
Advanced Applications for e-ID Cards in Flanders

ADAPID Deliverable D12

Framework II

Bart De Decker, Jorn Lapon, Mohamed Layouni, Raphael Mannadiar,

Vincent Naessens, Hans Vangheluwe, Pieter Verhaeghe,

Kristof Verslype (Ed.).

December 2009

2

Executive Summary

This deliverable is part of a work package within the Adapid project. The work package
aims to deliver a software framework that allows application developers to easily create pri-
vacy preserving applications. This deliverable is the second step in the development of this
framework.

In summary, the developed framework handlers aim at providing the application developer
a uniform interface to set up connections that can be privacy enhancing, to issue, receive and
use credentials that might be privacy preserving and it offers a way to store the related data.

The deliverable sketches an extensive and extensible framework consisting of lower level
handlers and higher level managers. The focus of this deliverable was mainly on the han-
dler level, while the manager level is mainly seen as future work. The handlers need to
be implemented and a providers, which can be plugged into the framewok, has been made.
This providers contains multiple implmentations for the handlers interfaces defined in the
framework itself.

A validation based on an ePoll and an eTicketing system has been made, which confirms
the usefulness of the framework. However, there are still a lot of open issue that need to be
examined in the future.

One chapter is devoted to modelling and synthesizing privacy-presering applications. The
aim of this apporach is to develop privacy preserving applications by modelling them in a
domain specic model. Based on this model, code could be generated, for instance, code that
uses the framework interfaces.

Contents

1 Introduction 11

2 Preliminaries 15
2.1 Framework General Definition and Principles 15

2.1.1 Definition . 15
2.1.2 General Framework Requirements . 15
2.1.3 Providers . 17
2.1.4 Sensitive Data Representation . 18
2.1.5 Patterns . 18

2.2 Cryptographic Building Blocks . 19
2.2.1 Commitments . 19
2.2.2 Proof of knowledge and Zero-knowledge proof 19
2.2.3 Verifiable encryptions . 21

2.3 Credential systems . 21
2.3.1 Belgian eID Card . 21
2.3.2 Classical X.509 certificates . 23
2.3.3 Pseudonym Certificates . 23
2.3.4 Anonymous credentials . 23

3 Framework 25
3.1 Overview . 25

3.1.1 Design . 26
3.1.2 Implementing a provider . 28
3.1.3 Local authentication to the framework. 29

3.2 Connection Handler & Manager . 30
3.2.1 Handler Description . 30
3.2.2 Implementation in a provider . 31
3.2.3 Connection handler usage example . 32
3.2.4 Application developer issues . 33
3.2.5 Manager Description . 34
3.2.6 Implementations . 34

3.3 Persistence Handler & Manager . 34
3.3.1 Handler Description . 34
3.3.2 Implementation in a provider . 35
3.3.3 Usage by application developer . 35

3

4 CONTENTS

3.3.4 Manager Description . 36
3.4 Credential Handler & Manager . 36

3.4.1 Credential, Pseudonym, Commitment and VerifiableEncryption 37
3.4.2 Template . 37
3.4.3 ShowSpecification . 40
3.4.4 Disclosure . 40
3.4.5 Entity . 42
3.4.6 Transcript . 43
3.4.7 AttributeValues . 45
3.4.8 Credential Handler . 45
3.4.9 Commitment and Verifiable Encryption creation 47
3.4.10 Using comitments and verifiable encryptions 48
3.4.11 Credential Manager . 49

3.5 Credential handler interface usage examples 50
3.5.1 Commitment creation . 50
3.5.2 Verifiable encryption creation. 51
3.5.3 Create a self signed X.509 certificate. 51
3.5.4 Creation of an Idemix credential template 52
3.5.5 Issue and receive a credential . 53
3.5.6 A simple authentication protocol . 54
3.5.7 A more complex authentication example 56
3.5.8 Pseudonym code examples . 58

3.6 Other Components . 59
3.6.1 Privacy Handler & Manager . 59
3.6.2 Dispute Handler & Manager . 60

3.7 Using Framework on Mobile Devices . 60

4 Validation 63
4.1 Validation based on eTicketing . 63

4.1.1 High-Level Description . 63
4.1.2 Usage of the framework . 63
4.1.3 Evaluation . 67

4.2 Validation based on ePoll . 67
4.2.1 High-Level Description . 68
4.2.2 Usage of the framework . 68
4.2.3 Evaluation . 68

5 Modelling and Synthesizing Privacy-Preserving Applications 69
5.1 Premise . 69
5.2 Case Study: Prescription Issuing Protocol . 70
5.3 Synthesizing Applications from Models . 72

5.3.1 The Domain-Specific Modelling Language 72
5.3.2 Model Transformations . 73

5.4 Evaluation . 75
5.4.1 Synthesized Applications . 76
5.4.2 Benefits of DSM . 76

CONTENTS 5

6 Conclusions and Future Work 79
6.1 The Adapid Framework . 79
6.2 Modelling and Synthesizing . 79

Appendices 81

A eTicketing 83
A.1 Introduction . 83
A.2 Related Work . 84
A.3 Requirements . 84
A.4 Assumptions and Notation . 85

A.4.1 Assumptions . 85
A.4.2 Notation . 85

A.5 Trivial eID-based Solution . 86
A.5.1 Introduction . 86
A.5.2 High Level Description . 86
A.5.3 Protocols . 86
A.5.4 Evaluation . 86

A.6 Solution based on Pseudonym Certificates . 87
A.6.1 Introduction . 87
A.6.2 Roles . 87
A.6.3 Assumptions . 87
A.6.4 Protocols . 88
A.6.5 Evaluation . 89

A.7 A Ticketing System Based on Anonymous Credentials 90
A.7.1 Introduction . 90
A.7.2 Roles . 91
A.7.3 Assumptions . 91
A.7.4 High Level Description . 92
A.7.5 Protocols . 92
A.7.6 Evaluation . 93

A.8 Evaluation . 95
A.9 Conclusions and Future Work . 95

B ePoll 97
B.1 Introduction . 97
B.2 Related Work . 97
B.3 Requirements . 98
B.4 Protocols . 98
B.5 Evaluation . 100

C Modelling 103

6 CONTENTS

List of Figures

2.1 Belgian Public Key Infrastructure . 22

3.1 High level architecture of the framework. 26
3.2 Class diagram for the framework. 27
3.3 Classes related to the XMLObject class. 28
3.4 Class diagram for the connection handler related classes. 31
3.5 Class diagram for the persistence handler. 35
3.6 Classes related to Credential, Pseudonym, Commitment and VerifiableEncryp-

tion. 38
3.7 Class diagram for templates. 39
3.8 Class diagram the show specification. 41
3.9 Class diagram for classes related to Disclosure. 42
3.10 Class diagram for predicates in the credential handler. 43
3.11 Class diagram for transcripts and entities. 44
3.12 Class diagram for attribute values. 45
3.13 The credential handler interface. 46
3.14 Interface to create commitment templates. 47
3.15 Verifiable Encryption related classes . 48
3.16 Verifiable encryption handler and commitment handler 49

5.1 Prescription Issuing described by a cryptography expert 71
5.2 Prescription Issuing modelled in a DSM tool. The stick figures are in-

stances of the ActorApplication construct; the vertical black lines are in-
stances of the LifeLine construct; the information bubbles are instances of
the InformationMessage construct; the blue folders with upward arrows are
instances of the ReadData construct; the ID cards with sideways arrows are
instances of the ShowCredential construct; and the blue folders with sideways
arrows are instances of the SendData construct. 72

5.3 The UML class diagram that defines the proposed privacy preserving applica-
tion modelling language. 73

5.4 The UML class diagram that defines the proposed mobile device application
modelling language. 74

5.5 The trace map of the formalisms in play with arrows indicating transformations
from one to the other. 74

7

8 LIST OF FIGURES

5.6 The model transformation rule DelayInformationMessage2PhoneApps as seen
in our DSM tool. A PhoneApps Container containing a TextLabel with the
text specified by the message attribute of the matched InformationMessage
is created. It transitions to a dummy Container after the delay specified
within the exitEvent attribute of the matched InformationMessage. Note
that both Containers 4 and 7 are dummy Containers which we use to facilitate
the connection of the first Container of one rule to the last Container of the
previous rule. 76

5.7 The model transformation rule ReadDataFromEidCard2PhoneApps as seen in
our DSM tool. Three PhoneApps Containers containing instructions pertain-
ing to the interaction with a Belgian eID card are created. Between them, two
ExecuteCode constructs are inserted; the first one waits for the insertion of a
valid Belgian eID card before proceeding while the second verifies the user pro-
vided PIN against the one stored on the card and reads the data specified in the
matched ReadData from the card. Note that ExecuteCode instances contain-
ing calls to the proposed framework are generated by other rules, most notably
ShowCredential2PhoneApps Src and ShowCredential2PhoneApps Dest. . . 77

5.8 Generated patient application running on an HTC Magic phone 78
5.9 Generated doctor application running on an HTC Magic phone 78

Listings

3.1 Example of implemented provider class . 28
3.2 X.509 Credential Handler implementation . 29
3.3 Example usage of connection handler by a client 32
3.4 Example usage of connection handler by a server 32
3.5 Creation of a Pedersen commitment template based on crypto parameters in

an Idemix Credential . 50
3.6 Creation of a Pedersen commitment template based on the security parameters

(such as length of the modulus) . 50
3.7 Creating a commitment. If only security parameters are given 51
3.8 Creating of a verifiable encryption template 51
3.9 Creating of a verifiable encryption . 51
3.10 Creating a self signed X.509 credential . 51
3.11 Creating an Idemix credential template . 52
3.12 Receiving a credential . 53
3.13 Issuing a credential . 53
3.14 Authentication . 54
3.15 Authentication verification . 55
3.16 Transcript verification . 55
3.17 Authentication under a nym and using a commitment 56
3.18 Authentication verification in which a pseudonym 57
3.19 Deanonymization after abuse by the trusted third party 57
3.20 Verification of a deanonymization . 58
3.21 Decryption of a verifiable encryption received by the verifier 58
3.22 Receiving a pseudonym . 58
3.23 Issuing a pseudonym . 59

9

10 LISTINGS

Chapter 1

Introduction

The digitalilization of our society brought a lot of benefits. However, privacy of the user is
more and more at stake. The awareness in the society w.r.t. privacy is rising mainly due to
a number of press articles in which for instance millions of personal records were simply lost.
Some political parties even have the right of privacy as part of their programm as a reaction
on the evolutions in recent years.

Nowadays, companies can compose giant databases about their customers and can even
link these databases together. This is for instance the case after a merger of companies. Two
typical examples of companies who really know a lot about you are Google and Facebook.
Imagine that all your personal data is stolen and sold or made public? Especially towards
health related data, privacy is an important issue, since these data are extremely sensitive.
Image for instance that you want to get an life insurance, but all the insurance companies
know some crucial details about health status. Or imagine finding a job if you facebook live
is available to your future employer.

Also, the use of eID cards is nowadays in most cases very privacy unfriendly. If a company
asks you to inserts your Belgian eID card into a card reader connected to his computer, he
can simply read out your name, address, picture, data of birth, etc. even without having to
insert your pin code.

The user should be given the control of deciding what personal information he is willing to
disclose to whom. Technologies are (being) developed that 1) provide the user anonymity at
network level and 2) that allow the user to disclose in a fine grained way the properties (s)he
is willing to disclose. For instance, instead of disclosing the exact date of birth in order to
prove that one is older than 18, the user could prove only that he is older than 18. Secondly,
instead of disclosing data under an identifier such as his SSN, he could disclose properties
under a pseudonym. This is also valuable to the companies, since securing their databases
against breaches and insider attacks has shown to be really though and if sensitive personal
data about their customers is lost, it can cost the company a lot of money.

The privacy enhancing technologies are not easy to use and each technology has its own
interface and peculiarities. Hence, it will cost the application developer a lot of time to
make his applications privacy friendly, which increases the probability that 1) the privacy
issues will be omitted or 2) if they are not omitted, the privacy is still compromised due to
a bad use of the privacy preserving technologies. Moreover, the user will still not be able to
keep track of the personal information that has been disclosed to whom and under which
pseudonym.

11

12 CHAPTER 1. INTRODUCTION

The aim of this framework is to provide a means towards the application developer to
easily integrate privacy in client-server applications. More exactly; the framework wants to
offer the application developer the means to control in a fine grained way the data that has
been disclosed to whom. A uniform interface is provided to set up and listen for connections,
which might or might not give the user a certain degree of anonymity. On the other hand, a
uniform interface offers the application developer the possibility to use whatever credential
technology that is the most appropriate. This makes it very easy to switch to another, more
efficient or more privacy-preserving technology.

On the other hand, we can expect that the user will have a lof of digital credential in
the future; one for his football club, one for on his eID card, his subscription to the cinema,
his medical insurance certificate, his driving permission, etc. The framework wants to offer
a means to manage these credentials, although the credentials can be stored or cached on
different places, even remotely.

The framework offers support to keep track of what information has been disclosed
to whom under what pseudonym. The user can, assisted by the framework, decide
whether he is willing to disclose more information, or wheter he should change to another
pseudonym or instead abort the action. The framework aims at informing the user about his
current anonymity towards other parties and about the effect of disclosing certain information.

The framework provides “a uniform interface to facilitate the development of privacy
preserving applications”. It enables a programmer with extensive to basic understanding of
cryptographic- and security-related concepts to implement privacy preserving applications.
The framework can thus – simplistically – be viewed as a means to enable programmers
to do more with less hassle. From here arises an interesting question – especially un-
der the premise that cryptography and/or security experts are harder to come by than
able programmers – : what can be done to enable domain experts to do more with
less hassle? More specifically, what can be done to enable cryptography and/or security
experts with little to no programming capabilities to develop privacy preserving applications?

Domain-Specific Modelling (DSM) is a relatively young discipline whereby applications1

are modelled at a high-level of abstraction using constructs that are tightly coupled to some
restricted domain’s concepts [25, 19, 6]. Subsequent Model Transformations transform the
models into a collection of low-level artifacts that form the final applications. The advantages
of using model-driven approaches as opposed to code-centric approaches to application
development are numerous; some of them are listed below.

Although a lot of work has been devoted to the framework, there are still a lot of is-
sues that can be covered or extended. This deliverable gives an overview of the work that
has been done so far.

