as a mapping (syntactic mapping) between the meta-model concepts and
their textual or graphical representation. A language can have several concrete
syntaxes.

1.2.3 Semantics

The semantics of a modelling language define the meaning of the syntactically
correct concepts of a modelling language. Semantics can be further divided by
a semantic domain,

The two main approaches for defining semantics formally for a modelling
language are:

3

• Operational semantics often encode behavior and give meaning to a lan-
guage by describing the transformation of the system from one state to
the next (possibly along some time model).

They are usually better suited for giving meaning to behavioral languages
(e.g. finite state automata (FSA), Petri nets or activity diagrams). Since
structural languages (e.g. class diagrams or entity relationship diagrams)
have a more static and non-behavioral nature, they cannot be very well
represented by this type of semantics.

• Denotational semantics define the meaning of a language in terms of an-
other language or formalism for which well defined semantics (operational
or denotational) exist, for example code, mathematics or Petri Nets. With
this kind of semantics, any type of language (behavioral or structural) can
be specified, as long as the language it is being defined in can properly
represent its concepts.

The specification of the semantics is not as straightforward as the specifi-
cation of the syntax, which can be specified through the definition of a meta-
model. This is because models may have different interpretations or meanings
and therefore, a DSL might have different several semantic domains and map-
pings associated with them.

Since there is no real standard for defining semantics (like the metamodels
are for the abstract syntax), there is generally a lack of precise and explicit
specification of modelling language semantics. This creates the risk of semantic
mismatch between tools or applications and it also makes the composition of
semantics impossible since they are not specified.

1.3 Why DSL weaving

The action of weaving or combining DSLs provides many benefits to the process
of DSL engineering, which in turn is a vital phase of domain-specific modelling,
as explained before. In this section, the major applications of DSL weaving are
discussed.

1.3.1 Reusability

Most of the time, language engineers have to develop DSLs completely from
scratch, using only their own experience and expertise to do so [7]. This is in
contrast to general purpose or third-generation programming languages (3GL),
where an engineer is able to re-use the existing work of others to speed up the
developing process or improve the quality of the product.

For DSLs, composition is one of the missing processes for enabling this fea-
ture, along with a more formal specification of them and a library of stable
and established DSLs. This would bring to domain specific modelling the same
benefits that software reuse brought to 3GLs [7].

In summary, some of the benefits that reusability brings are the following:

4

• Avoidance of duplication of effort (no overlap of concepts)

• Emergence of high-quality reusable DSLs (e.g. Statecharts, PetriNets)

• Recognition of key DSL modelling patterns and best practices

• Significant reduction in the time-to-market of DSLs.

1.3.2 Multi-paradigm modelling

When faced with the task of modelling a complex system, breaking it down into
a set of models where each one deals with a different concern makes the task
much easier [13]. Furthermore, these models can also be defined in different
languages, each one better suited for the different view or aspect of the system
that it abstracts. For instance, the behavioral concern of the system can be
designed using State Charts based language while the structural part uses UML
Class Diagrams. An example of this approach can be seen in the PhoneApps
application, which is a multi-concern DSL [23] This is also more user friendly
to the designers or stakeholders who might be more comfortable with a certain
style of language and notation. Multi-paradigm modelling is therefore a powerful
mechanism for achieving a higher level of abstraction, simplicity and modularity
in modelling.

The problem arises when the design phase is finished and it is time to create
the final application, which requires the smaller models of the system to be
synthesized back together in some way. If the models were created with the same
modelling language (i.e. they conform to the same meta-model), a homogeneous
composition is needed. But if, on the other hand, the models were designed
in different modelling languages or paradigms, they require a heterogeneous
composition. The latter being, as expected, more difficult since it would require
a translation mechanism between the languages by, for example, an interface.

1.3.3 Modularity

Modularity of modelling languages is a design technique that seeks to separate
the functionality of a system into independent modules. The separation between
models is clean explicit since they only interact with each other by means of well
defined interfaces that effectively encapsulate them. This concept can be con-
sidered similar to multi-paradigm modelling (section 1.3.2) although modularity
does not require different modelling paradigms or vice versa.

Modularity has benefits similar to those of encapsulation in software engi-
neering, namely a clean separation of, in this case, the models. It also makes
the system easier to maintain and extend because of its modular structure as
opposed to a tangled one where two tasks become unnecessarily difficult.

But modularity also has the disadvantage of being less efficient performance
wise than its counterpart, although this can be remedied by code optimization.
The more modular a system is, the more steps are needed to perform a task.
A simple example is the access of an object of a module many associations

5

away from another one; in a modular system, a chain of consecutive accessing
operations through all modules in between would be needed while in a non
modular system this could be done directly with a single operation. An example
of a modular language is the Discrete EVent System Specification formalism
(DEVS) [39].

1.3.4 Liskov’s substitutability

In object oriented engineering, Liskov’s principle of substitutability is a funda-
mental concept. It states that if an object Sub has an is-a relationship with
another object Super (for example an inheritance in OO programming), then
in every situation where Super is used, Sub can be used as well. In other words
Sub can substitute Super. This principle may seem simple but is also required
in the MDE field and each of the composition techniques described in this paper
must not violate it.

2 Background and Terminology

This section presents a list of definitions for a DSL composition framework that
will be used throughout this paper. It is partly based on the definitions proposed
by Bézivin et al. [3], [20] and [2].

Since the context of this paper is model-driven engineering, models are the
central concept. A formal way to define models which is also useful for graphical
modelling is representing models as (directed) graphs.

Directed Graph

A directed multigraph G = (NG, EG,ΓG) consists of three elements:

• NG, a finite set of nodes,

• EG, a finite set of edges,

• ΓG : EG → NG × NG, a function that maps edges to their source and
destination nodes.

Model

A model M = (G,ω, µ) is a triple where:

• G = (NG, EG, φG), is a directed multigraph,

• ω is a model (called the reference model) with an associated graph Gω,

• µ : NG ∪ EG → Nω, is a function that maps all the nodes and edges of G
to nodes of ω.

The relation between a model and its reference model is called conformance.
Thus we can say that a model conforms to its reference model.

6

Metametamodel

It is the metamodel of the metamodel. In practice it is also its own reference
model, i.e. it conforms to itself. This “metacircularity” avoids endless “meta”
prefixes.

Metamodel

A metamodel is a model such that its reference model is a metametamodel.

Terminal model

A terminal model is a model such that its reference model is a metamodel

Correspondence model

A correspondence model C = (GC , ω, µ) consists of links between elements of
different models, such that:

• S = {Mi = (Gi, ωi, µi); i = [1..n]}, is a set of different models,

• Gc has only two types of nodes: links and link endpoints,

• for each link endpoint in GC , there is a link connected to it through an
edge,

• each link endpoint in GC refers to an element e (node or edge) of a model
Mi of the set S.

Match operation

The match operation C = Match(S) takes as input a set of models S = {Mi =
(Gi, ωi, µi); i = [1..n]}, searches for equivalences between their elements and
produces a correspondence model C as output.

The semantics of the match operation are not fixed. They consist of a
combination of comparison and conformance rules. Comparison rules determine
syntactic similarities between model elements. Conformance rules determines if
syntactically similar elements are also semantically compatible.

Transformation Rule

A transformation or graph rule R : MIN → MOUT is a function that takes a
model MIN as input, performs a matching of the LHS subgraph over it, replaces
the match with another subgraph RHS and outputs the model MOUT . A graph
rule is parametrized by:

• LHS, a left-hand side pattern that should be present in the input model,

• RHS, a right-hand side pattern that describes how the LHS should be
transformed after applying the rule,

7

• NAC, a negative application condition pattern that should not be present
in the input model for the rule to be applicable.

Model Transformation

A model transformation is an operation SOUT = T (SIN) that takes a set of
input models SIN , executes a set of transformation rules SR over the model
elements and produces a set of models SOUT as output.

A transformation is itself also a model and therefore all the general opera-
tions applicable to models may be applied to transformations (including trans-
formations that are called higher-order transformations).

Compose operation

The compose operation MAB = Compose(MA,MB , CAB) takes two models MA

and MB and a correspondence model CAB between them and combines their
elements into a new output model MAB .

This operation is considered in this paper as a general and even abstract
operation that all the other composition operations must specialize or instan-
tiate. For this operation and its specializations, it is common that the models
involved in the process conform to the same metamodel. If this is not the case,
an interface between the (meta)models would be required.

Merge operation

The merge operation MAB = Merge(MA,MB , CAB) takes the same parameters
as the more general compose operation. It produces a different output MAB

which includes all the elements from MA and MB .

DSL

A DSL is formally defined as a five-tuple containing the elements:

1. Concrete syntax C defines the notation used to express models which may
be graphical, textual or mixed.

2. Abstract syntax A defines the concepts, relationships and constraints or
well-formedness rules of the language.

3. Semantic domain S is a set of concepts (usually defined in some formal
framework) in terms of which the meaning of the models of the language
are explained.

4. Syntactic mapping MC : C → A assigns a syntactic construct of the
concrete syntax to the elements of the abstract syntax.

5. Semantic mapping MS : A → S relates the syntactic elements of the
abstract syntax to those of the semantic domain.

8

Aspect Oriented modelling

Aspect oriented modelling (AOM) translates the concepts and ideas applied at
the code level by aspect oriented programming (AOP) [15] to the model level.
Usually, a system contains one or more so called cross-cutting concerns spread
along the system (e.g. Logging or Debugging). These cross-cutting concerns are
difficult to maintain when tangled all over the system. AOM provides a way
to isolate these concerns into centralized and easy to maintain models which
are called aspect models. The way to keep these aspects where they should be
located in the system is by defining two core concepts inside them: a pointcut
and an advice. The pointcut defines all the joinpoints where the cross-cutting
concern is located in the system. And the advice defines what functionality,
either a code segment in AOP or model instances in AOM, to insert at the
join points. The act of combining aspect models into a base model is called
weaving. This terminology can be used in different contexts or implementations,
for example when using rules for weaving, a rule can be considered as the aspect,
where the LHS is the pointcut, the RHS is the advice, and the match is the
joinpoint.

3 Model weaving techniques

In this section a review is presented of the current techniques for (meta)model
composition where a special attention is taken into how they can be applied in
the language weaving context. That is, for all of the DSL components: abstract
syntax, concrete syntax and semantics. For the purpose of this paper, we will
therefore give emphasis to the techniques for metamodel composition because
they are more commonly used to represent the abstract syntax of a language.
Even though, since metamodels are models themselves, model composition tech-
niques can also be employed.

3.1 Merge

Model merging is a composition technique that does not assume an unbalanced
combination, it is performed on two peer models. In terms of set theory it can
be defined as the duplicate free union of both sets (in this case metamodels).

3.1.1 Merging based on correspondences by Pottinger

In [30], Pottinger and Bernstein propose an approach to model merging that
depends on a set of user-defined correspondences between the metamodels. The
authors provide a generic framework that can be used to merge all types of
models.

Their approach requires first identifying which elements of each metamodel
will be combined together. In other words, which elements of each of the meta-
models should be merged together to form one in the output metamodel (being
that it is a duplicate free operation). This information is then stored in the

9

mentioned set of correspondences between them. The preliminary process of
finding this set is called matching (or schema matching in databases). To put
it in aspect oriented terminology, the correspondences can be considered as the
join points between the two metamodels, although in this case, the roles of base
and aspect model are not as clear as in AOM since merging does not assume
an unbalanced combination. The elements which are not included in the set of
correspondences are simply added to the result model without modifying them
(being that it is a union operation).

With the mapping obtained in the matching step, the merge step performs
the actual composition. This composition is not as simple as the set union since
the detection of duplicates (which depends on what we define as a duplicate, its
semantics) as well as their removal can be complex. In addition, the resulting
merged model can also present constraint violations, or conflicts, that the Merge
operation must resolve.

The authors provide the following categorization of the conflicts that can
arise, based on the meta-level where they occur:

• Representation conflicts occur at the model level and are caused by con-
flicting representations of the same modelled (real world) concept. An
example is having a model A which represents the concept of name by one
element Name while model B represents it by two elements: FirstName
and LastName. How the concept should be represented in the final model
is a decision that is application dependent and is performed before the
merging algorithm.

• Meta-model conflicts, are caused by the violation of the constraints of one
of the two metamodels involved in the merging.

• Fundamental conflicts are caused by violations of constraints at the metameta-
model level, the representation to which all models must conform to. In
other words when the result of a Merge would not be a model due to
violations of the metametamodel.

In Figure 1, an example can be seen of a general merge operation on two
metamodels depicting different facets of a Role Playing Game (RPG), both
defined in the UML class diagrams metametamodel. This simple example con-
tains two different join points or correspondences which are located between
the classes Tile and Hero of the same name in both metamodels. The remain-
ing classes Treasure and Weapon are not included in the correspondences and
thus they are both included in the final metamodel AB (along with their cor-
responding associations). Finally, the Tile class of the resultant model AB, an
unresolved conflict can be observed. This conflict is caused by the fact that
both input metamodels have two different ways of representing the concept of
location of a Tile. Model A does this with the x and y coordinates while model
B with the neighboring tiles of the four cardinal directions. This conflict is not
properly solved in this example since both concepts have been included in the
final model and its solution would require a decision by a user.

10

Tile

x : int

Hero

name : string

Treasure

coins : int

Hero

name : string

Weapon

damage : int
attack : int

Tile

x : int // RPG_a
Hero

name : string // RPG_a

Treasure // RPG_a

coins : int

Weapon // RPG_b

damage : int

gold : int // RPG_a
attack : int // RPG_b

y : int // RPG_a

y : int gold : int

Tile

top : TIle
bottom : Tile
left : Tile
right : Tile

top : Tile // RPG_b
bottom : Tile // RPG_b

left : Tile // RPG_b
right : Tile // RPG_b

Figure 1: Merge operation of two class diagrams depicting two different meta-
models of an RPG

11

3.1.2 Package Merge in UML 2

UML 2 [36] defines Package Merge as an operation for merging the contents of
two packages together. The elements of the models or metamodels contained in
the packages are merged if they share the same name and signature. Package
merge aims at allowing the definition of metamodels in UML more modular. It
is a directed relationship between two packages which indicates that the con-
tents of the target package are merged into the contents of the source package.
The composition occurs in two phases which apply a set of constraints and
transformations [6]. First, the constraints are used to check if two elements
match. When two elements match, the transformations take care of the actual
merging. Elements that do not have a matching counterpart are simply car-
ried over to the result model. Constraints and transformations are expressed
declaratively through match rules and transformation rules. These rules are
pre-defined for each metamodel type (class diagrams, sequence diagrams, etc)
of the UML family of metamodels.

An important feature that is mentioned in the UML 2 specification and that
is very important for all composition approaches is that a resulting element will
not be any less capable than it was prior to the merge, in other words that the
merge operation does not violate Liskov’s substitutability principle. In this case
it means that the resulting navigability, multiplicity, visibility, etc will not be
reduced as a result of a package merge.

According to Vallecillo [37], the problem with this approach is that its current
definition is neither precise nor sound and it does not consider possible conflicts
between the structural constraints of the metamodels merged . As a result, it
may break the well-formed rules (constraints) of the models that it combines.
Furthermore, no traceability links are created between the resultant metamodel
and the input models and finally it works exclusively for models defined with
the UML metamodel.

3.1.3 Metamodel merge in GME

In [21], Lédeczi et al. propose an extension to UML that allows metamodel
composition from existing metamodels. This extension consists in the addition
of three new UML operators for using in metamodel combination:

• The equivalence operator is used to denote a full union between two UML
class objects. The union includes all attributes and associations, including
generalization, specialization, and containment, of each individual class.
It can be thought of defining the join points for the source metamodels,
similarly to the correspondences definition combined with the merging
steps of Pottinger’s approach (see section 3.1.1).

• With the implementation inheritance operator the child class inherits all
of the parent class’s attributes, but no associations except the containment
ones where the parent functions as the container.

12

• While the interface inheritance operator allows no attribute but does allow
full association inheritance, with the exception of containment associations
where the parent functions as the container.

The union of the implementation and interface inheritance is the normal UML
inheritance and their intersection is null. The three operators mentioned are
simply a notational convenience or syntactic sugar since each of them has an
equivalent “pure” UML representation. These equivalent representations, how-
ever, would make a diagram significantly more cluttered and difficult to under-
stand.

The merging process of this approach is very similar to Package Merge except
that the operation takes place at the class instead of the package level. The
two classes being merged do not need to have the same name because of the use
of the equivalence operator which sets up the correspondence between the two
classes to be merged. This approach deals exclusively with UML class diagrams
(metamodels) and is therefore even more specific than Package Merge which can
be applied to all types of UML diagrams.

The authors mention that it is important that the composition leaves the
original metamodels intact, so that they can still be used independently. Also,
the newly composed metamodel should be capable of instantiating existing mod-
els created using the original metamodels (backwards compatibility).

An implementation of these operators has been added by the authors to the
Generic modelling Environment (GME), a DSL design environment, developed
in the Vanderbilt University.