This deliverables continues as follows; In the next chapter, the preliminaries are given;
the framework principles, important cryptographic techniques and credential techniques. In
chapter 3, the actual framework is explained and 4 gives a validation bases on applications

1A wide variety of artifacts can be modelled ranging from configuration files, to data schemas, to protocols,

to partial or complete applications. For brevity, we restrict our discussion of DSM to the modelling and

synthesis of applications.

13

discussed in the appendix. Chapter 5 discusses domain specic modelling. Finally,in chapter
6, the conclusions and future work are given.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

2.1 Framework General Definition and Principles

In this section, we explain what a framework exactly is, and what principles must be fullfilled.

2.1.1 Definition

“A software framework is a reusable design for a software system (or subsystem). This is
expressed as a set of abstract classes and the way their instances collaborate for a specific
type of software.” - Johnson and Foote 1988; Deutsch 1989 [24]

According to Pree [29], software frameworks consists of frozen spots and hot spots. On
the one hand, frozen spots define the overall architecture of a software system: its basic
components and the relationships between them. These remain unchanged (frozen) in any
instantiation of the application framework. On the other hand, hot spots represent those
parts where the programmers using the framework add their own code to enhance/extend the
functionality specific to their own project.

A framework should allow the developers to spend more time concentrating on the
business-specific problem rather than on the code. Also a Framework will limit the choices
during development, so it increases productivity, specifically in big and complex systems. A
framework should eliminate the effort of continuous re-discovery, re-invention of concepts and
their re-development.

A software framework can be geared toward building graphical editors for different do-
mains like artistic drawing, music composition, and mechanical CAD. Another software frame-
work can help build compilers for different programming languages and target machines. Yet
another might help build financial modeling applications or decision support systems. There
are frameworks for multimedia, web applications, and even communicating between different
systems.

2.1.2 General Framework Requirements

In this subsection, general guidelines for a good framework are presented.

15

16 CHAPTER 2. PRELIMINARIES

The primary benefits of Object Oriented application frameworks stem from the modular-
ity, reusability, extensibility, and inversion of control they provide to developers, as described
in [20] and repeated below:

� Modularity. Frameworks enhance modularity by encapsulating volatile implemen-
tation details behind stable interfaces. Framework modularity helps improve software
quality by localizing the impact of design and implementation changes. This localization
reduces the effort required to understand and maintain existing software.

� Reusability. The stable interfaces provided by frameworks enhance reusability by
defining generic components that can be reapplied to create new applications. Frame-
work reusability leverages the domain knowledge and prior effort of experienced devel-
opers in order to avoid re-creating and re-validating common solutions to recurring ap-
plication requirements and software design challenges. Reuse of framework components
can yield substantial improvements in programmer productivity, as well as enhance the
quality, performance, reliability and interoperability of software.

� Extensibility. A framework enhances extensibility by providing explicit hook methods
[Pree:94] that allow applications to extend its stable interfaces. Hook methods system-
atically decouple the stable interfaces and behaviors of an application domain from the
variations required by instantiations of an application in a particular context. Frame-
work extensibility is essential to ensure timely customization of new application services
and features.

� Inversion of control. The run-time architecture of a framework is characterized by
an “inversion of control.” This architecture enables canonical application processing
steps to be customized by event handler objects that are invoked via the framework’s
reactive dispatching mechanism. When events occur, the framework’s dispatcher reacts
by invoking hook methods on pre-registered handler objects, which perform application-
specific processing on the events. Inversion of control allows the framework (rather than
each application) to determine which set of application-specific methods to invoke in
response to external events (such as window messages arriving from end-users or packets
arriving on communication ports).

Another requirement is usability, which is indeed a broad term which involves multiple
elements. This means that the framework should be sufficiently easy to learn by application
developers: learning to use the the framework must not be harder than learning to use the
individual technologies that are required to develop the applications. Learning how to work
with the framework must not require a huge amount of effort, otherwise it will not be used
at all. Therefore, the API must be made as intuitive as possible. To quote Einstein: “Things
should be made as simple as possible, but not any simpler“. The framework should be
easy to configure, deploy and maintain once deployed. It is unavoidable that the framework
will need to be updated. This must be possible with minimal changes by the application
developers. Usability also implies that the framework does not involve a big computational
or storage burden. Usability also means that a good, detailed and clear documentation should
be available. Although this is often seen as lower-priority task, it is indispensable in gaining
popularity amongst application developers.

Testing and validation is an indispensable part of framework development. Due to the
high level of abstraction, testing the framework apart will be a though job. It can as well be

2.1. FRAMEWORK GENERAL DEFINITION AND PRINCIPLES 17

tested using concrete use case implementations, however if a bug is found, it can be located in
either the framework or the application built upon the framework. However, validation of the
framework using concrete use cases is necessary to test the completeness of the functionality
of the framework, to test its user-friendliness, etc. Based on the feedback, a next iteration is
possible.

Indeed, the framework’s functionality are abstractions derived from concrete use cases.
Based on those concrete examples, common functionality is grouped and the corresponding
methods are refactored to generic methods. This generalization is an iterative process and
is based on the feedback given by the experts of the different use cases. Analyzing and
implementing those example use cases is a large fraction of the cost of the project.

2.1.3 Providers

The framework as such cannot be used by the application developer. Therefore, an implemen-
tation of one or more components is necessary. Three properties must be satisfied: technology
independence, implementation independence and multiple instances:

� Technology independence. It must be possible to add or remove technologies to the
framework in a transparent and easy way for the application developer. E.g. if the
framework only offers support for the Belgian eID card, it must be possible to change
the used technology to the Swedish eID card.

� Implementation independence. The possibility must be offered to easily change the
implementation of a technology supported by the framework. E.g. if implementation
A is plugged in offering the possibility to show the Belgian eID to others, it must be
possible to change to another implementation B doing the same. This can be useful
e.g. if security breaches are detected, or if more efficient implementations are offered.
This allows lightweight software implementations on mobile phones, more heavy weight
software implementations on desktop computers and fast hardware implementation on
servers.

� Multiple instances. In one framework, it must be possible to use multiple technolo-
gies for the same interface at the same time. This way, the support for the Belgian and
Swedish eID card is possible at the same time. One must be able to choose which tech-
nology to use (e.g. to select the credential type to issue). If multiple implementations
can be plugged into the framework, one must be able to choose the implementation (the
one that is considered as the most thrustworthy one, the most efficient one, etc). One
must be able to add or delete and choose technologies and implementations in an easy
way, preferably at runtime.

Multiple instances allow the Adapid framework to support classical X.509, Idemix and
U-Prove credentials and multiple eId cards at the same time. Hundred percent technology
independence is impossible in our framework as different technologies have different properties.
At least the different technologies must be usable by the application developer in a similar
way.

To obtain these properties, so called providers can be used. A provider contains one or
more implementations of one or more technologies that fit into the framework. Thus, at the
one hand, we have the framework, offering the API, and at the other hand, we have the

18 CHAPTER 2. PRELIMINARIES

providers, offering the implementations. Different providers must be plugable at the same
time into the framework without conflicting.

2.1.4 Sensitive Data Representation

In a security framework, it makes sense to have two representations of sensitive data (e.g.
secret keys) outside the framework. Opaque representations allow one to access only the
non sensitive data (e.g. name), but disables the possibility to use the sensitive data outside
the framework. The full functionality can only be used inside the framework. This is the
more secure and default representation within the framework context. Transparent represen-
tations on the other hand do not have these restrictions and allow to export the sensitive
data. This representation will typically be a global standard representation and thus allows
interoperability.

In the ADAPID framework, the sensitive data consists of two types of sensitive data: secret
keys and personal data. The former is needed to use credentials while the latter is contained
in credentials or in evidence of actions (transcripts). By default, an opaque representation
will be used to enhance security, while the possibility of transparent representations must
evidently be offered to enhance interoperability with other systems able to handle the data
(e.g. X.509 certificates).

2.1.5 Patterns

In software engineering (or computer science), a design pattern [23] is a general repeatable
solution to a commonly occurring problem in software design. A design pattern is not a
finished design that can be transformed directly into code. It is a description or template for
how to solve a problem that can be used in many different situations. Object-oriented design
patterns typically show relationships and interactions between classes or objects, without
specifying the final application classes or objects that are involved. Algorithms are not thought
of as design patterns, since they solve computational problems rather than design problems.
In designing frameworks, the use of patterns is of utmost importance in obtaining maximal
flexibility and extensibility. In this section, a few examples of how pattern can be used in the
design of frameworks are given.

A potentially important design pattern is the Bridge Pattern. It decouples an abstraction
from its implementation, so that the two can vary independently. This is important if a
framework has to offer uniform APIs, while the underlying algoritms and implementation can
vary.

The Observer pattern offers a mechanism to keep related components consistent, without
having a close coupling between these components, as this increases complexity and decreases
reusability.

As a final example, setting up a connection to a server can be rather tedious as com-
plex interfaces and network operations are involved. The Service Locator pattern hides this
complexity

Other patterns exist as well. We refer to [23] for an overview of useful patterns.

2.2. CRYPTOGRAPHIC BUILDING BLOCKS 19

2.2 Cryptographic Building Blocks

Throughout the deliverable, often, the following notation will be used: X � Y : (rx; ry) ←
f(a; b; c). a and b are inputs known to and given by X and Y respectively. c is common
input. rx is the result at the side of X, ry at the side of Y .

2.2.1 Commitments

A commitment can be seen as the digital analogue of a ”non-transparent sealed envelope”.
It enables a committer to hide a set of attributes (non-transparency property), while at the
same time preventing him from changing these values after commitment (sealed property).
The committing party can prove properties of the attributes embedded in the commitment.

� (Com, OpenInfo) ← commit(Attribute(s))
A new commitment Com is generated as well as secret information OpenInfo containing,
among others, the attributes embedded in Com. This information can be used to prove
properties about the attributes.

� P ← V: prove(OpenInfo; ∅; Com, pred(attrs))
The public input to this protocol is both a commitment Com and a boolean predicate
pred concerning com’s attributes. If V accepts the proof, V is convinced that P knows
OpenInfo belonging to Com, and that Com’s attributes satisfy predicate pred. Note
that prove is usually an interactive protocol, but it can be made non-interactive.

A simple example of an application of commitments is secure coin-flipping. Suppose, Bob
and Alice want to resolve some dilemma by coin flipping. If they are physically in the same
place, the procedure would be (1) Bob ”calls” the coin flip, (2) Alice flips the coin and (3)
if Bob’s call is correct, he wins, otherwise Alice wins. If they are not in the same place,
however, this does not work, since Bob has to trust Alice to report the outcome of the coin
flip correctly. With commitments, a similar procedure can be constructed: (1) Bob ”calls”
the coin flip but only tells Alice a commitment to the call, (2) Alice flips the coin and reports
the result to Bob, (3) Bob reveals what he committed to, (4) if Bob’s call matches the result,
Bob wins, otherwise, Alice wins.

2.2.2 Proof of knowledge and Zero-knowledge proof

A proof of knowledge is a proof in which the prover succeeds in ’convincing’ a verifier that he
knows something. Assume a set X of publicly known elements; for each x ∈ X, there exists
a witness w ∈ W for which the relation R(x, w) is true. The prover P can then prove to V
that he knows w without revealing it to V.

P ← V : PK{(w) : R(x, w)} (2.1)

where x is the public input to the protocol, and w the corresponding secret witness w, the
knowledge of which is proven by P to V.

A zero-knowledge proof is an interactive protocol in which a party P proves to another
party V that a statement is true, without revealing anything other than the veracity of the
statement.

20 CHAPTER 2. PRELIMINARIES

P ← V : ZKP{(x) : pred(x)} (2.2)

where x is a secret value of which predicate pred is proven to V. V does not gain any other
information about x except that pred(x) is true.

Example of Proof of knowledge and Zero-Knowledge proof An authentication pro-
tocol based on public key cryptography usually uses a proof-of-knowledge protocol, in which
the prover proves that he knows the private key:

P V
choose random challenge rnd
c ← encrypt(PubKey, rnd)

c�

r ← decrypt(PrivKey, c)
r -

if (r == rnd)
then SUCCESSFUL
else FAILED

P proves that he knows the private key (PrivKey) that corresponds to the public key
(PubKey). This is abbreviated as follows:

P → V: PK{(PrivKey): rnd = decrypt(PrivKey, encrypt(PubKey, rnd))}

Although the private key (PrivKey) is not revealed to V, a dishonest V can learn something
about the private key by sending random data to P and have P decrypt that data (P is used
as an oracle by V for decrypting data).

The previous protocol can easily be transformed into a zero-knowledge proof:

P V
choose random challenge rnd
c ← encrypt(PubKey, rnd)

c�

r ← decrypt(PrivKey, c)
(com, openinfo) ← commit(r)

com -

rnd�

if (rnd 6= r) then ABORT
openinfo

-

r ← openCommit(com, openinfo)
if (r == rnd)
then SUCCESSFUL
else FAILED

2.3. CREDENTIAL SYSTEMS 21

Here P first sends a commitment to the challenge, and when V reveals the challenge, P
opens the commitment for V. A dishonest V is not able to send the challenge in cleartext (in
the third message) if the first message was random data.
P proves (in zero-knowledge) that he knows the private key (PrivKey) that corresponds

to the public key (PubKey). This is abbreviated as follows:

P → V: ZKP{(PrivKey): rnd = decrypt(PrivKey, encrypt(PubKey, rnd))}

Other examples of zero-knowledge proves include proving that an attribute embedded in
a commitment or credential (cfr. section 2.3), is greater than a certain value (e.g. the age-
attribute is greater than 18) or that the attribute lies in a fixed interval (e.g. the age-attribute
lies in [18,35]).

2.2.3 Verifiable encryptions

Verifiable encryptions have all the characteristics of regular (public key) encryptions. Addi-
tionally, they enable the creator P to demonstrate properties of the encrypted plain text. As
an example, P can prove to V that the encrypted plain text is encoded as an attribute in a
commitment or credential.

c = V E(PubKey, x) (2.3)

c refers to the cipher text, x refers to the plain text, PubKey is the public key of a TTP.
Note that the corresponding private key may not be known to V nor P.

Verifiable encryptions can be used to implement accountability in anonymous transactions.
The customer will send a verifiable encryption of his pseudonym (or identity) to the service
provider, thereby proving that the encrypted plain text is correctly formed (e.g. is equal to
the pseudonym embedded in a credential). The service provider is assured that when abuse
is detected, the TTP will be able to reveal the pseudonym (or identity) of the anonymous
customer.