3.2 Extension

Metamodel Extension consists in extending one model, called pivot or initial
with the concepts of another, the extension. The new extension model includes
concepts that were not originally present, but some of them may reference ex-
isting ones. An example is the case of designing a hierarchy of models or to
extend, in a modular way, a model with new features.

3.2.1 Model extension by Barbero et al.

In [2], Barbero et al. propose a new kind of relation extension between two
models along with the two relationships defined by the principles of MDE: con-
formance and representation. The conformance relation links one model to it’s
metamodel or reference model, and the representation relation links terminal
models (instances of models) to the systems they represent.

The additional relation called extensionOf links an initial model Mi, that
represents most of the concepts of a system, with an extension model Me, that
defines some new concepts not present in Mi but that may reference existing
concepts in it. The two models Mi and Me must conform to the same reference
model in this approach, which classifies it as a Homogeneous composition (see
section 4.2)

13

The authors provide a conceptual framework for the operation as well as an
implementation using the KM3 text-based meta-modelling language. Further-
more, the actual composition is similar to that of the Merge technique explained
in section 3.1 since it also performs a duplicate-free union of the models. The
composition is preceded by a user-defined specification ε of the correspondences
between the elements to be composed.

This technique is more effective when the relationship between the two mod-
els to combine is asymmetric, i.e. the extending model complements the initial
model, and conservative, which means that the extensions must not break the
semantics of the initial model (since the approach does not support any kind of
conflict resolution strategy).

On Figure 2, a simple example of an extend operation is shown. Two meta-
models (that conform to the UML class diagram metametamodel) depict basic
concepts of a RPG application. The initial model A describes the Tile, Hero
and Treasure concepts while the extension model B specifies three new types of
Tile: Obstacle, Trap and Door. Note that in the extension model B a reference
to an element of another model is made, namely Tile from the initial model A.
The correspondence in this case links the two Tile classes of both metamodels
and this represents the join point where the extension takes place.

3.3 Templates

Templates are in essence an extension mechanism (section 3.2) with an extra
feature, i.e. they provide extensibility for models which have not yet been
specified. A template provides reusability by allowing the creation of general
models that can later be further specified by instantiating pre-defined points
called template parameters. Furthermore, it gives modularity because it is a
kind of extension technique which in turn is a composition that provides this
benefit as it was explained in section 1.3.

In Figure 3, a simple example of the template technique is shown. Two meta-
models (that conform to the UML class diagram metametamodel) depict basic
concepts of the same RPG application as in the previous examples. The tem-
plate model RPG template contains the Location, Character and Item classes
while the extension model RPG tiles specifies three new types of Tile: Obstacle,
Trap and Door. The special feature in this technique is the symbol “|” before
the Location class. This means that the Location class is a template parameter
that has to be instantiated by a concrete element of another model (in this
case a class since it is a homogeneous composition technique). In the RPG tiles
model, the Tile class instantiates or binds to the template parameter |Location.

3.3.1 Template Instantiation by Emerson and Sztipanovits

In [7], Emerson and Sztipanovits propose the use of template instantiation to
overcome the limitations of techniques such as model merge and interfacing.
The problem with these techniques, according to the authors, is that they are
not well suited for the multiple reuse of metamodel fragments into the same

14

Tile // RPG_initial

x : int
y : int

Obstacle Trap

damage : int

Door

isLocked : boolean

Tile

x : int
y : int

Obstacle Trap

damage : int

Door

isLocked : bool

Hero

name : string

Treasure

coins : int
gold : int

leadsTo

Tile

x : int

Hero

name : string

Treasure

coins : int
y : int gold : int

Figure 2: Extension operation of two class diagrams defining two RPG meta-
models

15

Tile

x : int
y : int

Obstacle Trap

damage : int

Door

isLocked : boolean

Tile

x : int
y : int

Obstacle Trap

damage : int

Door

isLocked : bool

Character

name : string

Item

value : int
gold : int

leadsTo

|Location

x : int

Character

name : string

Item

value : int
y : int gold : int

binding

Figure 3: Example of the Template technique in the context of RPG.

16

composite metamodel. In other words, when performing a chain of consecutive
compositions into one same metamodel, the weaving of a composition can be
affected by the changes made when weaving a previous one.

Template instantiation, on the other hand, automatically creates new re-
lationships between the pre-existing elements in a target metamodel with the
template parameters of a common meta-modelling pattern. These common
meta-modelling patterns are created from a set of templates of several meta-
models that are commonly-occurring, e.g. State Charts, Data Flow graphs,
Hierarchy, etc.

The authors provide a simple prototype for template instantiation in the
GME meta-modelling language which guides users through the selection of the
template to be used and the assignment of the template parameters or roles
to domain specific concepts. Then, it automatically edits the domain-specific
metamodel in order instantiate the template.

This composition technique can be applied to a broader spectrum of meta-
models, the ones for which common metamodel patterns templates are provided
and it is therefore heterogeneous. This means that it can be useful for abstract,
concrete syntax as well as for the semantics of a language.

3.3.2 Templates in MetaDepth

MetaDepth [5] is a textual meta-modelling environment tool that allows deep
meta-modelling, in the sense that it supports an arbitrary number of meta-levels.
This tool also has mechanisms that allow the definition of the three components
of a language: abstract, concrete syntax and semantics.

Furthermore, MetaDepth the contains following composition mechanisms:

1. Extension at the class/object level: inheritance. At the model level, an
extension is a metamodel fragment that adds new elements to the base
metamodel.

2. Concepts have the form of a (meta)model, however their elements are
variables. These variables need to be bound to concrete elements of a
(meta)model.

Concepts can be used to express composition requirements, where some
elements of a metamodel fragment are variables and a concept defines
the requirements for binding those variables to the elements of another
metamodel fragment.

Also, operations can be defined over a concept so that they become reusable
by any metamodel that fulfills the concept’s requirements (in other words,
that is bound to it). This allows reusability of those operations by being
defined in a generic way with concepts.

Hybrid concepts require a binding as well as an implementation of some
of it’s operations.

3. Templates enable a more flexible definition of model and metamodel frag-
ments, as they permit their connection. A metamodel template is a

17

metamodel where some elements (meta-classes, features, associations) are
variables. The connection requirements for such variables are expressed
through a concept.

In [24], Meyers et al. shows how to compose modelling languages by using
these composition mechanisms. They perform composition on homogeneous
metamodels due to the fact that all models have been defined with MetaDepth
and thus conform to the same meta-model.

It is worth mentioning that this is one of the few approaches that composes
all three components of a language, including the often neglected concrete syn-
tax. The disadvantages of the approach are that it deals exclusively with textual
languages defined in Meta-Depth (it is not a generic approach). Although it
is possible to create an extra step in the process where a model defined in any
modelling language is transformed into a model that conforms to the MetaDepth
metamodel.

For future work, the authors mention they plan the addition of more ad-
vanced mechanisms for composition that allow bidirectional binding of two tem-
plates or a more flexible binding.

3.4 Parametrization by Pedro et al.

In [27, 29], Pedro et al. propose an approach for DSL prototyping in a compo-
sitional and incremental way.

The fundamental notion of the approach is the domain concept which is
defined as a metamodel that has attached to it a transformation to a target
language, that is precise and provides its semantics. Semantics are defined with
a set of transformations that translate certain elements of the source model
(domain concept’s metamodel) into elements of a target model. Consequently,
a domain concept contains two main elements of a DSL: abstract syntax and
semantics, the missing third one being concrete syntax (tackled by Pedro in the
later paper [28]). Furthermore, a domain concept represents a basic idea that
can act as a building brick in one or several DSLs. Finally, the authors claim
that other approaches have only focused on syntactic composition.

Parametrization is the action of enriching a metamodel by means of another
metamodel. A formal parameter fp defines a template of what can be replaced
in mm – the metamodel being enriched. The effective parameter ep is a meta-
model that replaces fp after the parametrization. Finally the replacement has
to respect a set of constraints on the fp. This way a metamodel can be extended
by parametrization

The paper also defines a set of composition operators that work at a more
syntactic level than the parameterization. Nevertheless, depending on the op-
erator used, transformations are adapted to cope with operator’s semantics.

In order to compose DSLs or domain concepts semantically it is necessary
to compose their corresponding transformations. This is performed for the
two previously explained techniques: parametrization and composition. The

18

parametrization is done similarly to that of metamodels (abstract syntax) by
providing a formal parameter which is the transformation template.

Finally in [28], the authors extend the DSL prototyping approach to also
support the composition of concrete syntax in DSLs.

3.5 Interfacing

In [7], Emerson and Sztipanovits describe briefly the concept of metamodel
interfacing. The idea is to define an interface between two modelling languages
consisting of elements that do not strictly belong to either of them in order to
allow their composition. The description given by the authors is very broad
and does not give further details. However the idea could be applied to the
composition of heterogeneous models in a similar way as the semantic adaptation
approach (see section 3.8). Although in the case of interfacing this could be done
at a higher abstraction level, that is at the metamodel level instead of the model
or instance level.