2.3 Credential systems

2.3.1 Belgian eID Card

This section gives an overview of the current Belgian eID technology. A more elaborate
description can be found in [17, 18].

Contents of the Belgian eID card

Private information such as the owner’s name, birthdate and -place, address, digital picture
and National Registration Number is stored in three separate files: an identity file, an address
file and a picture file. The files are signed by the National Registration Bureau (NRB). The
National Registration Number (NRN) is a unique nation-wide identification number that is
assigned to each natural person.

Two key pairs are stored on the eID card. One key pair is used for authentication, the
other is used is for signing. The (qualified) e-signatures are legally binding. The public keys
are embedded in a certificate which also contains the NRN and the name of the card holder.
The private keys are stored in a tamper-proof part of the chip and can only be activated (not

22 CHAPTER 2. PRELIMINARIES

Figure 2.1: Belgian Public Key Infrastructure

read) with a PIN code. Authentication is single sign-on, i.e. the PIN code is only required
for the first authentication. For signing, a PIN code is needed for each signature[33].

Belgian Public Key Infrastructure

The certificates on the eID card are part of a larger hierarchical infrastructure, the Belgian
Public Key Infrastructure (be-PKI) [30]. The hierarchy is illustrated in figure 2.1. The cit-
izen’s signature and authentication certificates are issued by a Citizen CA which is certified
by the Belgium Root CA. Other governmental CAs such as the Card Admin CA and Gov-
ernment CA also have certificates issued by the Belgium Root CA. The former can update
the eID card. The latter certifies the National Registration Bureau (NRB) which signs the
identity and address file and offers other services in the public sector. The Belgium Root CA
has two certificates. The first is a self-signed certificate, that allows for offline validation of
the signature and authentication certificates on the eID card. The second certificate is is-
sued by GlobalSign. The latter is typically known to popular applications (such as browsers)
and allows for the automatic validation of electronic signatures. The PKI provides Author-
ity Revocation Lists (ARL) and Certificate Revocation Lists (CRL) [1] that keeps the serial
numbers of the revoked certificates.

Official middleware

The cryptographic functionalities in the Belgian eID card are accessed through middleware [3].
Applications typically interact with the card via a simple API [31] offered by this middleware.
If a document needs to be signed, the middleware passes a hash of the document to the card.
Similarly, a hash of the challenge is passed to the card for authentication purposes. When
an application wants to authenticate or sign a document with the eID card, the middleware
requests the user to enter his PIN code. The middleware can also verify the validity of
the certificates (using CRL or OCSP). It is important to note that the use of the official
middleware is not mandatory. Several alternatives, developed by different companies, are
available.

2.3. CREDENTIAL SYSTEMS 23

2.3.2 Classical X.509 certificates

Classical X.509 certificates are well known and are basically a set of attributes signed by a
trusted party. Three protocols are relevant in this deliverable.

� E � I : (certE , SKE ; certE) ← issueCert(certI ; ∅; atts, SKI). I issues a certificate
certE with secret key SKE to entity E by signing a set of attributes atts with his
private key SKI . We assume that the key pair (PKE , SKE) is generated as part of this
protocol.

� P � V : authenticate(certP ; SKP ; ∅). P authenticates towards V using his private key
SKP .

� U : sig ← sig(SK U , msg). Sign a message msg using secret key SK U .

2.3.3 Pseudonym Certificates

Pseudonym certificates [4] are traditional certificates where the identity information is re-
placed by a pseudonym. The certificate states that the identity of the user referred to by
that pseudonym and the properties certified in the certificate have been verified by the issuer.
Different shows of the same certificate are linkable, which can undermine anonymity. The
same functions as for X.509 certificates can also be applied for pseudonym certificates.

Enhanced Pseudonymous Certificates.

We further extend the privacy without requiring considerable computational capabilities by
replacing each certificate attribute att that contains personal properties (date of birth, social
security number, etc.) by H(att,rand). Showing such an enhanced pseudonym certificate
thus only reveals personal data if the owner of the certificate also discloses the corresponding
(att, rand) tuple to the verifier. Evidently, the linkability issue persists.

2.3.4 Anonymous credentials

Anonymous credential systems [14, 13, 11, 7] allow for anonymous yet accountable transac-
tions between users and organisations. They are capability based, user-centric mechanisms
in which users can prove statements about themselves and their relations with others anony-
mously. Moreover, selective disclosure allows the user to reveal only a limited set of properties
of the attributes embedded in the credential: e.g. a credential with the user’s date of birth
as an attribute can be used to prove that the owner is over 18 without disclosing the exact
date of birth or other attributes.

Two anonymous credential systems are being implemented.

� U-Prove credentials are pseudo-anonymous, even to the issuer; selective disclosure is
possible, but different shows of the same credential are linkable. However, a credential
can easily be reissued.

� Idemix is more flexible and can be used with or without pseudonyms. Multiple credential
shows are unlinkable if no uniquely identifying attribute data are revealed. Therefore,
Idemix is used in the rest of this paper.

24 CHAPTER 2. PRELIMINARIES

The relevant simplified protocols that apply to anonymous credentials are:

� U � I : Cred ← issueCred(coms; attsU , opens, certI ; attsI , SK I). I issues to U a cre-
dential. The credential attribute values are either chosen by U and hidden for I (attsU),
or chosen by I (attsI). Committed values can be included in the credential, allowing
U to hide the actual values for I, while still being able to prove properties about those
values. The corresponding commitments and opening infos are coms and opens.

� U � V : proof ← showCred(coms, properties; Cred, opens; ∅){Msg}. U proves to V
the possession of a valid credential Cred. U can selectively disclose credential attributes
or properties thereof (described in properties). These properties can involve a set of
committed values coms with opening info set opens. U may decide to sign a message
Msg with his credential, creating a provable link between the proof and the message.

Additionally, proofs resulting from a showCred() protocol can be deanonymizable by a prede-
termined trusted third party. Anonymous credentials can be issued to be shown either once, a
predetermined limited number of times or an unlimited number of times in total, independent
of the services that are contacted.

Similliarly to commitments, relationships with values in verifiable encryptions can be
proven.

Chapter 3

Framework

3.1 Overview

In general, the aim of the framework is to offer a uniform interface to facilitate the develop-
ment of privacy preserving applications. This way, the complexity of the underlying building
blocks is hidden for the application developer. Hence, developing a privacy preserving appli-
cation becomes faster and migrating to new (more privacy enhancing) technologies becomes
easier. The focus of the framework is on certifying personal data and on managing and
disclosing certified personal data. Furthermore, the client-server model is considered.

The general architecture of the framework is shown in figure 3.1. The middle layer is
the actual framework. It consists of several handlers and managers. The handlers are ab-
stract classes, providing a uniform interface to a family of similar technologies; technologies
that are implementations of the same concept. Some of these technologies might have pri-
vacy enhancing properties, while others don’t. For instance, not all credentials are privacy
enhancing.

The lowest layer, i.e. the provider layer, contains one or more providers. Each provider
contains implementations for at least one handler interface, resulting in a concrete handler
object. Hence, for each implementation in the provider layer, we have a separate handler.
Multiple providers can offer implementations for the same technology and a provider can
contain multiple implementations for the same abstract handler interface.

On top of the handlers, the managers are found. A manager is a singleton; for each man-
ager type, there is only one instance. Managers provide higher level functionality compared
to the handlers and, therefore, they use the underlying handlers. On the contrary to handlers,
managers are fully implemented in the framework itself and do not need to be implemented
by a provider.

On top of the framework layer, the framework entry point Framework is found. Here,
applications can get references to the different managers. The managers in turn keep track
of the different available handlers. Secondly, it loads and applies the general configuration
settings. Thirdly, it can enforce user authentication towards the framework; this can be done
using a simple password, but also other authentication mechanisms such as eID authentication
are possible.

25

26 CHAPTER 3. FRAMEWORK

Figure 3.1: High level architecture of the framework.

3.1.1 Design

An overview of the general design can be found in figure 3.2.

� Framework. The central class loads at startup the different handler implementations
that are provided by the available providers. As part of the constructor of the Framework
class, the user might be required to authenticate.

� Handler. Each Handler component in the framework defines a generic interface to a
category of technologies (credentials, conections, etc.). An implementation is necessary
before a component can be used. This implementation can be provided by Provider
packages. After one or more providers are plugged into the framework, the managers
can automatically select the proper implementation when necessary.

� Provider. This interface needs to be implemented for each provider; meaning that
for each handler implementation provided by a provider, an Implementation object
is added to the concrete class in that concrete provider implementing the Provider
interface. The information in these Implementation objects is used in the framework
to forward API calls from applications to the corresponding classes (with the actual
implementation) in the provider package.

� Manager. In the current framework, four main managers are present; the credential,
persistence, connection and privacy manager. Each of these managers is a singleton
which keeps track of the available corresponding handler implementations.

The framework provides some other classes (see figure 3.3) from which framework specific
classes such as Credential and ConnectionParameters (see later), will inherit or make use
of. Later in this chapter, we will see how these different classes are used in the framework.

� XMLObject. Classes inheriting from this class need to implement methods allowing
to convert the object into an XML object or in an XML String or vice versa. This

3.1. OVERVIEW 27

Figure 3.2: Class diagram for the framework.

facilitates sending framework objects over various types of connections and makes them
programming language independent. Note that a getXML() or getXMLString may never
disclose sensitive data such as secret keys (security) or attribute values (privacy) and
that only the XML representation can be sent over connections. This way, the framework
helps the application builder, since the accidential disclosure of sensitive data towards
other parties is prevented; either the sensitive data is simply not shown in the XML
representation (this is done in e.g. Credential), or the class containing only sensitive
data (e.g. Attributes) does not inherit from XMLObject, disabling the possibility to
send the data to another party using the framework.

� Parameters. This abstract class inherits from XMLObject. Classes implementing this
class will contain non-sensitive parameters such as the length of the modulus.

� Data. This abstract class does not inherit from XMLObject and can thus not be sent to
another party using the framework. This will contain sensitive data such as attribute
values or secret crypto data such as secret keys.

� Technology. A class that will be used by all handlers is the Technology class, which
has a name and a version. It simply describes the applicable technology.

� StatusInterface. This interface is implemented by data objects that are the result of
an interactive protocol with another party (e.g. authentication) and provides method
signatures that allow to easily get hold of the returned data, as well as whether or
not the protocol succeeded. If the protocol did not succeed, a status message must be
provided.

Although it is not a part of this deliverable, it is possible to develop a uniform GUI for the
framework usable by multiple applications, hence providing a consistent and uniform GUI.

28 CHAPTER 3. FRAMEWORK

Figure 3.3: Classes related to the XMLObject class.

Secondly, a dispute manager with corresponding handlers, which could provide functionality
to resolve conflicts, even if transactions where anonymous, is not considered in this deliverable.
Generally speaking, we can state that a lot of effort has been devoted into the handlers and
their implementations in providers. However, the managers are considered only on a higher,
conceptual level in this deliverable.

3.1.2 Implementing a provider

In order to write a provider that can be plugged into the framework, the abstract Provider
class needs to be implemented, as well as one or more of the Handler classes.

The Provider class

An example of a concrete Provider class is given in listing 3.1. Here, the provider provides
three implementations for the credential handler and one for the connection handler. For each
handler implementation, an Implementation object containing the required information must
be added to the implementation of the abstract class Provider.

public class MyProvider implements be . kuleuven . cs . i d f . Provider {

@Override

public Implementation [] getImplementat ions () {
return new Implementation [] {

new Implementation (this , Component . Credent ia lHandler ,

X509CredentialHandler . class ,

new Technology (”X509” , new Vers ion (”3”))) ,

new Implementation (this , Component . Credent ia lHandler ,

3.1. OVERVIEW 29

Belg ianEidCredent ia lHandler . class ,

new Technology (” Belg ianEid ” , new Vers ion (” 3 .5 ”))) ,

new Implementation (this , Component . Credent ia lHandler ,

IdemixCredent ia lHandler . class ,

new Technology (” Idemix” , new Vers ion (” 2 .0 ”))) ,

new Implementation (this , Component . ConnectionHandler ,

SocketConnectionHandler . class ,

new Technology (” Sockets ” , new Vers ion (”1”)))

} ;

}

Listing 3.1: Example of implemented provider class

A Handler class

The framework defines interfaces for different types of Handlers. To implement the generic
interface for a specific Handler component, a class must be created that inherits the Handler
component that will be implemented. An example of a X509CredentialHandler that imple-
ments the CredentialHandler interface is shown in listing 3.2

Note that the implementations in the providers will usually wrappers around existing
implementations in order to allow these existing implementations to be plugged into the the
framework.

import be . kuleuven . cs . i d f . components . Credent ia lHandler ;

public class X509CredentialHandler extends Credent ia lHandler {

public X509CredentialHandler (Framework fw) {
super (fw) ;

}

// implementat ion o f Credent ia lHand ler methods t ha t are i n h e r i t e d

}

Listing 3.2: X.509 Credential Handler implementation

3.1.3 Local authentication to the framework.

Local authentication to the framework by the user is done as follows. Two handler threads are
run; one client thread and one server thread. Communication between two threads happens
using shared memory and standard synchronisation mechanisms (monitors). Hence, local
authentication or remote authentication is conceptually the same. We will later see how a
user can authenticate remotely. Based on the authenticatio, a secret is derived, giving the
user access to his data.

30 CHAPTER 3. FRAMEWORK

3.2 Connection Handler & Manager

3.2.1 Handler Description

The connection handler offers a uniform interface to set up, listen for and break connections.
Each connections that leave the framework (e.g. to authenticate towards another en-

tity or to retrieve a remotely stored credential) is handled by one of the appropriate
ConnectionHandler objects. Multiple connections can be used simultaneously. The frame-
work provides the same modules and interfaces for both clients and servers. However, they
use complementary methods. Different technologies that can be implemented are (SSL over)
TCP sockets, Bluetooth, NFC, anonymous networks like Tor and JAP, etc.

Figure 3.4 gives an overview of the classes related to the connection handler. The following
classes are relevant:

� ConnectionHandler. This is the main class, used to set up, receive and break connec-
tions of a particular type. The class and all its methods are abstract and need to be
implemented by the provider developer.

� ConnectionParameters. This class allows to set all the parameters relevant to set up
or listen for a connection of a particular type. Each separate parameter has a name and
an associated value.

These parameters can be technology specific. For instance, if an SSL/TLS connection is
set up, the Credential object (see section 3.4) required to do the authentication must
be contained in the ConnectionParameters object, while such an object is not required
to set up a TCP socket based connection. The list of required and optional parameters
is technology specific and should therefore be well described by the provider developer
in order to help the application developer. Section 3.2.4 describes how this can be done
efficiently and intuitively for the application developer.

� ConnectionListener. A server can wait for an incoming connection. If this event oc-
curs, a connectionListener is made, which allows to establish the incoming connection
(using the ConnectionHandler.accept() method). The advantage of using a separate
ConnectionListener object is that the server keeps listing for incoming connections
while at the same time another connection is being established.

This abstract class must be implemented by the provider developer.

� Connection. The actual connection which is returned by the
ConnectionHandler. connect() method (client side) and by the corresponding
ConnectionHandler.accept() method (server side). Objects of the following classes
can be sent over a connection: String, XMLObject, Request and Response. Each
connection has its own unique identifier. This will be useful later to reason about
linkabilities of actions.

The bookkeeping methods such as getDuration() are implemented by the framework.

� Request. A request contains a command (String) and additionally, extra data
can be provided (String, XMLObject or XMLObject[]). For instance, new Request(
"GET CREDENTIAL TEMPLATE", "user") could be a request for a credential template
with the name “user”. This class is fully implemented by the framework. The exact

3.2. CONNECTION HANDLER & MANAGER 31

Figure 3.4: Class diagram for the connection handler related classes.

definition of the commands and the corresponding data is defined by the application
developer.

� Response. After having sent a request, the other side replies with a Response object,
which contains the returned data (can be empty) and a status message. The latter
allows the sender of the Request object to get hold of the status; everything might have
succeeded or an error message could be included as status message in the Response
object. This class is fully implemented by the framework. But can be overriden by the
provider developer (see section 3.2.4).

3.2.2 Implementation in a provider

The provider developer needs to implement ConnectionHandler and ConnectionListener
completely. If a technology Abc is implemented, the class AbcConnectionParameters should
be created, which inherits from ConnectionParameters. The methods in such a class con-
tain a set of constructors which is used to set all the required and potentially the optional
parameters. Also, setters can be added to set optional parameters. An example is given with
parameters for a TCP sockets connection. This facilitates setting up the right parameters for
a particular technology. Instead of writing

ConnectionParameters params = new ConnectionParameter () ;

params . addParameter (” host ” , ” s e r v e r ”) ;

params . addParameter (” port ” , 12345) ;

params . addParameter (” timeout ” , 100) ;

to create a ConnectionParameters object appropriate for sockets, we can simply write

ConnectionParameters params = new SocketConnectionParameter (” s e r v e r ” , 12345 ,

100) ;

32 CHAPTER 3. FRAMEWORK

which is less error-prone. A provider developer can easily extract the parameter values
out of the ConnectionParameters object.

3.2.3 Connection handler usage example

In listing 3.3 an example is given of how an application at the client side could set up a
connection and ask the server for a particular credential template (see section 3.4). The
listing 3.4 lists the code of how a server could listen for an incoming connection and create
the proper response.

// Get the connect ion manager

ConnectionManager connMgr = framework . getConnectionManager () ;

// Obtain proper connect ion hand ler

Technology tech = new Technology (” Sockets ” , ”1”) ;

ConnectionHandler connHandler = connMgr . getConnect ionHandler (tech) ;

// E s t a b l i s h connect ion .

ConnectionParameters params = new SocketConnectionParameters (” 1 9 8 . 1 1 2 . 2 3 . 7 8 ” ,

12345) ;

Connection conn = connHandler . connect (params) ;

// Create and send r e que s t and r e c e i v e response

Request r eque s t = new Request (”GET CREDENTIAL TEMPLATE” , ”BeEId”) ;

Response response = connHandler . sendAndReceive (conn , r eque s t) ;

i f (re sponse . succeeded ())

Template template = (Template) re sponse . getData () ;

Listing 3.3: Example usage of connection handler by a client

// Get the connect ion manager

ConnectionManager connMgr = framework . getConnectionManager () ;

// Obtain proper connect ion hand ler

Technology tech = new Technology (” Sockets ” , ”1”) ;

ConnectionHandler connHandler = connMgr . getConnect ionHandler (tech) ;

// Li s t en f o r and accep t incoming connect ion .

ConnectionParameters params = new SocketConnectionParameters (” 1 9 8 . 1 1 2 . 2 3 . 7 8 ” ,

12345) ;

Connect ionLi s tener connLi s tener = connHandler . s t a r t L i s t e n (params) ;

while (true) {
Connection conn = connHandler . accept (connLi s tener) ;

// Server can s t a r t a new thread to proces s mu l t i p l e incoming connec t ions at

// the same time .

// Receive the r e que s t . Create and send the response

Request r eque s t = connHandler . r e c e i v e (conn) ;

Response response ;

i f (r eque s t . getCommand () . equa l s (”GET CREDENTIAL TEMPLATE”)) {

3.2. CONNECTION HANDLER & MANAGER 33

St r ing name = (St r ing) r eque s t . getData () ;

Template template = findCredTemplate (name) ; // app . s p e c i f i c method

re sponse = new Response (”OK” , template) ;

} else {
re sponse = new Response (”Unknown command”) ;

}
connHandler . send (conn , re sponse) ;

connHandler . d i s connec t (conn) ;

}

Listing 3.4: Example usage of connection handler by a server

3.2.4 Application developer issues

The application developer has the possibility to inherit from the Request and Response classes
in order to fine tune these to specific needs. For instance, if only integers are encrypted, a
class VencDecryptRequest could be made as shown below, which is a specific request for a
decryption of a verifiable encryption. An appropriate VencDecryptResponse could be made
as well.

public class VencDecryptRequest extends Request{

public VencDecryptRequest (int data) {
super (”VENC DECRYPT” , data) ;

}

public int getData () {
return (int) getData ()

}
}

Alternatively, a VencDecryptor class as shown below can be made. This class hides the
communication issues for the user of the class. In the example code, it is assumed that all
encrypted data are String objects. Once a VencDecryptor object vd is made and if a cipher
c must be decrypted, we can simply call vd.decrypt(c).

public class VencDecryptor{

private ConnectionHandler handler

private Connection conn ;

public VencDecryptor (ConnectionHandler handler , Connection conn) {
this . conn = conn ;

this . handler = handler ;

}

public St r ing decrypt (Ve r i f i ab l eEnc ryp t i on c iphe r) {
Request r eque s t = new Request (”VENC DECRYPT” , c iphe r) ;

Response response = handler . sendAndReceive (conn , r eque s t) ;

34 CHAPTER 3. FRAMEWORK

i f (re sponse . succeeded ())

return (S t r ing) re sponse . getData () ;

else

return null ;

}
}

3.2.5 Manager Description

Depending on the communication requirements of the application (e.g. tamper proof, degree
of anonymity, integrity- and/or confidentiality-protected, speed, etc.) the Communication
Manager could select the most appropriate Communication Handler implementation. If the
anonymity of a connection drops below a certain threshold, the connection could be broken,
or the user could be warned.

3.2.6 Implementations

At the moment, implementations are available for:

� TCP sockets

� HTTP servlets

3.3 Persistence Handler & Manager

3.3.1 Handler Description

A persistence handler is responsible for the storage of data objects (XMLObject). This could
be locally on a hard drive or a USB stick, but as well on a smart card with access control or
even remotely. An encryption mechanism can be present as well. Figure 3.5 shows the class
diagram. The following classes are relevant at the handler level:

� PersistenceHandler. An implementation of this abstract class provides the func-
tionality to store, load and delete data objects (XMLObject) using a particular per-
sistence technology. Examples of such technologies are persistence using a particular
type of smart card and persistence on remote server using a particular protocol. It
allows to retrieve all the names of object of a particulaar type stored using a particular
PersistenceParameters object.

All the methods in this class are abstract and must be implemented by the provider
developer.

� PersistenceParameters. Since, in order to keep them stateless, persistence han-
dlers only contain the functionality of how persistence related operation should be
done and not where and with what parameters. This information is contained in
PersistenceParameters objects. Besides location information, also Credential and
ShowSpecification objects can be part of a PersistenceParameters object, as well
as tokens (e.g. a password or a symmetric key) required to access the data.

3.3. PERSISTENCE HANDLER & MANAGER 35

Figure 3.5: Class diagram for the persistence handler.

� DataType. This is an enumeration of all the data types that can be made persistent in
the framework.

3.3.2 Implementation in a provider

The provider developer needs to implement PersistenceHandler completely. If a technology
Abc is implemented, the class AbcPersistenceParameters should be created, which inherits
from PersistenceParameters. The methods in such a class contains a set of constructors
which is used to set all the required and potentially the optional parameters. Also, setters
can be added to set optional parameters. This is the same technique that is applied for
ConnectionParameters in the previous section.

At the moment, only local stoarage as XML file is provided.

3.3.3 Usage by application developer

// ge t the manager

Pers istenceManager pMgr = fw . getPers i s tenceManager () ;

// The data we want to s t o r e

XMLObject data = template ;

// Get the p e r s i s t e n c e hand ler

Technology tech = new Technology (”XMLFile” , ” 0 . 0 . 1 ”) ;

Per s i s t enceHand l e r pHandler = mgr . ge tPe r s i s t enceHand l e r (tech) ;

// . . . and s e t the corresponding Pers i s tenceParameters

Per i s tenceParameters params = new XMLPersistenceParameters (” s t o r e . xml”) ;

36 CHAPTER 3. FRAMEWORK

// Save the temp la te

pHandler . saveTemplate (data , params) ;

// Load a c r e d e n t i a l data o b j e c t us ing the same hand ler and parameters .

// Creden t i a l i n h e r i t s from XMLObject .

Credent i a l cred = pHandler . load (” d r i v i n g L i c e n s e ” , DataType . c r e d e n t i a l , params) ;

// De le te t ha t c r e d e n t i a l

pHandler . d e l e t e (” d r i v i n g L i c e n s e ” , DataType . c r e d e n t i a l , params)

3.3.4 Manager Description

The manager keeps track of the following: 1) the available persistance handlers, 2) the avail-
able persistence parameters and 3) for each stored data object, its name (identifier) and a
reference to the proper PersistenceHandler and PersistenceParameters object. The per-
sistence manager offers the functionality to query for stored data objects that have particular
properties.

Secondly, the manager could build on top of the persistence parameteres and handlers
places. Places are logical storage entities that make abstraction of the underlying technology.
A user could for instance have a ’wallet’, containing only his most important credentials and a
number of receipts, although the content of the wallet may reside on different stores or might
be duplicated on several stores.

3.4 Credential Handler & Manager

The most important interface in the framework is the CredentialHandler inter-
face. It defines a generic interface to perform actions using credentials (sign-
ing, authenticating, issuing credentials, etc.) while making abstraction of a spe-
cific technology (X.509, Idemix, etc.). This interface can be implemented by
several providers using different technologies. Each CredentialHandler imple-
mentation (implemented in a provider) can only handle one type of credential
(e.g. X509CertificateCredentialHandler, PseudonymCertificateCredentialHandler,
IdemixCredentialHandler, BelgianEidCredentialHandler). The CredentialManager
manages and selects the most appropriate credential(s) in the framework.

In order to explain the CredentialHandler interface, first, some other concepts and their
related class diagram need to be explained. In section 3.4.1, the class diagram for pseudonyms,
commitments, verifiable encryptions and credentials is explained. Section 3.4.2 explains the
templates and their relevant classes. Section 3.4.3 elaborates on the shoz specification, which
describes the proeprties to be disclosed. Section 3.4.4 introduces the concept of disclosures,
which is a show specification with the requried other objects in order to do a verification
or proof. Section 3.4.5 introduces the concept of an entity and section 3.4.6 introduces the
transcripts, which are the result of a protocol. Section 3.4.7 introduces attriubte values, which
are needed to create credentials. In section 3.4.8, the actual credential handler is introduced.
Section 3.4.9 explains how commitment and credential templates cna be made and section
3.4.10 continues by explaining how commitments and verifiable encryptions can be created
and used. Finally, section 3.4.11 briefly touches the credential manager.

3.4. CREDENTIAL HANDLER & MANAGER 37

3.4.1 Credential, Pseudonym, Commitment and VerifiableEncryption

In figure 3.6, the classes related to commitments, verifiable encryptions, pseudonyms and
credentials are shown. These concepts have in common that properties or at least ownership
of it can be proven or verified.

� ProverObject. A concrete class (inderectly) inheriting from this abstract class is
a Credential, a Commitment, a Pseudonym or a VerifiablEncryption. Concrete
AttributeProverObject objects all contain attributes about which properties can be
proven. AttributeContainer objects are more simple than Credential objects in the
sense that their attributes are not certified by a third party. Each ProverObject has
a reference to a template (see 3.4.2) and to a Data object. The former describes the
type of the commitment, pseudonym, credential or verifiable encryption, while the latter
contains secret prover data that must not be disclosed to others. Therefore, Data does
not inherit from XMLObject and these data are not shown in the XML representation
of the ProverObject objects. AttributeProverObject objects also have a reference to
an Attributes object. The XML representation also hides the exact attribute values of
the AttributeProverObject objects. Sending ProverObject objects to another party
hence does not disclose any sensitive information. Since the ProverObject.getData()
method is protected, this data is only visible within the framework. The final type of
ProverObject is the Pseudonym, which can also have secret data.

� Attributes. An instantiation of this class contains zero, one or more Attribute
objects. Each Attribute object contains a type, a name and a value.
CredentialAttribute objects in addition contains information about who did pro-
vide the information (the issuer, the receiver, or the issuer using a commitment). In the
latter case, the corresponding CommitmentTemplate must be provided. Note that none
of the classes related to Attribute inherits from XMLObject since these objects do not
need to be sent to other parties.

Attribute containers and pseudonyms can either contain the secret (CommitmentData,
VencData or PseudonymData) required to prove properties about the content or these data
might be removed. In the latter case, the objects can only be used to verify and not
to prove properties. Additionally, in case of commitments or verifiable encryptions, the
AttributeValues object can be removed (i.e. the sensitive data). These data are removed by
the framework if the object is sent to another party, or if the removeProveCapabilities()
method is called and are not shown by the getXML methods.