3.6 Embedding

Language embedding is an alternative approach to building DSLs from scratch.
It consists of making a guest (embedded) language inherit the infrastructure of
a host (global) language. This way, the guest language can reuse the syntax,
module system, existing libraries, and tools of the host language. This em-
bedding is defined by mapping the guest language concepts into host language
concepts. This mapping is not explicitly defined anywhere and there is no ex-
plicit trace between the two languages, therefore losing the connection between
the concrete syntax and the tools of the guest language.

UML is an example of a suitable host language since it is very expressive
and well-known. It was in fact originally created by embedding three other
languages into it [37].

3.7 Refinement

Similar to embedding, in refinement, elements of a guest model are hierarchically
contained within a single construct of a host model. In this way a concept of
the guest model can exist in the host only as a black box, providing modularity
to the system.

This technique is briefly described in [7] although no implementation or
example of it is provided.

The concepts of co-variance and contra-variance apply in this case of hier-
archical containment. By which, in order to conform to the Liskov’s substi-
tutability principle (section 1.3.4), the domain of the guest DSL must be larger
or equal than the host DSL’s. And the image of the guest DSL smaller or equal
than the host DSL’s.

19

3.8 Semantic Adaptation

The concept of semantic adaptation was proposed in the approaches Ptolemy
and Modhel’X [11]. This technique is geared towards the composition of models
that represent the semantics of another model of a language. Semantic adap-
tation defines a set of laws for composing models with heterogeneous semantics
and obtaining a meaningful result from it. This is done by defining interface
blocks between the models to be composed, similarly to the interface approach
for composition (see section 3.5) but at a lower level of abstraction since it deals
directly with the inputs and outputs of the model. These interface blocks adapt
the data, control and time between the two different model. Semantic adapta-
tion is the “glue” that is necessary to compose heterogeneous models so that
the resulting model has well-defined semantics.

In [25], Meyers et al. propose a DSL to aid in defining the interface blocks by
effectively bridging the cognitive gap between the implementation and specifica-
tion (modelling) of an interface block. This DSL supports the explicit modelling
of the adaptation of data, time and control which is performed in an interface
block. The approach enables the modeler to easily define the interfaces in a
modular way since the involved models are left untouched. In our classification
scheme of section 4, this feature fits into the category of low intrusion, because
of the absence of modifications to the original models. This implementation pro-
vides the benefits of any DSM solution: constraining the modelling process to
domain-specific concepts, separating the modeler from platform-specific issues
by performing this translation automatically with a code generator.

3.9 Aspect Oriented modelling

The composition approaches reviewed in this section have in common that they
are all applied in aspect oriented modelling (AOM) approaches. This means
that they focus mostly on an asymmetric kind of composition where at least
one aspect model, representing a cross-cutting concern, is composed into a base
model. In [13], Jézéquel separates the process of weaving models in AOM into
the following two main steps:

1. In the detection step the join points are determined around which the
composition is performed.

2. And in the composition step the advice of the aspect is composed into the
base model.

He also explains that weaving more than one aspect at the same join point can
cause difficulties because previously woven aspects may have modified the join-
point. In model composition in general, this can also be identified as a difficult
problem.

The next subsections describe several AOM approaches and it focus on their
model (or aspect) composition problem.

20

3.9.1 GeKo by Morin et al.

GeKo is defined as a generic aspect oriented weaver. It is generic in the sense
that it can easily be adapted to any DSL with no need to modify the domain
metamodel or to generate domain-specific frameworks. It relies on the definition
of mappings between the pointcut and the advice elements, which are in turn
defined in terms of the concrete syntax of the models by linking them with
generic links that do not use any domain-specific knowledge. GeKo keeps a
graphical representation of the weaving between an aspect model and the base
model. It is a tool-supported approach with a clear semantics of the different
operators used to define the weaving.

In order to describe point cuts more easily, the authors propose to construct
an, on demand, more flexible metamodel from the original one. This more suit-
able metamodel does not contain any pre or post conditions or invariants, all
features of the meta-classes (e.g. attributes in class diagram) are optional and
it does not contain any abstract classes. This is similar to the of RAMifica-
tion process described in [35] (not to be confused with the approach RAM of
section 3.9.2).

The main idea of GeKo is the definition of five sets to which all the elements
of the base, advice and pointcut models must be assigned. These sets are
partitioned by means of two morphisms which allow the identification of the
elements to be kept, removed and replaced. After all the sets are complete, the
weaving is done in a straightforward way.

3.9.2 RAM Weaver by Kienzle et al.

The RAM Weaver is part of the Reusable Aspect Models (RAM) approach
[16] [18]. RAM focuses on aspect oriented modelling with emphasis on scalable
multi-view modelling.

The RAM Weaver currently supports the weaving of two different kinds of
models or formalisms which is performed by the following techniques:

• Structural models, defined as class diagrams and composed with the sym-
metric model composition technique proposed by France et al. [32]. This
technique supports merging of model elements that present different views
of the same concept but they must both be instances of the same meta-
model. The merging is done via name as well as attribute and operations
matching of classes.

• Behavioral models, defined in sequence diagrams use the technique se-
mantic based weaving of scenarios proposed by Klein et al. [17] where
an aspect is defined as a pair of sequence diagrams: one for the pointcut
(behavior to detect) and one for the advice (the behavior to add to the
model).

To keep the aspect models as generic as possible, model instantiation is used
via UML templates with template parameters. To instantiate a model, one
then has to bind all the aspect’s template parameters to target model-specific

21

elements. The resulting model is context specific and can therefore be composed
with a target model.

TouchRAM [1] is a multitouch tool for software design based on the RAM
approach. It currently supports only the structural model weaving technique
explained above.

3.9.3 MATA by Whittle et al.

MATA is an aspect-oriented modelling tool presented by Whittle et al. [38]. It
considers aspect composition as a special case of model transformation. Com-
position of a base and aspect model is specified by a graph rule. The LHS part
of the graph rule corresponds to the pointcut and the RHS to the advice of the
aspect to be merged. MATA rules are defined over the concrete syntax of the
modelling language in contrast to most approaches which do it at the meta-level
(over the abstract syntax). This difference is important because no knowledge
of the metamodel is needed in order to design graph rules.

MATA currently supports composition of UML class, sequence and state
diagrams although it is possible and relatively simple to extend it to other
modelling languages for which a metamodel exists. MATA performs some minor
extensions to the concrete syntax of UML models, namely the addition of three
stereotypes. The � create� and � delete� state that an element should be
created or removed by a graph rule, respectively. The � context� stereotype
states that a container element’s are not affected by� create� or� delete�.

MATA also provides some support for automatically detecting interactions
between aspects. This is done with the technique of critical pair analysis (CPA)
which can be used to detect dependencies and conflicts between graph rules. To
solve a conflict, the order in which the rules take place should be changed or,
in some cases, the rules themselves should be modified. CPA provides feedback
for these cases and an assurance that a composition is correct.

It is worth noting that MATA does not define join points explicitly since
composition is viewed as a special case of model transformation. This avoids
the limitation of the approach to specific types of diagrams or models.

3.9.4 Generic Model Composition Framework by Fleurey et al.

In [9] a generic framework for automatic model composition is proposed. It
determines two steps for composition: matching and merging.

The matching step is specific to a modelling language and it determines
which and how two elements match. Precise guidelines are offered in the frame-
work for the definition of the matching operator specific to a particular lan-
guage and giving it composition capabilities. The merging step is independent
(generic) from any language and therefore the behavior of the merging operator
is already implemented by the generic framework. Since the composition is per-
formed with a merging approach, the modularity of this technique is classified
as low as in the other merge-based techniques of section 3.1. A class diagram
of the framework is described in Figure 4.

22

Figure 4: Fleurey’s Generic framework for Composition [9]

Lastly, for potential composition conflicts detection and resolution, a generic
composition directive language is included, based on the model composition di-
rectives defined by Reddy et al. [32]. Both the generic framework for compo-
sition and a specialization for the Ecore metamodel have been implemented in
Kermeta and are available as the open-source tool Kompose [8]

The main limitation of this approach, as mentioned by the authors, is that
the composition is focused heavily on the structure of models. This becomes a
difficulty when working with behavioral languages such as sequence diagrams or
state-charts where the merging algorithm would have to be redefined to allow
composition of semantics.

3.9.5 Aspect Oriented Architecture Models by France et al.

In [32, 10], France et al. propose the Aspect Oriented Architecture Models
(AOAM) approach. This approach includes, along the usual AOM capabilities,
a signature-based composition technique and a set of composition directives for
making the composition more flexible.