The different ProverObject classes and their Data classes need to be implemented by the
provider developer. In the next section, the templates are considered.

3.4.2 Template

In figure 3.7, the main Template class and its related classes are shown. The main classes are
now explained.

� Template. Abstract class from which the different concrete template
classes (CommitmentTemplate, VencTemplate, PseudonymTemplate and
CredentialTemplate) inherit. A template has a technology and a set of securi-
typarameters (determining for instance the sizes of the keys). A CredentialTemplate

38 CHAPTER 3. FRAMEWORK

Figure 3.6: Classes related to Credential, Pseudonym, Commitment and VerifiableEncryption.

3.4. CREDENTIAL HANDLER & MANAGER 39

Figure 3.7: Class diagram for templates.

has more complex attribute specifications (CredentialAttributeSpecification), it
has a ControlParameters, defining how the credential can be used and a credential
template has an issuer, which is an Entity object (see section 3.4.5).

� AttributeSpec. CommitmentTemplate and CerififableEncryptionTemplate ob-
jects have a specification of the attributes that must be integrated in the tem-
plate. CredentialTemplate objects have more complex attribute specifications and
pseudonyms have none.

� CredentialAttributeSpec. Since credentials are more versatile than commitments
and verifiable encryptions, the attribute specification for credentials is more elaborate.
It contains the information about how the attribute value should be provided (Source).
either by the issuer, by the verifier, or the attribute value could be provided by the
receiver but in a commitment. In the latter case, a CommitmentTemplate should be
given as basis to generate that commitment. The credential attribute specification also
defines that the attributes is either mandatory or obligatory.

� ControlParameters. An object of this class describes how, when and how many times
the credential corresponding to a credential template can be used. In addition, it
contains information about how to check the validity (e.g. the link to the CRL).

The provider developer needs to define the content of the SecurityParameters. Usu-
ally, the application developer will put the logic to create CryptoParameters objects in the
appropriate handler.

40 CHAPTER 3. FRAMEWORK

3.4.3 ShowSpecification

In figure 3.8, the ShowSpecification class and other related classes are depicted. A show
specification is a description of the properties that will be or are disclosed, however, it does
not containe these objects.

� ShowSpecification. An object of this class describes exactly what is (going to be)
disclosed as part of the authentication or signature protocol. It defines the predicates
(e.g. cred.DoB > 1980) and the nym under which the properties are or must be shown.
It can also contain the name of the nym under which the authentication/signing will be
done.

� Predicate. A predicate is either a BasicPredicate, an IntervalPredicate, a
Connection or a PossessionPredicate object. A BasicPredicate is a relation be-
tween two terms (see next bullet), while a Connection is the union or intersection of two
or more Predicate objects. A PossessionPredicate predicate proves possession of a
credential and an IntervalPredicate proves that a value in a credential, commitment
or verifiable encryption lies between two other values.

� Term. A term object is either a constant (ConstantTerm), a reference to an attribute in
a credential, commitment or verifiable encryption (CredentialTerm, CommitmentTerm
or VencTerm), or a composite term (CompositeTerm), which is the result of applying an
operator one two or more other Term objects.

Note that the pseudonyms, credential templates, commitments and verifiable encryptions
as such ar not part of the show specification. These can either be directly given to the methods
in the CredentialHandler instantiation, or can be put in a Disclosure object (see section
3.4.4), which can as well be given as parameter to the a CredentialHandler object.

Also note that the show specification defines the minimum that will be or is disclosed by
the prover during an authentication or a signature. Depending on the used technology, it is
possible that more is disclosed. For instance, proving possession of a X.509 certificate implies
disclosing all the attributes contained in the certificate.

The provider developer does not need to implement the conversion of a showspecification
to the particular technology.

3.4.4 Disclosure

A Disclosure object contains all the information needed to either authenticate or sign, or to
verify an authentication or signature. The Disclosure class and its related classes are shown
in figure 3.4.4.

� Disclosure. A ShowSpecification is only a description of what is disclosed
or what will be dislcosed. However, in order to do the actual authentication
or place the actual signature, also the Commitment, Pseudonym, Credential and
VerifiableEncryption objects must be provided by the prover. These objects are
together with the ShowSpecification put in a Disclosure object. In the case of the
verifier, no Credential objects are given, but the corresponding CredentialTemplate
objects and, evidently,the sensitive data of the different prover objects has been
removed. By calling the method isValidProvableDisclosure, one can check

3.4. CREDENTIAL HANDLER & MANAGER 41

Figure 3.8: Class diagram the show specification.

42 CHAPTER 3. FRAMEWORK

Figure 3.9: Class diagram for classes related to Disclosure.

whether the disclosure suffices to prove the ShowSpecification object. The method
isValidVerififableDisclosure returns whether the disclosure suffices to verify the
properties stated in the show specification.

� DeanonSpec. Objects of this class can be added to a Disclosure object and contain
the condition under which deanonymization of the authenticator or signer is allowed
and by whom. Multiple DeanonSpec objects can be added.

Note that the commitments, pseudonyms and verifiable encryptions will have their secret
data (Data) removed when sent over a connection. Also, the Attributes object of commit-
ments and verifiable encryptions will be removed in that case. Finally, if credentials are part
of the disclosure, they will be removed and only their template will be kept. This corresponds
to the information returened by a getXML() method.

The provider developer does not need to implement anything w.r.t. Disclosure objects.

3.4.5 Entity

An entity is a set of personal information that is disclosed during a single authentication or
signature. It can have a proof, which implies that another entity guarantees the correctness
of the information. Entity objects are useful to verify certification chains (or variants) and to
keep track of the information that is known to or about others.

The main classes are:

� Entity. A set of disclosed data (in VerifiableDisclosure), potentially associated
with a proof (DisclosureProof). Such a proof can either be an Authentication or a
Signature object.

3.4. CREDENTIAL HANDLER & MANAGER 43

Figure 3.10: Class diagram for predicates in the credential handler.

� DeanonSpec. Such an object can be part of the proof. Since it is bound to the proof,
the deanonymizer is sure that he deanonymizes the right identifier or pseudonym.

� Deanonymization. The result of a denonymization. It cqn containt a proof of the
correcness of the deanonymization.

For instance, signing a document using an X.509 certififcate will result in a Signature
object, which will also contain (parts of) the X.509 certificate. This combination is a proof
for the Disclosure object, which will contain all the disclosed attributes. In case of an
Idemix authentication, the resulting proof will be part of the DislosureProof object, and
the Disclosure object used during the authentication is refenced to by the Entity object.

The provider developer needs to ensure that the proper data is put into the objects.

3.4.6 Transcript

For each of the involved parties, an interactive protocol results in a transcript. This transcript
contains all relevant information known to that particular party. An overview is given in figure
3.11.

� Transcript. Each Transcript object contains at least a timestamp of the start of
the protocol and one of the protocol end. Also, data about the connection is con-

44 CHAPTER 3. FRAMEWORK

Figure 3.11: Class diagram for transcripts and entities.

tained in a transcript; the connection parameters and the connection identifier. For
his own use, the transcript owner or the application can give the transcript a name
and description, which might be useful to retrieve it later, for instance in case of lia-
bility issues. A Transcript object can also contain data about the transaction iteself
(TransactionData). An IssuerTranscript object contains additionally the template
of the credential that has been issued. A ReceiverTranscript object contains the
newly received credential. ProverTranscript and VerifierTranscript objects also
contains a reference to an Entity object (see section 3.4.5). The pseudonym related
transcripts contain a pseudonym; the receiver is able to prove possession of it, while
the issuer is not. In case of signed nym transcripts, the signature is contained in the
transcript.

Note that the ShowSpecification in the a Disclosure object in a transcript describes the
information that has actually been disclosed. This might be more than the description of the
ShowSpecification object that was used during the signing or authentication protocol. For
instance, proving possession of an X.509 certificate implies disclosing all contained attributes.

The provider developer can optionally set the transactiondata.

3.4. CREDENTIAL HANDLER & MANAGER 45

Figure 3.12: Class diagram for attribute values.

3.4.7 AttributeValues

In order to do a credential issuance, both the receiver and the issuer need to specify zero
or more attributes to be included in the credential; These values are described in two
AttribueteValues objects; one at the issuer side and one at the receiver side. The attributes
given a value can differ in both objects. An AttributeValues object at the receiver’s side
can even contain a reference to a commitment about which properties were proven to the
issuer beforehand. The two relevant classes are shown in 3.12.

3.4.8 Credential Handler

The credential handler offers the interface to use the concepts described earlier in this docu-
ment. The interface is given in figure 3.13. The typical methods are now explained.

� authenticate(). A party who wants to authenticate to another party calls this method.
If there are only a very limited number of other parameters, they can be given as separate
parameters, Otherwise, the a Disclosure parameter (with prove capabilities) must be
given as second parameter besides the connection. The authentication protocol results
in a AuthProverTranscript (see 3.4.6).

� receiveAuthenticate(). This method is complementary to the previous one and is
called by the verifier. Instead of a Credential object, a CredentialTemplate object is
given as parameter, and the Disclosure object may not have prove capabilities, since
only properties need to be verified.

� sign(). This method is called in order to sign a message, which is given as a parameter.
If a Connection object is given as first parameter, the signature is interactive, and has
hence only proof value towards the verifier. If no connection is given, the signature
is generated locally and could be sent to and verified by anyone afterwards. The last
parameter is a Disclosure object (with prove capabilities) which describes the prop-
erties that are linked to the signature. Instead of this Disclosure object, a credential
or a credential and a show specification could be given as parameters. Note that the
pseudonym, commitments and verifiable encryptions in the disclosure object must have
prove capabilities.

� verifySign(). This method is complementary to the previous one. If a connection is
given as parameter, it is an interactive signature, if not it is a non-interactive signa-
ture. Instead of credentials, credential templates are given as parameters or put in the
Disclosure object. Only an interactive signature results at each side in a transcript
conainting the signature. Otherwise, the signature itself is returned by the sign()
function or a boolean is returned by the verifySign() function.

46 CHAPTER 3. FRAMEWORK

Figure 3.13: The credential handler interface.

� getCredential(). This method is called in order to receive a credential. A connection,
a credential template and a CredentialValues object are given as parameters. The
latter determines the values that may be chosen by the receiver of the credential. The
other values must be chosen by the issuer. A CredentialValues object can also contain
references to attributes in commitments, about which properties might have been proven
beforehand by the receiver to the issuer. These values are included in the credential
without the issuer knowing them.

� issueCredential(). This is the method complementary to the previous one, in which
the issuer provides in an AttributeValues object the attribute values that may not be
chosen by the receiver.

� verifyAuthentication(). An authentication can be verified afterwards using this
function. The Authentication and Disclosure object must be given as parameters
and a boolean is returned.

� createSelfSignedCredential(). This function allows to generate a self signed cre-
dential based on a credential template and the corresponding attribute values which are
given as parameters to the function.

3.4. CREDENTIAL HANDLER & MANAGER 47

Figure 3.14: Interface to create commitment templates.

� verifyEntity(). This function is useful to verify a certification chain or other directed
certification graphs; Each authentication or signature is guaranteed by certifier, which
might in turn be certified by yet another entity. The correctness of all the entitites in
this directed graph can be verified using this method.

� deanonymize(). Based on an DisclosureProof object (extracted out of a transcript)
and the DeanonSpec object, a deanonymization can be done by the trusted third party.
The result of this method returns a Deanonymization object.

� verifyDeanonymization(). The Deanonymization object returned by the previous
method can contain a proof that the content indeed corresponds to what the TTP
claims. This method allows to verify this proof.

� getPseudonym() & issuePseudonym(). These methods are complementary methods
to issue a pseudonym by a service provider to a client. Analogous, there are the
getSignedPseudonym() and the issueSignedPseudonym() methods to which an ex-
tra Disclosure object is given as parameter resulting in a provable binding between
the pseudonym and the disclosure by the issuer.

� getPseudonymTemplate. Based on some security parameters, a pseudonym template
can be made.

The provider developer needs to implement all or a subset of the abstract methods in this
handler.

3.4.9 Commitment and Verifiable Encryption creation

Figure 3.14 shows the interface provided by the CommitmentTemplate class. A specification
of the attributes must be given to both constructors. The first parameter can be chosen;
either it is a SecurityParameters object or a CryptoParameters object. In the first case,
the crypto parameters such as the modulus and bases will be generated during construction
of the template. In the latter case, this is not necessary since they are given as parameter.

Figure 3.15 shows the different relevant classes for verifiable encryptions.

� VencKey. A VencKey object is either a public verifiable encryption key (VencPublicKey)
or a private verifiable encryption key (VencPrivateKey). A VenKey has a reference to
a CryptoParameter object. A VencKeyPair is a public-private pair of such keys.

� VencTemplate. This objects inherits from ContainerTemplate. In order to create a
template, the specification of the attributes must be given. The other parameter is a
verifiable public key.

48 CHAPTER 3. FRAMEWORK

Figure 3.15: Verifiable Encryption related classes

� VerifiableEncryption. An object of this class is a verifiable encryption of attribute
values corresponding to the AttributeSpecification object in the template. The
VencData object does not leave the framework and allows to prove properties about the
encrypted content. If the verifiable encryption is sent over a connection, this data is
removed and hence the ability to prove properties about the encrypted attributes. The
data is not shown by a getXML() method call. The cipher itself is a byte array.

3.4.10 Using comitments and verifiable encryptions

Figure 3.16 shows that two classes inherit from AttributeContainerHandler;
CommitmentHandler and VencHandler. The former allows to create commitments,
while the latter allows to create verifiable encryptions and to decrypt them. Proving
properties about attributes in verifiable encryptions or commitments can be done using
the prove() methods provided by the AttributeContainerHandler. These methods can
be interactive or non-interactive. Only in the former case, a connection must be given
as parameter. AttributeContainerHandler also provides the corresponding verify()
methods.

Based on a commitmentvalue and attribute values, a commitment can be made. Again,
the commitment will contain a CommitmentData object allowing to prove properties, however,
this object never leaves the framework of the creator. A VencHandler object allows to create
verifiable encryption key pairs, to encrypt and to decrypt verifiable encryptions.

The provider developer needs to implement all or a subset of the abstract methods in
this handlers.