Currently, the approach only supports composition of class diagrams. The
composition is specified with a provided composition meta model that can be
seen in Figure 5. Elements of the models that can be composed have to realize
the Mergeable meta-class and therefore implement the match-by-signature op-
eration sigEquals. The composition phase applies a template technique by first
requiring the template parameters of the aspect models to be bound to con-
crete modelling elements of the base model. After this binding, a merge is used
with a signature-based approach. The original approach used a name-based
merging method but in [32], this mechanism was extended to a signature-based
method that allows matching according to syntactic properties like attributes
or operations. For similar reasons like in the GMCP approach (section 3.9.4),
the modularity for this technique is classified as low as well.

The composition directives are intended to refine the composition rules used
to compose models by allowing the altering of model elements, specifying the
order in which aspect models are composed, or overriding of the default com-
position rules. Directives such as “precede” and “follow” are present in the
model as stereotyped UML dependencies between aspect models and represent
a conflict resolution mechanism.

23

Figure 5: Core elements of the composition metamodel of France et al. [31]

3.9.6 Motorola WEAVR by Cottenier et al.

The Motorola WEAVR approach [4] is one of the few AOM tools that have been
developed in an industrial setting. Its composition domain consists of models
defined in UML or in the Specification and Description Language (SDL), a
formalism for representing behavior similar to state and activity diagrams. In
order to be able to reuse aspects, mappings have to be defined that link a
reusable aspect to the application-specific context in which it is to be deployed.
Furthermore, the approach also supports composition asymmetry, i.e. aspects
can be woven into the base but not the other way round and the weaving is done
statically at design time right before code generation. Finally, this technique
supports model execution and code generation.

3.9.7 Semantic Weaving by Klein et al.

The behavioral aspect weaving approach of Klein et al. [17] focuses on weaving
at the semantic level instead of syntactic like most other approaches. It is based
on the Message Sequence Charts (MSC) language that is similar and can be
adapted to sequence diagrams. The composition is specified at the modelling
level so it is therefore independent of any implementation platform. It follows
an asymmetric approach for composition since it is aspect oriented and it can
only weave aspect model(s) into a base model. Both the pointcut and the advice
models are modelled visually with sequence diagrams, an example can be seen
in Figure 6.

Concerning the composition process itself, the approach presents a series of
algorithms for the matching or detection phase. First, an algorithm unfolds the

24

Figure 6: An example of the Semantic Weaving approach of Klein et al. [33]

base model to exhibit all potential matches of the pointcut. Next, one computes
the parts of the potential matches that are actually matched by the pointcut.
Then, an algorithm resolves all the loops in the model and lastly, a set of minimal
acyclic paths where the pointcut matches is built. The weaving process ends
with the composition step where all the acyclic paths that represent the final
pointcuts in the base model are replaced by the advice of the aspect.

Finally, the authors mention several limitations to their approach. One
limitation is that the matching process can only be performed if each join point
appears inside a bounded fragment of behavior because otherwise the algorithm
for finding potential matches would never terminate. Another limitation is that
the base model should not contain two non-disjoint cycles where the pointcut
matches that can only be checked during the weaving process since it is not a
structural property of the model.

An implementation of the approach has been added to the UMLAUT model
transformation framework [12].

3.9.8 Survey by Schauerhuber et al. [33]

Schauerhuber et al. perform a survey on eight representative UML-based AOM
approaches. A selection of those approaches among others have been included in
this section. The survey analyses the approaches with respect to many criteria
grouped in categories. Some interesting conclusions pertaining to the composi-
tion process are summarized next:

• Composition is often deferred to implementation.

• Predominance of matching with name.

• Merge used as a default integration (composition) strategy.

• Missing tool support for composition and code generation.

25

• Missing guidance on when to use asymmetric vs. symmetric approaches.

3.10 Viewpoint Unification by Vallecillo

A technique for DSL combination is proposed by Vallecillo [37] called Viewpoint
Unification. The technique only supports the combination of the metamodels
of a language, i.e. its abstract syntax. It is based on the consideration that
each language to combine provides a viewpoint language to describe the same
system. The way of combining or unifying the languages is by providing a
new language and a set of mappings between it and the viewpoint languages,
with the condition that the mappings respect the constraints of the viewpoint
languages correspondences.

The composition itself depends on the languages to combine and the authors
recommend the user to implement one of the appropriate composition from
merge, extension or embedding. Therefore this approach does not really provide
a technique for composition but it is more focused on the step before it: the
detection or matching. In this step the elements to compose are linked together
with mappings. The matching step is similar to that of the Templates approach
in the sense that elements of the input models are projected (or bound to)
elements of the result model.

3.11 Semantic Anchoring by Chen et al.

Lastly, we present an approach that aims to precisely define semantics, which
is a requirement to allow their composition. The goal of this approach is to
provide a formal specification to the semantics of a DSL by ‘anchoring’ them to
a metamodel. For this purpose, it first defines a set of canonical DSLs capturing
fundamental types of behavior (by defining their operational semantics), called
Models of Computations (MoCs). This DSLs, called in the paper semantic
units, have to be minimal; in the sense that they are the simplest modelling
languages required to describe a selected type of behavior. Semantic anchoring
is then defined as the mapping between an arbitrary language L to a canonical
MoC Li.

Semantic units are specified in the Abstract State Machine (ASM) formal
framework that allows to represent the three components of a semantic unit:
abstract syntax, semantic domain and the mapping between them. To specify
the mapping from the abstract syntax of the DSL and the abstract syntax of the
modelling language used as a semantic unit, model transformation techniques
are used. This is performed using the GReAT tool suite for model transforma-
tions.

The work presented in this paper provides a way to add semantics to DSLs
but it does not define how to combine this semantic blocks together. The
transformations from a DSL to the more precise domain of a semantic unit
are not possible to compose either.

26

4 Classification Criteria

In this section a set of classification criteria is presented in order to perform a
comparison between the composition techniques presented in the previous sec-
tion. Special attention is paid to the benefits that each criterion can bring to
the problem at hand: language composition. As already mentioned, language
composition can be divided into the three separate compositions of its compo-
nents: abstract, concrete syntax and semantics. Therefore it will be mentioned
if a criterion is more relevant to one of these three compositions.

4.1 Symmetry

The symmetry of a composition refers to the relationship between the models
to be composed. This does not necessarily mean that the models have this
relationship in all contexts, but it only means that they fulfill these roles during
the composition [33]. A composition can be either asymmetric or symmetric:

In an asymmetric composition, one model is designated as a base model and
one as an aspect model. The role of base models is usually taken by those that
can be used independently and autonomously while aspect models are usually
only usable after being weaved into a base model. Aspect models are generally
not of much use on their own. Examples of aspect models are debugging or se-
curity. Most AOM approaches (section 3.9) perform asymmetrical composition.

On the other hand, in a symmetric composition there is no designated base
model. The models to be composed do not play clear roles as in asymmetric
composition and can be considered as peer models. An example of symmetric
composition is the Merge technique of section 3.1.

For the case of language composition, both types of symmetry are relevant,
since the components of a language usually fill in the same roles (in terms of
symmetry) as that of the language itself, and two languages can have any kind
of symmetry relationship with each other.

Possible values for this criterion are: asymmetric, symmetric or both.

4.2 Uniformity

Uniformity refers to the nature of the models to be composed. More specifically,
if they conform to the same meta-model or not. A composition technique can
support homogeneous or heterogeneous composition.

The composition of two models is called homogeneous or uniform if they
conform to the same metamodel. The abstract syntax of languages is usually
defined by a structural metamodel like class diagrams and can therefore be
combined with a homogeneous composition. Most of the techniques explained
in the previous section fit into this category.

When the models conform to a different metamodel the composition is het-
erogeneous. This case poses more difficulties than its counterpart since the two
different models have different semantics and notations. Usually this kind of
composition requires an interface between the models to act as a “glue” and

27

translate the elements of one model into the other. Techniques that focus on
this type of composition are Interfacing and Adaptation.

In terms of language weaving, abstract syntax composition can generally be
considered homogeneous since it is usually specified by a structural metamodel
like UML class diagrams. Weaving instances of a language would also be homo-
geneous since both instances would conform to the metamodel of the language.
On the other hand, the specification of semantics does not have such a standard
approach and their composition is therefore heterogeneous.

Possible values for this criterion are: homogeneous or heterogeneous
(which we see as equivalent to saying both).

4.3 Domain

This criterion specifies the domain of models that the approach can be applied
to. Some approaches only work for certain types or families of models, e.g. UML
diagrams, and are therefore specific. If an approach can be conceptually applied
to any type of model, (assuming its metamodel has been formally defined) it is
generic. Approaches that consist of frameworks for composition and require an
extension to allow the composition of a certain type of model, are also considered
as generic.