3.4. CREDENTIAL HANDLER & MANAGER 49

Figure 3.16: Verifiable encryption handler and commitment handler

For the credential handlers, wrappers have been writtten around two versions of Idemix,
around a bouncycastle implementation of X.509 certificates. Based on this, pseudonym
certificate support has been integrated and finally, support for the Belgian eID card using
the official middleware provided by the Belgian governement has been integrated.

3.4.11 Credential Manager

The credential manager allows the service provider to compose an authentication request or
a signature request.

This request contains a list of templates that are acceptable by the service provider. Hence,
the client is only allowed to use credentials that have one of the listed credential templates.
These templates contain the acceptable technologies, security parameters and trusted issuers.
Potentially, a template can also contain information about the way the correctness of the
contained attributes has been verified by the issuer.

This request can define the minimum and optional properties that must or may be dis-
closed in order to get access to a particular service offered by the service provider. For instance
a client must be older than 18 and living in an area with ZIP code 3000. Additionally he can
disclose that (s)he is in the age interval [18-35] or that (s)he is older than 35.

If a message needs to be signed, the structure of the message can be defined in the request.
For instance, in an ePoll, the client might be given the choice between different options (e.g.
in favour or against). This choice might be concatenated with the description and identifier
of the poll and the current time.

Also, the deanonymization condition and a list of trusted deanonymizers can be given in
the request.

The credential manager of the client will receive the request from the service provider and
will find all the sets of credentials, commitmentes, etc. that can fullfill the service provider
request. The framework will, based on its policy, with the help of the privacy manager and
potentially with user intervention select the credentials, properties and message that will be
disclosed and how. This is called the client’s selection.

50 CHAPTER 3. FRAMEWORK

Based on this the service provider request and the client’s selection, the authentication
or signature process can be performed. The credential managers at both sides will select the
appropriate handlers during this process.

3.5 Credential handler interface usage examples

The usage of the credential handler and the related classes is now illustraded.

3.5.1 Commitment creation

This section explains how CommitmentTemplate and Commitment objects can be created.
We repeat that a CommitmentTemplate object consists of a technology, security parameters
(length of the modulus, order, etc.) and crypto parameters (modulus, bases, etc.). The
security parameters must be derivable from the crypto parameters and the technology must
be derivable from the security parameters.

If the crypto parameters are known beforehand, the approach in listing 3.5 can be adopted.
In this example, the crypto values are simply extracted from another (IdemixCredential)
object. In 3.6, only the security parameters are given, which means that the commitment
handler will have to find/calculate new crypto values, which might take some time.

The CommitmentTemplate object contains the technology, security parameters and op-
tionally the crypto parameters. The attribute specification is given as argument, together
with either the crypto or the security parameters.

IdemixCredent ia l cred = . . .

CommitmentTemplate cTemplate = new CommitmentTemplate () ;

CryptoParameters params = new PedersenCryptoParameters (cred)

Attr ibutesSpec spec = new Attr ibuteSpecs () ;

spec . add (”name” , AttributeType . S t r ing) ;

spec . add (” gender ” , AttributeType . I n t e g e r) ;

cTemplate . setCryptoParameters (params) ;

cTemplate . s e tAt t r i bu t e sSpec (spec) ;

Listing 3.5: Creation of a Pedersen commitment template based on crypto parameters in an
Idemix Credential

CommitmentTemplate cTemplate = new CommitmentTemplate () ;

Secur i tyParameters params = new PedersenSecur i tyParameters (1024 , 128) ;

Att r ibutesSpec spec = new Attr ibuteSpecs () ;

spec . add (”name” , AttributeType . S t r ing) ;

spec . add (” gender ” , AttributeType . char) ;

cTemplate . s e tSecur i tyParamete r s (params) ;

cTemplate . s e tAt t r i bu t e sSpec (spec) ;

Listing 3.6: Creation of a Pedersen commitment template based on the security parameters
(such as length of the modulus)

A commitment creation is shown in listing 3.7. Based on a commitment template and the
attribute values, the commitment is generated.

3.5. CREDENTIAL HANDLER INTERFACE USAGE EXAMPLES 51

CommitmentHandler commHandler = credMgr . getCommitmentHandler (” Pedersen ” , ”

0 . 0 . 1 ”)

Attr ibuteValues v a l s = new Attr ibuteValues () ;

v a l s . add (’name ’ , ” K r i s t o f Vers lype ’) ;

v a l s . add (’ gender ’ , ’m ’) ;

Commitment comm = commHandler . createCommitment (template , v a l s) ;

Listing 3.7: Creating a commitment. If only security parameters are given

3.5.2 Verifiable encryption creation.

Listing 3.8 illustrates how a verifiable encryption template can be made and listing 3.9 shows
how a verifiable encryption can be generated.

VencPublicKey pk = . . .

Att r ibutesSpec spec = new Attr ibuteSpecs () ;

spec . add (”name” , AttributeType . S t r ing) ;

spec . add (” gender ” , AttributeType . I n t e g e r) ;

VencTemplate vTemplate = new vTemplate (pk , spec) ;

Listing 3.8: Creating of a verifiable encryption template

VencHandler vencHandler = credMgr . getVencHandler (”Camenisch” , ” 0 . 0 . 1 ”)

VencTemplate vTemplate = . . .

Attr ibuteValues v a l s = new Attr ibuteValues () ;

v a l s . add (’name ’ , ” K r i s t o f Vers lype ’) ;

v a l s . add (’ gendere ’ , t rue) ;

Ve r i f i ab l eEnc ryp t i on venc = vencHandler . createVenc (va ls , vtemplate) ;

Listing 3.9: Creating of a verifiable encryption

3.5.3 Create a self signed X.509 certificate.

A root certification authority will need a self-signed credential. This is illustrated in listing
3.10

CredentialManager cMgr =

Credent ia lHandler credHandler = mgr . getHandler (”X.509 ” , ” 0 . 0 . 1 ”) ;

// Create the c r e d e n t i a l t emp la te . we s t a r t by c r e a t i n g the s e c u r i t y parameters

Secur i tyParameters secParams = new X509SecurityParameters (1024 , ”SHA1withRSA”) ;

// Since the c r e d e n t i a l i s s e l f s igned , no e n t i t i y needs to be s e t as i s s u e r .

// The con t r o l parametes are s e t

ControlParameters conParams = new ControlParameters () ;

conParams . d i sab l eEncrypt ion () ;

conParams . d i s a b l e A u t e n t i c a t i o n () ;

conParams . d i s a b l e S i g n i n g () ;

52 CHAPTER 3. FRAMEWORK

conParams . e n a b l e C e r t i f i c a t i o n () ;

conParams . setDurat ion (”2 years ”) ;

// The a t t r i b u t e s s p e c i f i c a t i o n i s s e t

Credent i a lAt t r ibuteSpec s at tSpecs = new Credent i a lAt t r ibuteSpec s () ;

a t tSpecs . add (”name” , AttributeType . S t r ing) ;

a t tSpecs . add (” address ” , AttributeType . S t r ing) ;

// Fina l l y , the p i e c e s are put in a temp la te

Credentia lTemplate template = new Credentia lTemplate () ;

template . s e tSecur i tyParamete r s (secParams) ;

template . setContro lParametes (conParams) :

template . s e t A t t r i b u t e S p e c i f i c a t i o n (at tSpecs) ;

// Create the c r e d e n t i a l v a l u e s o b j e c t con ta in ing the a c t ua l a t t r i b u t e va l u e s

Credent ia lVa lues a t t s = new Credent ia lVa lues () :

v a l s . add (”name” , ” Un iver sa lS ign ”) ;

v a l s . add (” address ” , ” C e l e s t i j n e n l a a n 200A, 3000 Leuven , Belgium”) ;

v a l s . validFrom (new Date ()) ; // v a l i d from now on

// The c r e d e n t i a l i s c rea t ed

Credent i a l i s sue rCred = cHandler . c r e a t e S e l f S i g n e d C r e d e n t i a l (template , a t t s) ;

// The e n t i t y po s e s s ing the c r e d e n t i a l i s e x t r a c t e d . This i s p o s s i b l e s ince i t

i s s e l f s i gned .

// This i s s u e r o b j e c t can be pub l i s h ed

Entity i s s u e r = c r e d e n t i a l . g e t I s s u e r () ;

Listing 3.10: Creating a self signed X.509 credential

3.5.4 Creation of an Idemix credential template

In listing 3.11, it can be seen how a credential template can be created. In this example, the
credentials will be Idemix credentials. The security parameters are made, the issuer is set,
the control parameters are defined as well as the specification of the attributes that can be
included in the credential corresponding to this template.

// Create the c r e d e n t i a l t emp la te . we s t a r t by c r e a t i n g the s e c u r i t y parameters

Secur i tyParameters secParams = new IdemixSecur i tyParameters (048 , 1632 , 256 ,

256 , 1 , 597 , 120 , 2724 , 80 , 160 , 256 , 80 , 80) ;

// Set the i s s u e r

Entity i s s u e r = i s s u e r // see prev ious l i s t i n g ;

// The con t r o l parametes are s e t

ControlParameters conParams = new ControlParameters () ;

conParams . enab leAuthent i cat ion () ;

conParams . enab l eS ign ing () ;

3.5. CREDENTIAL HANDLER INTERFACE USAGE EXAMPLES 53

conParams . setDurat ion (”1 year ”) ;

// The a t t r i b u t e s s p e c i f i c a t i o n i s s e t

Credent i a lAt t r ibuteSpec s at tSpecs = new Credent i a lAt t r ibuteSpec s () ;

a t tSpecs . add (”name” , AttributeType . S t r ing) ;

a t tSpecs . add (” z ip ” , AttributeType . i n t e g e r) ;

a t tSpecs . add (”dob” , AttributeType . i n t e g e r) ;

a t tSpecs . add (” gender ” , AttributeType . char)

// Fina l l y , the p i e c e s are put in a temp la te

Credentia lTemplate template = new Credentia lTemplate () ;

template . s e tSecur i tyParamete r s (secParams) ;

template . setContro lParametes (conParams) :

template . s e t I s s u e r (i s s u e r) ;

template . s e t A t t r i b u t e S p e c i f i c a t i o n (at tSpecs) ;

Listing 3.11: Creating an Idemix credential template

3.5.5 Issue and receive a credential

In listing 3.12, it the code required by the receiver to receive a credential is shown. Evidently,
this is only one of the possible scenarios. In listing 3.13, the correpsonding code to issue the
credential is shown.

// Load c r e d e n t i a l manager and hand ler

CredentialManager cMgr =

Credent ia lHandler credHandler = mgr . ge tCredent ia lHand le r (” Idemix” , ” 0 . 0 . 2 ”) ;

// I t i s assumed t ha t a connect ion has a l r eady been s e t up .

Connection conn = . . .

// Re t r i eve the temp la te t ha t has been crea t ed p r e v i o u s l y

Credentia lTemplate template = . . .

// Create empty Credent ia lVa lues o b j e c t ; a l l v a l u e s are chosen by the i s s u e r .

Credent ia lVa lues rece iverChosenAtts = new Credent ia lVa lues () :

// s t a r t the p ro t o co l to r e c e i v e the c r e d e n t i a l

CredRece iverTranscr ipt r t r a n s = ge tCreden t i a l (conn , template ,

rece iverChosenAtts) ;

Credent i a l cred = r t r a n s . g e tCreden t i a l () ;

Listing 3.12: Receiving a credential

// Load c r e d e n i t a l manager and hand ler

CredentialManager cMgr =

Credent ia lHandler credHandler = mgr . ge tCredent ia lHand le r (” Idemix” , ” 0 . 0 . 2 ”) ;

54 CHAPTER 3. FRAMEWORK

// I t i s assumed t ha t a conec t ion has a l r eady been s e t up .

Connection conn = . . .

// r e t r i e v e the temp la te t ha t has been r e t r i e v e d p r e v i o u s l y

Credentia lTemplate template = . . .

// Create the c r e d e n t i a l v a l u e s o b j e c t con ta in ing the a t t r i b u t e va l u e s

Credent ia lVa lues i s suerChosenAtts = new Credent ia lVa lues () :

v a l s . add (”name” , ” Kr i s tov Vers lype ”) ;

v a l s . add (” z ip ” , 3000) ;

v a l s . add (”dob” , 19820101) ;

v a l s . add (” gender ” , true) ;

v a l s . validFrom (new Date ()) ;

// execu te the i s s u e p ro t o co l .

// Complementary to the g e tCr ed en t i a l () method in the prev ious l i s t i n g

CredI s sue rTransc r ip t i t r a n s = i s s u e C r e d e n t i a l (conn , template , i s suerChosenAtts)

;

Listing 3.13: Issuing a credential

3.5.6 A simple authentication protocol

Listing 3.14 and 3.15 illustrate how a prover could authenticate to a verifier. The first listing
is the code executed by the prover, the second by the verifier. Afterwards, the correcness of
the verification can be checked (see 3.16).

// Load c r e d e n t i a l manager and hand ler

CredentialManager cMgr =

Credent ia lHandler credHandler = mgr . ge tCredent ia lHand le r (” Idemix” , ” 0 . 0 . 2 ”) ;

// I t i s assumed t ha t a connect ion hand ler i s i n s t a n t i a t e d

// and a connect ion wi th the v e r i f i e r has a l r eady been s e t up .

ConnectionHandler connHandler = . . .

Connection conn = . . .

// The c r e d e n t i a l the user w i l l use to au t h en t i c a t e .

Credent i a l cred = . . .

// The temp la te o f the c r e d e n t i a l i s s en t to the o ther s i d e

connHandler . send (conn , cred . getTemplate ()) ;

S t r ing id = cred . getTemplateDOI () ;

ShowSpec i f i ca t i on spec = new ShowSpec i f i ca t i on () ;

Pred i ca te pred1 = new I n t e r v a l P r e d i c a t e (id+” . z ip ” , 3000 , 3010) ;

Pred i ca te pred2 = new Bas i cPred i ca te (id+” . dob” , Re lat ion .GREATERTHAN, 1980) ;

Pred i ca te conn = new Connective (Connector .UNION) ;

conn . addPredicate (pred1) ;

3.5. CREDENTIAL HANDLER INTERFACE USAGE EXAMPLES 55

conn . addPredicate (pred2) ;

spec . s e t P r e d i c a t e (conn) ;

/**

* The f o l l ow i n g outcommented code would on ly d i s c l o s e

* t h a t the prover po s s e s s e s a p a r t i c u l a r c r e d e n t i a l type .