Possible values for the domain are: Generic or Specific, where the latter
is further specified with two distinctions: CDs (specific to class diagrams) or
UML (specific to UML models, possibly including CD if they are more than
one). Further information on the domain is provided by the criterion described
in section 4.4.

4.4 Nature of models

This criterion describes whether the domain (section 4.3) of the approach in-
cludes structural and/or behavioral models.

Structural models define the elements that must be present in a system and
their relationships. They generally do not contain behavior.

Behavioral models emphasize what occurs in the system being modelled and
they have a notion of execution, which inherently has a notion of time.

Possible values are: Structural, Behavioral or Both.

4.5 Time

In the case of behavioral models, since structural models do not have a notion of
time, this criterion distinguishes between discrete time, a simplification of what
happens in the real world, continuous time, an exact representation. Structural
models can also be considered to have a notion of time if this one is a singleton
with only the value now, which never changes.

As with heterogeneous models, models with different types of time notions
require a translation or adaptation between them before they can be weaved.

28

Possible values are: Discrete, Continuous or the symbol “−” if it is not
applicable (because the technique does not deal with behavioral languages in
the first place).

4.6 DSL Weaving applicability

This criterion specifies for which of the three parts of DSL weaving the approach
at hand is better suited. In other words, if an approach can be applied for the
composition of abstract syntax (in the form of models like class diagrams) and/or
semantics (e.g. in the form of transformations). Note that this criterion does
not include concrete syntax since this is measured by the criterion of section 4.7.

Possible values are: Syntax, Semantics, Both.

4.7 Concrete syntax support

The concrete syntax is an important part of a language that is often neglected
in composition techniques. In this criterion, the support for the composition
of concrete syntax models of an approach is measured. For the case that a
technique does support concrete syntax composition, the criterion specifies if
it is either textual or graphical. Graphical concrete syntax includes textual as
well.

Possible values are: None, Textual, Graphical.

4.8 Implementation

This criterion simply describes the stage of implementation of the approach (at
the time of publication).

Possible values are: None (e.g. in a position paper), Partial (for approaches
that provide a prototype of their technique) or Complete (for fully imple-
mented techniques).

4.9 Moment of composition

Composition can generally happen at two moments: at design or run time. We
call a composition at design time static or dynamic if it happens at run-time.
The former is analogous to composition at compile time in the programming
world and the former to that of the same name. Dynamic composition needs
access to the semantic domains of the models since it occurs while executing the
models. An example of dynamic composition is a co-simulation where the traces
of the simulations of two behavioral models are weaved together at run-time.

Possible values for this criterion are: Static or Dynamic.

4.10 Matching Method

This criterion describes how the matching method of an approach is defined.
In other words how the join points between the models to be composed are

29

specified. The matching method can be either automatic, if it is done without
user intervention, or manual when user input is required to specify the elements
that match with each other.

Possible values for this criterion are: Automatic or Manual.

4.11 Conflict Resolution

This criterion describes the strategy of an approach to resolve conflicts caused
or by a composition. It is possible that an approach has no conflict resolution
strategy. A distinction is made between a conflict avoidance strategy, which
takes place before a composition, and conflict resolution, which happens post-
composition.

Possible values are: Avoidance, Resolution, None

4.12 Modularity

The modularity of a composition technique refers to how explicitly regulated
the access to the two models to be composed is. This has consequences on how
detailed or fine-grained the composition can effectively be.

A highly modular composition keeps the two input models as separated as
possible in the resultant composed model. This is usually achieved through the
definition of an interface between them.

A low or non-modular composition fuses the input models together into a
result model where little or no distinction can be seen between them.

Composition modularity provides the same benefits as a modularity in a
model: a cleaner and controlled interaction between modules (in this case the
original models that are composed) which translates to higher extensibility and
maintainability.

Possible values are: Low or High modularity.

4.13 Intrusion

This criterion focuses on how much, if any, modifications are needed to be
performed on the models before they can be ready for composition or the mod-
ifications they suffer during it.

An approach is considered to have low intrusion if it does not have to modify
the models it composes or if it only does it to a small degree. An example of a low
intrusion approach are UML profiles since they allow the extension of a model
by adding stereotypes that only change the syntax of a model slightly. However,
these syntactic extensions can still change the semantics of it greatly or even
break them, therefore in this example the approach would have syntactically
low intrusion.

A high intrusion approach involves extension of models, redefinition of ele-
ments or even their removal.

Low intrusion preserves the original intentions of the input models designers
but is not always possible because of incompatible and/or incomplete syntax

30

and/or semantics. In those cases, modifications have to be made and therefore
a high intrusion composition is required.

Note that intrusion may affect modularity (section 4.12) since modifications
may make the resultant model less modular. On the other hand, approaches
with a conflict resolution strategy (section 4.11) often affect intrusion since part
of the solutions for the conflicts involves modifying the original models in a
significant way.

Possible values are: None, Low or High intrusion.

5 Analysis

In this section, the set of classification criteria given in the previous section
is used to classify the most relevant techniques described in this paper. The
result of the classification is then analyzed in order to discover relevant research
directions in model composition for future work.

An overview of this classification is presented in two tables. In each table
the criteria are located along the horizontal axis and the approaches along the
vertical axis. The first table can be seen in Figure 9 and it contains the criteria
of the previous section. This set of criteria can be considered as more related
to a modelling point of view while the second set, in Figure 11, focuses on an
implementation perspective.

Next, we present the analysis of the criteria of the classification (that corre-
spond to the columns of the table):

• The majority of approaches perform asymmetric composition. This is
partly because of the large amount of AOM as well as extension approaches
which are applied to models with this unbalanced relation.

• Only two approaches are classified as having a heterogeneous uniformity
and one of them, Interfacing [7], is a general approach without a provided
implementation or even formalization. Heterogeneous composition is rel-
evant to, among others, multi-paradigm modelling (section 1.3.2) and,
according to this classification, is an area that lacks research support at
the moment. This is because, as explained in section 4.2, heterogeneous
composition is more complex than its homogeneous counterpart.

• In the column of the domain criterion section 4.3 we observe that the
number of generic and specific approaches are evenly spread. The specific
approaches are solely focused on models of the UML family, class and
sequence diagrams primarily. In Figure 7, a more detailed comparison
can be seen between the implementation and domain criteria. From this
figure it can be seen that approaches of all types of domain have been
completely implemented. As explained in section 4.3, most of the generic
approaches have been classified as having a complete implementation even
though they usually provide a framework which has to be extended in
order to allow the composition of models defined in a specific formalism.
Non-generic approaches do not allow for such extensions.

31

CD Generic UML

None

Partial

Complete

[27]

[7] [32]

[21] [24]

None

[30] [25]
[26] [9]

[2]

[18]

[38]

[36] [4]

Domain

Im
p
le

m
en

ta
ti

on

Figure 7: Domain vs. Implementation

• Most of the approaches focus on the composition of UML models and the
half of this group on Class Diagrams. Since class diagrams are commonly
used for defining metamodels (the abstract syntax of a language), a cor-
relation can be seen for these approaches between the structural value of
the nature of models criterion (section 4.4) and the Syntax value of the
DSL weaving applicability (section 4.6) criterion. This can be explained
by the fact that the specification of the syntax of a language is usually
done with structural models.

• For the Time criterion, we can see that only the Semantic Adaptation
approach supports composition of behavioral models with a continuous
notion of time. This delineates an area where future research is needed:
composition of continuous time models.

• It can also be seen that the majority of approaches focus on the com-
position of the abstract syntax of a language, represented in structural
models like class diagrams. Semantics are often more difficult to combine
because of their lack of precise and explicit specification, as explained in
section 1.2.3. However, in order to compose a DSL, it is necessary to com-
bine all its elements including the semantics. Therefore, composition of
language semantics is a very relevant area for future research. A detailed
comparison between this and the implementation criterion is presented in
Figure 8. It can be seen in this figure that approaches for syntax compo-

32

sition (the majority) have several completed implementations which could
prove useful for future work in implementation. Also, the approach of
Meyers et al. [24] has been fully implemented and it is the only approach
from the Complete Implementation row that tackles semantic composition
of a DSL.