* I f spec i s empty , t h i s i s the d e f a u l t .

*

* S t r ing id = cred . getTemplateDOI () ;

* ShowSpec i f i ca t i on spec = new ShowSpec i f i ca t i on () ;

* p r ed i c a t e p = new Posse s s ionPred i ca t e (id) ;

* spec . s e tP r ed i c a t e (p) ;

**/

// Send the show s p e c i f i c a t i o n to the s e r v i c e prov ide r

connHandler . send (conn , spec) ;

// Now, the a c t ua l au t h en t i c a t i on can be done

AuthProverTranscript t rans = authent i ca t e (conn , cred , spec) ;

Listing 3.14: Authentication

// Load c r e d e n t i a l manager and hand ler

CredentialManager cMgr =

Credent ia lHandler credHandler = mgr . ge tCredent ia lHand le r (” Idemix” , ” 0 . 0 . 2 ”) ;

// I t i s assumed t ha t a connect ion hand ler i s i n s t a n t i a t e d

// and a connect ion wi th the v e r i f i f e r has a l r eady been s e t up .

ConnectionHandler connHandler = . . .

Connection conn = . . .

// The s e r v i c e p rov i d e r s r e c e i v e s the c r e d e n t i a l t emp la te and the show

s p e c i f i c a t i o n

Credentia lTemplate template = (Credent ia lTemplate) connHandler . r e c e i v e (conn) ;

ShowSpec i f i ca t i on spec = (ShowSpec i f i ca t i on) connHandler . r e c e i v e () ;

// Now, the a c t ua l au t h en t i c a t i on can be done

AuthVer i f i e rTransc r ip t t rans = re c e i v eAu then t i c a t i on (conn , template , spec) ;

Listing 3.15: Authentication verification

// Load c r e d e n t i a l manager and hand ler

CredentialManager cMgr =

Credent ia lHandler credHandler = mgr . ge tCredent ia lHand le r (” Idemix” , ” 0 . 0 . 2 ”) ;

// and v e r i f y the e n t i t y which was par t o f the t r a n s c r i p t

boolean r e s u l t = credHandler . v e r i f y E n t i t y (t rans . ge tEnt i ty ()) ;

Listing 3.16: Transcript verification

56 CHAPTER 3. FRAMEWORK

3.5.7 A more complex authentication example

In the example in listing 3.17 and 3.18, the prover proves a relationship between the credential
and a commitment and the credential and a verifiable encryption, and does this under a
pseudonym. All relevant disclosure data is put in a Disclosure object, which is sent to the
verifier. Since the framework prevents sending sensitive information over connections, the
verifier only receives a Disclosure object that only allows to verify the correctness of the
authentication. We emphasize that this is only one example of how prover and verifier can
cooperate.

In listing 3.19, the Authentication object is used to do the deanonymization. Note that
this object contains the DeanonSpec object. The resulting object contains a pseudonym or
an identifier. The deanonymizer can additionally sign the result for liability/trust reasons.
Listing 3.20 illustrates how the deanonymization by the TTP could be verified.

Also, a decryption of a verifiable encryption is shown in listing 3.21. Since the
deanonymization techniques uses verifiable encryption, and since the denanoymizing entity
knows the content of that encryption, (s)he could create a proof proving the exact value of
the encryption. A decryptor of a verifiable encryption can do the same.

// Load c r e d e n t i a l manager and hand ler

CredentialManager cMgr =

Credent ia lHandler credHandler = mgr . ge tCredent ia lHand le r (” Idemix” , ” 0 . 0 . 2 ”) ;

// I t i s assumed t ha t a connect ion hand ler i s i n s t a n t i a t e d

// and a connect ion wi th the v e r i f i e r has a l r eady been s e t up .

ConnectionHandler connHandler = . . .

Connection conn = . . .

// the t r u s t e d t h i r d par ty to do the deanonymization

Entity ttp = . . .

Commitment comm = . . .

Ve r i f i ab l eEcn ryp t i on venc = . . .

Ent ity decryptor = . . .

// The c r e d e n t i a l and the pseudonym the user w i l l use to au t h en t i c a t e .

Credent i a l cred = . . . // conta ins an a t t r i b u t e ” year ”

Pseudonym nym = . . . // conta ins an a t t r i b u t e ” gender ”

// the show s p e c i f i c a t i o n

St r ing idCred = cred . getTemplateDOI () ;

ShowSpec i f i ca t i on spec = new ShowSpec i f i ca t i on () ;

Pred i ca te pred1 = new I n t e r v a l P r e d i c a t e (idCred+” . z ip ” , 3000 , 3010) ;

Pred i ca te pred2 = new Bas i cPred i ca te (id+” . dob” , Re lat ion .GREATERTHAN, comm.

getName ()+” year ”) ;

Pred i ca te pred3 = new Bas i cPred i ca te (id+” . gender ” , Re lat ion .EQUALS, venc .

getName ()+” gender ”) ;

Pred i ca te conn = new Connective (Connector .UNION) ;

conn . addPredicate (pred1) ;

conn . addPredicate (pred2) ;

conn . addPredicate (pred3) ;

3.5. CREDENTIAL HANDLER INTERFACE USAGE EXAMPLES 57

spec . s e t P r e d i c a t e (conn) ;

// The deanonymization cond i t i on

DeanonSpec deanonSpec = new DeanonSpec (cred , ”name” , ttp , ” abuse ”)

Provab l eDi s c l o sure d i s c l o s u r e = new D i s c l o s u r e () ;

d i s c l o s u r e . s e tSh ow Sp ec i f i c a t i on (spec) .

d i s c l o s u r e . addCredent ia l (cred) ;

d i s c l o s u r e . addCommitment (comm) ;

d i s c l o s u r e . setDeanonSpec (deanonSpec) ;

d i s c l o s u r e . setPseudonym (nym) ;

// The temp la te o f the c r e d e n t i a l i s s en t to the o ther s i d e

// Note t ha t the framework t a k e s care t ha t no s e n s i t i v e data i s sen t .

connHandler . send (conn , d i s c l o s u r e) ;

// Now, the a c t ua l au t h en t i c a t i on can be done

AuthProverTranscript t rans = authent i ca t e (conn , d i s c l o s u r e) ;

Listing 3.17: Authentication under a nym and using a commitment

// Load c r e d e n t i a l manager and hand ler

CredentialManager cMgr =

Credent ia lHandler credHandler = mgr . ge tCredent ia lHand le r (” Idemix” , ” 0 . 0 . 2 ”) ;

// I t i s assumed t ha t a connect ion hand ler i s i n s t a n t i a t e d

// and a connect ion wi th the v e r i f i e r has a l r eady been s e t up .

ConnectionHandler connHandler = . . .

Connection conn = . . .

// The s e r v i c e p rov i d e r s r e c i e v e s the c r e d e n t i a l t emp la te and the show

s p e c i f i c a t i o n

D i s c l o s u r e d i s c l o s u r e = (D i s c l o s u r e) connHandler . r e c e i v e () ;

// Now, the a c t ua l au t h en t i c a t i on can be done

AuthVer i f i e rTransc r ip t t rans = v e r i f yAu then t i c a t e (conn , d i s c l o s u r e) ;

// The v e r i f i e r e x t r a c t s out o f the t r a n s c r i p t the d i s c l o s e d c e r t i f i e d

in format ion about the prover

Entity au then t i c a to r = trans . g e tD i s c l o s edEnt i ty () ;

Authent i cat ion auth = (Authent i cat ion) e n t i t y . g e t D i s c l o s u r e P r o o f () ;

Listing 3.18: Authentication verification in which a pseudonym

// Load the c r e d e n t i a l hand ler and the connect ion hand ler

Credent ia lHandler credHandler = . . .

ConnectionHandler connHandler = . . .

// Connection i s e s t a b l i s h e d and c r e d e n t i a l o f the TTP i s loaded .

58 CHAPTER 3. FRAMEWORK

Connection conn = . . .

Credent i a l ttpCred = . . .

// Receive the au t h en t i c a t i on o b j e c t and deanonymize i t

Authent icat ion auth = (Authent i cat ion) connHandler . r e c e i v e (conn)

Deanonymization deanon = credHandler . deanonymize (auth , ttpCred) ;

S t r ing name = deanon . g e t I d e n t i f i e r () // equa l s ” Kr i s t o f Vers lype ”

Listing 3.19: Deanonymization after abuse by the trusted third party

Deanonymization deanon = . . .

S t r ing i d e n t i f i e r = ” K r i s t o f Vers lype ” ;

D i s c l o su r eProo f auth = . . .

boolean r e s u l t = ver i fyDeanonymizat ion (deanon , auth , i d e n t i f i e r) ;

Listing 3.20: Verification of a deanonymization

// Load the c r e d e n t i a l hand ler and the connect ion hand ler

Credent ia lHandler credHandler = . . .

ConnectionHandler connHandler = . . .

// A connect ion i s e s t a b l i s h e d and the deanonymizer key i s loaded ,

Connection conn = . . .

VencSecretKey vsk = . . .

// Receive the v e r i f i a b l e encryp t ion and decryp t i t

Ver i f i ab l eEnc ryp t i on venc = (Ver i f i ab l eEnc ryp t i on) connHandler . r e c e i v e (conn) ;

boolean gender = (boolean) credHandler . decrypt (venc , vsk) ;

Listing 3.21: Decryption of a verifiable encryption received by the verifier

3.5.8 Pseudonym code examples

Receiving and issuing a pseudonym is illustrated in listings 3.22 and 3.23. Note that
nymIssuer.hasProveCapabilities() is false, but nymReceiver.hasProveCapabilities()
returns true. Hence, only the receiver can prove possession of the pseudonym.

In a similar way, a signed nym can be agreed. the receiver has to give an extra Disclosure
parameter to the receivePseudonym() method and the issuer has to give the corresponding
Disclosure without prove capabilities as extra parameter to the issuePseudonym() method.

CredentialManager credMgr = . . .

Credent ia lHandler cHandler = CredentialMgr . ge tCredent ia lHand le r (” Idemix” , ”

0 . 0 . 2 ”) ;

Connection conn = . . .

PseudonymTemplate = . . .

NymReceiverTranscript t rans = credHandler . getPseudonym (conn , template) ;

Pseudonym nymReceiver = trans . getPseudonym () ;

Listing 3.22: Receiving a pseudonym

3.6. OTHER COMPONENTS 59

CredentialManager credMgr = . . .

Credent ia lHandler cHandler = CredentialMgr . ge tCredent ia lHand le r (” Idemix” , ”

0 . 0 . 2 ”) ;

Connection conn = . . .

PseudonymTemplate = . . .

NymIssuerTranscr ipt t rans = credHandler . issuePseudonym (conn , template) ;

Pseudonym nymIssuer = trans . getPseudonym () ;

Listing 3.23: Issuing a pseudonym

Note that the the pseudonym template will be provided by the service provider and can
be determined based on values found in a credential template. In that case, the provider
developer can offer a IdemixPseudonymTemplate class in which an Idemix credential template
is given as parameter to the constructor. Separate PseudonymParameter objects could be
generated as well.

3.6 Other Components

3.6.1 Privacy Handler & Manager

The task of the privacy manager is to keep track of the personal information that has been
disclosed to other entities. On the other hand, it could keep track of the personal information
the service provider knows about other entities. Therefore, it is necessary that the framework
submits each transcript to the privacy manager. Based on these transcripts, the user or
service provider can be informed about the disclosed personal information. Information could
be disclosed under an identifier or a pseudonym, allowing to link different transcripts to the
same entity. Depending on the type of the underlying connection, disclosed data could be
linked to each other if they are disclosed over the same connection.

Secondly, the privacy manager could measure the user’s privacy under certain pseudonyms
or if certain properties are disclosed or linkable. This indeed influences the anonymity set.
The privacy manager could provide techniques or heuristics to measure these anonymity sets
and inform the user about it. This level of anonymity can be towards a single party or towards
a set of (potentially colluding) parties. Also deanonymizers can be part of such a set.

Depending on the policy, actions can be taken automatically, actions can be forbidden, or
user consent might be requested.

The privacy manager policy could define masks towards certain parties or set of parties,
meaning that some parties are more trusted and allowed to receive certain personal informa-
tion, while the same data is hidden or made more coarse grained towards others. For instance
some health data is only disclosed to trusted parties belonging to the medical domain.

The privacy manager could also keep track of context or application specific data in locally
managed profiles. These profiles can be queried by external parties. The type of queries and
the fine-grainedness of the results is defined in the policy related to the privacy mananger.
For instance, a user could keep track of the books he bought and the books he is interested
in. An eHealth bookstore may ony be allowed to see the medical books bought by the user
or in what medical books the user is interested in. A general bookstore does not have access
to this information and a general eCommerce site may only see the book categories in which
the user is interested.

60 CHAPTER 3. FRAMEWORK

The privacy handler offers the techniques to measure or estimate the user’s privacy. This
could be based on publicly available statistical information for disclosed properties, but also
the anonymity provided by the underlying network should be taken into account. Secondly,it
could provide an implementation for the local profiles.

3.6.2 Dispute Handler & Manager

If people are anonymous, this anonymity can often be abused. Therefore, anonymity can be
conditional, meaning that a user can be deanonymized. The ticketing application in appendix
A illustrates that multiple parties need to be involved in order to deanonymize someone after
misbehaving.

The dispute manager of the different parties should be configured such that evidence is
stored in case of complaints and that on the other hand evidence is stored to be able to prove
that other parties indeed made errors. As another example, anonymous prescriptions could
be given.

The dispute manager should also know the logic of doing a deanonymization and inform the
user about that process. The user can be given the choice between multiple deanonymization
paths, depending on the trust he puts in the different links in the deanonymization chains.

The dispute manager should also provide the possibility that other parties query the user’s
evidence. However, only a very limited number of highly trusted parties are allowed to do
this. This way, the user is not bothered if a dispute needs to be solved. This is again a policy
issue.

3.7 Using Framework on Mobile Devices

The framework helps users to maintain their credentials and gives them control over their
privacy. The current implementation of the framework doesn’t allow the user to run it on
a mobile device (e.g. smartphone). However, this can be useful because users don’t always
have a laptop or desktop in their neighbourhood if they use credentials (e.g. a loyalty card
in a supermarket, train ticket, badge to enter parking lot).