Syntax Both Semantics

None

Partial

Complete

[18]

[30] [7] [38]
[9] [32]

[36] [21]
[2] [4]

[27]

[26]

[24]

None

[25] [17]

None

DSL Weaving

Im
p
le

m
en

ta
ti

on

Figure 8: DSL Weaving vs. Implementation

33

Technique / Criterion

S
y
m

m
e
try

U
n

ifo
rm

ity

D
o
m

a
in

N
a
tu

re
o
f

M
o
d

e
ls

T
im

e

D
S

L
W

e
a
v
in

g

C
o
n

c
re

te
S

y
n
ta

x

Pottinger Merge [30] Symmetric Homogeneous Generic Both Discrete Syntax None

Package Merge [36] Symmetric Homogeneous UML Both Discrete Syntax None

GME Merge [21] Symmetric Homogeneous CD Structural - Syntax None

Barbero Extension [2] Asymmetric Homogeneous Generic Both Discrete Syntax None

Template Instantiation [7] Asymmetric Homogeneous CD Both Discrete Syntax None

MetaDepth Templates [24] Asymmetric Homogeneous CD Both Discrete Both Textual

Parametrization [27] Asymmetric Homogeneous CD Structural Discrete Both Visual

Embedding [37] Asymmetric Homogeneous Generic Both - Both -

Refinement [7] Asymmetric Homogeneous - - - Both -

Interfacing [7] Both Heterogeneous - - - Both -

Semantic Adaptation [25] Asymmetric Heterogeneous Generic Both Continous Semantics None

GeKo [26] Asymmetric Homogeneous Generic Both Discrete Both None

RAM [18] Asymmetric Homogeneous UML Both Discrete Syntax None

MATA [38] Asymmetric Homogeneous UML Both Discrete Syntax None

GMCF [9] Both Homogeneous Generic Structural - Syntax None

AOAM [32] Asymmetric Homogeneous CD Both Discrete Syntax None

WEAVR [4] Asymmetric Homogeneous UML Both Discrete Syntax None

Semantic Weaving [17] Asymmetric Homogeneous SD Behavioral Discrete Semantics None

Figure 9: First part of the overview of the classification of composition techniques

34

• Concrete syntax support is a feature for which not much literature was
found: only two approaches discuss this. In [24], Meyers et al. use the
MetaDepth tool to compose textual concrete syntax of languages. While
the only approach that includes visual syntax is the one from Pedro el al.
[28] that use the parametrization technique to compose graphical syntax,
although they mention that it might not cover all the possible composi-
tions. This is another area of DSL composition where future investigation
is required.

• In the moment of composition column of Figure 11, we can see that only
two approaches realize the composition at run-time (dynamic). All the
other approaches do this at design time (static). Both dynamic approaches
have in common that they support the composition of semantics. This may
have to do with the fact that semantics can be operational which implies
that they have to be executed (at run-time) in order to combine them.
This is also a point of interest for future research.

• The automation of an approach was measured by the classification scheme
in this paper with the Match Method criterion. This criterion could ei-
ther be manual or automatic. Only a few techniques support the auto-
matic matching method which is usually performed based on signatures
or names. This matching method often requires input from the user any-
way, either before the composition by specifying the criteria upon which a
match is based or by resolving conflicts that the match method originated
or could not resolve. For a model composition approach to be completely
automated, the domain of models where it could be applicable would have
to be very limited in order to cover all possible cases. Further research on
this subject is needed to determine if this is at all possible.

• As mentioned before, conflicts are often a part of a model composition
process. Only 5 approaches support conflict resolution. From Figure 10 we
can see that only one approach that supports a kind of conflict resolution
has been completely implemented: the Motorola WEAVR of Cottenier et
al. [4], which supports conflict avoidance. A special note about Cottenier’s
approach is that they have not included comprehensive details about their
implementation since their technique is the only one that is deployed in an
industrial context (mobile phones). We can observe from Figure 11 that
there is a lack of support in general for conflict resolution.

• The modularity of the approaches seems to be evenly distributed in the
classification. It can be seen from the table that, as mentioned in sec-
tion 4.13, there is no real correlation between this and the Intrusion crite-
rion. It is also observed from the table that the template-based approaches
[7, 24, 27] have high modularity. This may have to do with the fact that
formal or template parameters are used which have to be instantiated, this
provides a clean separation between the template and extension models
which is the definition of modularity.

35

None Resolution Avoidance

None

Partial

Complete

[27] [18]

[7] [25]
[26] [38]

[36] [21]
[2] [24]

None

[30] [9]

None

None

[32] [17]

[4]

Conflict Resolution

Im
p
le

m
en

ta
ti

on

Figure 10: Conflict Resolution vs. Implementation

• Finally, the classification shows a predominance of low intrusion approaches.
This is sometimes related to an existing conflict resolution strategy in e.g.
[30] and [17] since the original models have to be modified in order to
prevent or solve conflicts in the final model. How relevant the level of
intrusion is to an approach is still not perfectly clear and is another area
for future research.

36

Technique / Criterion

Im
p

le
m

e
n
ta

tio
n

M
o
m

e
n
t

o
f

c
o
m

p
o
sitio

n

M
a
tch

m
e
th

o
d

C
o
n

fl
ic

t
R

e
so

lu
tio

n

M
o
d

u
la

rity

In
tru

sio
n

Pottinger Merge [30] Partial Static Manual Resolution Low High

Package Merge [36] Complete Static Automatic None Low Low

GME Merge [21] Complete Static Manual None Low Low

Barbero Extension [2] Complete Static Automatic None Low Low

Template Instantiation [7] Partial Static Manual None High Low

MetaDepth Templates [24] Complete Dynamic Manual None High Low

Parametrization [27] None Static Manual None High Low

Embedding [37] None - - - Low High

Refinement [7] None - - - High Low

Interfacing [7] None - - - High None

Semantic Adaptation [25] Complete Dynamic Manual None High Low

GeKo [26] Partial Static Manual None Low Low

RAM [18] None Static Manual None Low Low

MATA [38] Partial Static Manual None Low Low

GMCF [9] Partial Static Automatic Resolution Low Low

AOAM [32] Partial Static Automatic Avoidance Low Low

WEAVR [4] Complete Static Manual Avoidance - -

Semantic Weaving [17] Partial Static Automatic Avoidance Low High

Figure 11: Second part of the overview of the classification of composition techniques

37

6 Conclusion

In this paper, a literature review has been provided for the problem of DSL
weaving which can be seen as a form of (multiple) model composition(s). In
addition, a classification of solutions concerning this problem and its findings
has been presented.

After analyzing the results of this classification we can conclude that the
following areas are not common in the literature and are therefore relevant for
future research in DSL composition:

• Heterogeneous model composition, which allows for multi-paradigm mod-
elling and is a challenging subject that has not been explored enough
according to our findings,

• Generic composition, is this “one size fits all” approach at all possible for
DSL composition? What are its drawbacks and advantages over a specific
approach?;

• The composition of the concrete syntax of modelling languages can be
very subjective and difficult to realize and seems to be the part of a DSL
where the least research has been done so far;

• Many authors agree that the formalization and composition of the seman-
tics of a language is not an easy task and has to be investigated further;

• Continuous time behavioral models, which entail higher complexity than
their discrete counterpart, are a more mathematical aspect of modelling
for which little research has been conducted;

• Conflict resolution, an essential step in the composition process, has to be
explored more in detail as well;

• It is debatable whether dynamic composition (at run-time) is applicable
only for the (operational) semantics of a language or also for other cases.
What are its benefits and drawbacks compared to a static composition (at
design time);

• Furthermore, additional research is needed to determine the effects and
importance of intrusion in composition techniques.

Finally, one area which has been well researched, is the composition (whether
by merging or extending) of metamodels that are represented in UML class
diagrams, which corresponds to representation of the abstract syntax of DSLs.

38

References

[1] Wisam Al Abed, Valentin Bonnet, Matthias Schöttle, Engin Yildirim,
Omar Alam, and Jörg Kienzle. Touchram: A multitouch-enabled tool for
aspect-oriented software design. In Software Language Engineering, pages
275–285. Springer, 2013.

[2] Mikaël Barbero, Frédéric Jouault, Jeff Gray, and Jean Bézivin. A practical
approach to model extension. In Model Driven Architecture-Foundations
and Applications, pages 32–42. Springer, 2007.

[3] Jean Bézivin, Salim Bouzitouna, Marcos Didonet Del Fabro, Marie-Pierre
Gervais, Frédéric Jouault, Dimitrios Kolovos, Ivan Kurtev, and Richard F
Paige. A canonical scheme for model composition. In Model Driven
Architecture–Foundations and Applications, pages 346–360. Springer, 2006.

[4] Thomas Cottenier, Aswin Van Den Berg, and Tzilla Elrad. The motorola
weavr: Model weaving in a large industrial context. Aspect-Oriented Soft-
ware Development (AOSD), Vancouver, Canada, 32:44, 2007.

[5] Juan De Lara and Esther Guerra. Deep meta-modelling with metadepth.
In Objects, Models, Components, Patterns, pages 1–20. Springer, 2010.

[6] Jürgen Dingel, Zinovy Diskin, and Alanna Zito. Understanding and im-
proving uml package merge. Software & Systems Modeling, 7(4):443–467,
2008.

[7] Matthew Emerson and Janos Sztipanovits. Techniques for metamodel com-
position. In OOPSLA–6th Workshop on Domain Specific Modeling, pages
123–139, 2006.

[8] Fleurey. Kompose: a generic model composition tool. http://www.

kermeta.org/kompose/, 2007.

[9] Franck Fleurey, Benoit Baudry, Robert France, and Sudipto Ghosh. A
generic approach for automatic model composition. In Models in software
engineering, pages 7–15. Springer, 2008.

[10] Robert France, Indrakshi Ray, Geri Georg, and Sudipto Ghosh. Aspect-
oriented approach to early design modelling. IEE Proceedings-Software,
151(4):173–185, 2004.

[11] Cécile Hardebolle and Frédéric Boulanger. Modhelx: A component-oriented
approach to multi-formalism modeling. In Models in Software Engineering,
pages 247–258. Springer, 2008.

[12] Wai Ming Ho, J-M Jézéquel, Alain Le Guennec, and François Pennaneac’h.
Umlaut: an extendible uml transformation framework. In Automated Soft-
ware Engineering, 1999. 14th IEEE International Conference on., pages
275–278. IEEE, 1999.

39

http://www.kermeta.org/kompose/
http://www.kermeta.org/kompose/

[13] Jean-Marc Jézéquel. Model driven design and aspect weaving. Software &
Systems Modeling, 7(2):209–218, 2008.

[14] Steven Kelly and Juha-Pekka Tolvanen. Domain-specific modeling: en-
abling full code generation. Wiley-IEEE Computer Society Press, 2008.

[15] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming, in proceedings of the european conference on object-
oriented programming (ecoop), finland. Springer-Verlag LNCS, 1241:16,
1997.

[16] Jörg Kienzle, Wisam Al Abed, and Jacques Klein. Aspect-oriented multi-
view modeling. In Proceedings of the 8th ACM international conference on
Aspect-oriented software development, pages 87–98. ACM, 2009.

[17] Jacques Klein, Löıc Hélouët, and Jean-Marc Jézéquel. Semantic-based
weaving of scenarios. In Proceedings of the 5th international conference
on Aspect-oriented software development, pages 27–38. ACM, 2006.

[18] Jacques Klein and Jörg Kienzle. Reusable aspect models. In 11th Aspect-
Oriented Modeling Workshop, Nashville, TN, USA, 2007.

[19] Thomas Kühne. Matters of (meta-) modeling. Software & Systems Model-
ing, 5(4):369–385, 2006.

[20] Ivan Kurtev, Jean Bézivin, Frédéric Jouault, and Patrick Valduriez. Model-
based dsl frameworks. In Companion to the 21st ACM SIGPLAN sympo-
sium on Object-oriented programming systems, languages, and applications,
pages 602–616. ACM, 2006.

[21] Ákos Lédeczi, Greg Nordstrom, Gabor Karsai, Peter Volgyesi, and Mik-
los Maroti. On metamodel composition. In Control Applications,
2001.(CCA’01). Proceedings of the 2001 IEEE International Conference
on, pages 756–760. IEEE, 2001.

[22] Raphael Mannadiar and Hans Vangheluwe. Domain-specific engineering
of domain-specific languages. In Proceedings of the 10th Workshop on
Domain-Specific Modeling, page 11. ACM, 2010.

[23] Raphael Mannadiar and Hans Vangheluwe. Modular synthesis of mobile
device applications from domain-specific models. In Proceedings of the 7th
International Workshop on Model-Based Methodologies for Pervasive and
Embedded Software, pages 21–28. ACM, 2010.

[24] Bart Meyers, Antonio Cicchetti, Esther Guerra, and Juan De Lara. Com-
posing textual modelling languages in practice. In Procs. of the Intl. Work-
shop on Multi-Paradigm Modeling (MPM’12), 2012.

40

[25] Bart Meyers, Joachim Denil, Frédéric Boulanger, Cécile Hardebolle,
Christophe Jacquet, Hans Vangheluwe, et al. A dsl for explicit seman-
tic adaptation. In Proceedings of the 7th Workshop on Multi-Paradigm
Modeling at MODELS 2013, 2013.

[26] Brice Morin, Jacques Klein, Olivier Barais, and Jean-Marc Jézéquel. A
generic weaver for supporting product lines. In Proceedings of the 13th
international workshop on Early Aspects, pages 11–18. ACM, 2008.

[27] Luis Pedro, Didier Buchs, and Vasco Amaral. Foundations for a domain
specific modeling language prototyping environment. 2008.

[28] Luis Pedro, Matteo Risoldi, Didier Buchs, Bruno Barroca, and Vasco Ama-
ral. Composing visual syntax for domain specific languages. In Human-
Computer Interaction. Novel Interaction Methods and Techniques, pages
889–898. Springer, 2009.

[29] Luis Miguel Pedro. A systematic language engineering approach for proto-
typing domain specific modelling languages. 2009.

[30] Rachel A Pottinger and Philip A Bernstein. Merging models based on
given correspondences. In Proceedings of the 29th international conference
on Very large data bases-Volume 29, pages 862–873. VLDB Endowment,
2003.

[31] Raghu Reddy, Robert France, Sudipto Ghosh, Franck Fleurey, and Benoit
Baudry. Model composition-a signature-based approach. In Aspect Ori-
ented Modeling (AOM) Workshop, 2005.

[32] Y Raghu Reddy, Sudipto Ghosh, Robert B France, Greg Straw, James M
Bieman, Nathan McEachen, Eunjee Song, and Geri Georg. Directives for
composing aspect-oriented design class models. In Transactions on Aspect-
Oriented Software Development I, pages 75–105. Springer, 2006.

[33] Andrea Schauerhuber, Wieland Schwinger, Elisabeth Kapsammer, Werner
Retschitzegger, Manuel Wimmer, and Gerti Kappel. A survey on aspect-
oriented modeling approaches. Relatorio tecnico, Vienna University of
Technology, 2007.

[34] Douglas C Schmidt. Guest editor’s introduction: Model-driven engineering.
Computer, 39(2):0025–31, 2006.

[35] Eugene Syriani, Jeff Gray, and Hans Vangheluwe. Modeling a model trans-
formation language. In Domain Engineering, pages 211–237. Springer,
2013.

[36] OMG UML. 2.1. 1 superstructure specification (formal/2007-02-03). Tech-
nical report, Technical report, Object Management Group, February 2007.
available at www. omg. org, downloaded at May 25 th, 2007.

41

[37] Antonio Vallecillo. On the combination of domain specific modeling
languages. In Modelling Foundations and Applications, pages 305–320.
Springer, 2010.

[38] Jon Whittle and Praveen Jayaraman. Mata: A tool for aspect-oriented
modeling based on graph transformation. In Models in Software Engineer-
ing, pages 16–27. Springer, 2008.

[39] Bernard P Zeigler, Herbert Praehofer, Tag Gon Kim, et al. Theory of
modeling and simulation, volume 19. John Wiley New York, 1976.

42

	Introduction
	Domain Specific modelling
	Domain Specific modelling Language
	Abstract Syntax
	Concrete Syntax
	Semantics

	Why DSL weaving
	Reusability
	Multi-paradigm modelling
	Modularity
	Liskov's substitutability

	Background and Terminology
	Model weaving techniques
	Merge
	Merging based on correspondences by Pottinger
	Package Merge in UML 2
	Metamodel merge in GME

	Extension
	Model extension by Barbero et al.

	Templates
	Template Instantiation by Emerson and Sztipanovits
	Templates in MetaDepth

	Parametrization by Pedro et al.
	Interfacing
	Embedding
	Refinement
	Semantic Adaptation
	Aspect Oriented modelling
	GeKo by Morin et al.
	RAM Weaver by Kienzle et al.
	MATA by Whittle et al.
	Generic Model Composition Framework by Fleurey et al.
	Aspect Oriented Architecture Models by France et al.
	Motorola WEAVR by Cottenier et al.
	Semantic Weaving by Klein et al.
	Survey by Schauerhuber et al. schauerhuber2007survey

	Viewpoint Unification by Vallecillo
	Semantic Anchoring by Chen et al.

	Classification Criteria
	Symmetry
	Uniformity
	Domain
	Nature of models
	Time
	DSL Weaving applicability
	Concrete syntax support
	Implementation
	Moment of composition
	Matching Method
	Conflict Resolution
	Modularity
	Intrusion

	Analysis
	Conclusion