Mobile devices have less computational power and don’t support Java or .NET programs
but only offer a limited interface to the programmers of mobile applications (e.g. Java Mobile
Edition and .NET Framework Compact Edition). Hence, the framework needs to compile on
Java ME to be able to run on mobile devices. First, the framework core needs to be rewritten
so that it only uses the subset of Java classes that are available in Java ME. Second, new
providers need to be implemented that use the cryptographic methods that are defined in
Java ME. This can be a very tough job (e.g. the class BigInteger is not available in Java ME
while Idemix requires such a class). However, all applications that use the framework to use
credential don’t need any changes in the source code to run on the mobile devices. This only
holds for the source code where the framework is used. Probably, the user interface of the
application needs some adaption to run on a mobile device.

As mobile devices are equipped with more types of communication technologies (e.g.
Bluetooth, WiFi, 3G, NFC), the framework needs to take care of the security and privacy
properties between the different technologies. Moreover, a user may want to specify that he
only wants to use some credentials over a short-distance communication (like NFC) or that
3G may only be used if WiFi is not available. This needs a policy language that lets the

3.7. USING FRAMEWORK ON MOBILE DEVICES 61

user specify his preferences and requirements and a good policy manager in the framework
that can make a decision (allowing, proposing or denying certain communication channels
depending on which credential is used).

62 CHAPTER 3. FRAMEWORK

Chapter 4

Validation

4.1 Validation based on eTicketing

In this section, an eTicketing application is build using the framework. The interface in the
framework should make the implementation easier (because it makes abstraction of the used
technology). The protocol of the eTicketing application is defined in appendix A.

4.1.1 High-Level Description

Before starting the implementation, an overview of the eTicketing application must be made
with the actors in the system.

Actors

The ticketing application exists of 3 actors: the buyer, the seller of tickets (ticket shop) and
the issuer of anonymous credentials. The government issues Belgian eID cards. However,
this phase is not within the scope of this example.

The sample application consists of 2 phases:

1. The buyer authenticates with his eID to the issuer. If authentication is successful and
if the buyer didn’t receive an anonymous credential yet, the issuer issues an anonymous
credential to the buyer.

2. The buyer requests an event list to the ticket shop. To buy tickets, he sends a request
to the ticket shop with the eventID and the number of tickets he wants to buy. If tickets
are still available, the ticket shop sends a list of ticket numbers to the buyer. The buyer
uses his anonymous credential to sign the ticket numbers. The ticket shop checks the
signature and the validity of the anonymous credential. The payment should be realized
in this phase. However, this is not implemented in this example.

4.1.2 Usage of the framework

The application consists of three modules (i.e. one module per actor). First, common con-
cepts are introduced (like a credential template, a transcript and an identity file). Next, the

63

64 CHAPTER 4. VALIDATION

implementation of the issuer and the ticket shop are discussed. Finally, the client module is
presented.

Issuer module

The issuer listens for incoming connections, authenticates users and issues anonymous cre-
dentials. The source code below lists the source code of the issuer. Note that the framework
is instantiated first (by creating a new Framework object that reads out the identity file).

Framework framework = new Framework (new F i l e (” i s s u e r . i d f ”)) ;

The issuer will keep a list of users that have already registered.

ArrayList<Str ing> r e g i s t e r e d U s e r s = new ArrayList<Str ing >() ;

The issuer uses the CommunicationHandler to listen for incoming connections on TCP
port 2001.

CommunicationSettings commSettings =

new SocketCommunicationSettings (” 0 . 0 . 0 . 0 ” , 2001) ;

CommunicationManager commManager = framework . getCommunicationManager () ;

CommunicationHandler commHandler =

commManager . getCommunicationHandler (commSettings . getTechnology ()) ;

Connect ionLi s tener l i s t e n e r = commHandler . s t a r t L i s t e n (commSettings) ;

while (true) {
Connection conn = commHandler . accept (l i s t e n e r) ;

If a client connects to the issuer, the issuer will require client authentication with the
Belgian eID card. Therefore, he instantiates the corresponding CredentialHandler and calls
the receiveAuthentication method. If the authentication fails, an exception is thrown. So,
if the receiveAuthentication method returns a transcript object, the authentication was
successful.

Technology beid = new Technology (” Belg ianEid ” , new Vers ion (0 , 0 , 1)) ;

ch = framework . getCredent ia lManager () . ge tCredent ia lHand le r (be id) ;

AuthVer i f i e rTransc r ip t avt = ch . r e c e i v eAuthen t i c a t i o n (conn , null) ;

At authentication, the issuer reads out the certain identifying data.

St r ing uniqueID = (St r ing) avt . g e tRe l ea s edAtt r ibute s () . getValue (”uniqueID”) ;

int age = (I n t e g e r) avt . g e tRe l ea s edAtt r ibute s () . getValue (” age ”) ;

The issuer checks if that user already received an anonymous credential.

i f (r e g i s t e r e d U s e r s . conta in s (nrn)) {
commHandler . sendObject (” Already r e g i s t e r e d ”) ;

} else {
commHandler . sendObject (”OK”) ;

Before the issuer can issue Idemix credentials, he has to load his own credential using the
StorageManager.

4.1. VALIDATION BASED ON ETICKETING 65

StorageManager sm = i d e n t i t y . getStorageManager () ;

Credent i a l i s sue rCred = sm . l oadCredent i a l (1) ;

An Idemix credential is issued by using the corresponding CredentialHandler. A cre-
dential template is loaded from XML. The attribute values are assigned.

ch = framework . getCredentia lManager () . ge tCredent ia lHand le r (idemix) ;

Template template = new Template (new F i l e (” templateCredent ia l . xml”)) ;

va lue s = new Attr ibuteValues () ;

va lue s . add (new Attr ibuteValue (” age ” , age)) ;

I s s u e T r a n s c r i p t i t = ch . i s s u e C r e d e n t i a l (conn , template , values , i s sue rCred) ;

The user is added to the list of registered users in order to prevent that he can ask a another
Idemix credential. At the end of the program, the issuer closes the connection.

r e g i s t e r e d U s e r s . add (uniqueID) ;

}
commHandler . d i s connec t (conn) ;

}

Ticket shop module

The ticket shop module gives an overview of available tickets for all the events and handles
purchases. The identity file of the ticket shop is first loaded and the server is listening for
incoming connections (in this example on TCP port 2002).

Framework framework = new Framework (new F i l e (” t i c k e t sh op . i d f ”)) ;

CommunicationSettings commSettings =

new SocketCommunicationSettings (” 0 . 0 . 0 . 0 ” , 2002) ;

CommunicationManager commManager = framework . getCommunicationManager () ;

CommunicationHandler commHandler =

commManager . getCommunicationHandler (commSettings . getTechnology ()) ;

Connect ionLi s tener l i s t e n e r = commHandler . s t a r t L i s t e n (commSettings) ;

while (true) {
Connection conn = commHandler . accept (l i s t e n e r) ;

The ticket shop module can receive two types of messages from the user, namely (1) a
request for seat that are available for a specific event or (2) a request to buy some tickets.
The seat list is included in an Event object in this example. The implementation of the Event
object is not relevant for this example application.

St r ing message = (St r ing) commHandler . r e c e i v eOb j e c t (conn) ;

i f (message . equa l s (” f r e e s e a t s ”)) {
ArrayList<Event> events = loadEventLis t () ;

commHandler . sendObject (events) ;

} else {

If the user wants to buy some tickets, he needs to sign the ticket numbers or seat numbers
with his Idemix credential while proving that he is older than 18.

66 CHAPTER 4. VALIDATION

Technology idemix = new Technology (” Idemix” , new Vers ion (0 , 0 , 2)) ;

ch = framework . getCredentia lManager () . ge tCredent ia lHand le r (idemix) ;

Template userCredent ia lTemplate = new Template (new F i l e (” template . xml”)) ;

ShowSpec i f i ca t i on spec = new ShowSpec i f i ca t i on () ;

spec . s e t A s s e r t i o n s (new Bas i cPred i ca te (userCredent ia lTemplate . getName () ,

” age ” , Operator . greaterOrEqual , 18)) ;

S t r ing message = (St r ing) commHandler . r e c e i v eOb j e c t (conn) ;

// check i f message i s v a l i d and s e a t s are s t i l l a v a i l a b l e

S i g n V e r i f i e r T r a n s c r i p t svt =

ch . v e r i f y S i g n a t u r e (conn , userCredent ia lTemplate , spec , message) ;

}
commHandler . d i s connec t (conn) ;

}

Buyer module

A user first needs to register with his eID card and request an anonymous credential. With
that credential, he must be able to buy tickets at the ticket shop. The first step in the
implementation is loading the identity file and connecting to the issuer host.

I d e n t i t y i d e n t i t y = new I d e n t i t y (new F i l e (”buyer . i d f ”)) ;

CommunicationSettings commSettings =

new SocketCommunicationSettings (” i s sue rHos t ” , 2001) ;

CommunicationManager commManager = i d e n t i t y . getCommunicationManager () ;

CommunicationHandler commHandler =

commManager . getCommunicationHandler (commSettings . getTechnology ()) ;

Connection conn = commHandler . connect (commSettings) ;

After the connection is established, the Belgian eID is used to authenticate to the issuer.

Technology beid = new Technology (” Belg ianEid ” , new Vers ion (0 , 0 , 1)) ;

ch = framework . getCredent ia lManager () . ge tCredent ia lHand le r (be id) ;

Credent i a l cred = Belg ianEidCredent ia lHandler . ge tCredent ia lObjec t () ;

AuthProverTranscript apt = ch . au thent i ca t e (conn , cred) ;

Thereafter, an Idemix credential is issued to the buyer.

Technology idemix = new Technology (” Idemix” , new Vers ion (0 , 0 , 2)) ;

ch = framework . getCredent ia lManager () . ge tCredent ia lHand le r (idemix) ;

Template template = new Template (new F i l e (” templateCredent ia l . xml”)) ;

GetCredent ia lResu l t r e s u l t = ch . g e tCreden t i a l (conn , template , null) ;

Credent i a l c r e d e n t i a l = r e s u l t . g e tCreden t i a l () ;

// user shou ld s t o r e h i s c r e d e n t i a l

The buyer closes the connection with the issuer and connects to the ticket shop.

commHandler . d i s connec t (conn) ;

commSettings = new SocketCommunicationSettings (” t icketShopHost ” , 2002) ;

conn = commHandler . connect (commSettings) ;

4.2. VALIDATION BASED ON EPOLL 67

The user can request the available seats for all events and select certain tickets. The user
signs his ticket and/or seat numbers with his Idemix credential. It is important for Idemix
that the ShowSpecification is the same at both the client and server side.

commHandler . sendObject (” f r e e s e a t s ”) ;

ArrayList<Event> events = (ArrayList<Event>) commHandler . r e c e i v eOb j e c t (conn) ;

// show l i s t o f f r e e s e a t s to user

St r ing message = ” Concert : 12−2, 12−4, 12−6” // s t r i n g o f s e l e c t e d s e a t s

ShowSpec i f i ca t i on spec = new ShowSpec i f i ca t i on () ;

spec . s e t A s s e r t i o n s (new Bas i cPred i ca te (userCredent ia lTemplate . getName () ,

” age ” , Operator . greaterOrEqual , 18)) ;

S ignProverTranscr ipt spt = ch . s i gn (conn , c r e d e n t i a l , spec , message) ;

commHandler . d i s connec t (conn) ;

4.1.3 Evaluation

Improvements by the Framework

By creating a configuration file and a framework instance for each actor, the developer is
encouraged to define a list of actors for his application. The high-level methods in the frame-
work (e.g. authenticate, sign) keeps the developer away from the security protocols that are
used. He doesn’t need to handle revocation status, challenges, trust chains, etc. Moreover, if
the underlying security protocols need an update of patch, the source code of the application
can remain, only an updated or new provider that is plugged into the framework is necessary.

Framework Manager Support

Currently, this example application only makes use of the managers in the framework to get
access to the correct handler that implements a specific technology. When more functionality
is implemented in the managers, they could help the user in selecting the correct credential. In
this example, the seller could allow a set of credentials (e.g. drivers license, identity card) and
the credential manager in the framework can then choose a valid credential in the repository
of the buyer.

Framework Handler Improvements

During the implementation of this example application, no Request or Response objects
were available in the framework. They have now been included in the framework to ease
the construction of messages between client and server and to handle error messages more
properly.

4.2 Validation based on ePoll

In this section, the framework is validated with some more advanced application: ePoll. The
ePoll application allows a user to fill in a poll anonymously. However, the same user can only
fill in the same poll once. For some polls, the user must proof that he fulfill some requirements
(e.g. older than 18 years, live in Leuven, female). Optionally, the user can reveal some more

68 CHAPTER 4. VALIDATION

information if he wants. This way, the poll organiser can create some more advanced statistics.
More information about the ePoll protocol is available in appendix B.

4.2.1 High-Level Description

High level Description

High level description of the application

Roles and Interactions

Different roles and their functionality/interactions. Especially w.r.t to the framework func-
tionality.

4.2.2 Usage of the framework

Data objectes in the system (keys, credentials, transcripts, commitments, psuedonyms, etc)
and how they are created, stored, used and managed by the framework. Interesting code
sequences of the application using the API can be included. Proposal:

I would suggest one subsubsection per relevant data object. in the ePoll case for instance;
one for the user’s sign credential, one for the transcript stored by the verifier, etc. Other
suggestions are welcome. Example code of how the application uses the framework can
however involve multiple data objects.

4.2.3 Evaluation

Improvements by the Framwork

Discuss improvements over that application if it were developed without using the framework.
For instance, about what things didn’t the developer need to bother. How did the framework
help in the development. Alo stress the flexibility of the framework.

Efficiency (OPTIONAL)

optionally, test results (measurements) can be included.

Framework Manager Support

what could the managers in the framework have done to further facilitate/enhance the devel-
opment of the application?

Framework Handler Improvements

Where could the framework handler be improved based on the experience using this applica-
tion

Chapter 5

Modelling and Synthesizing

Privacy-Preserving Applications

5.1 Premise

The proposed framework strives to and succeeds in providing “a uniform interface to facilitate
the development of privacy preserving applications”. It enables a programmer with extensive
to basic understanding of cryptographic- and security-related concepts to implement privacy
preserving applications. The framework can thus – simplistically – be viewed as a means to
enable programmers to do more with less hassle. From here arises an interesting question –
especially under the premise that cryptography and/or security experts are harder to come
by than able programmers – : what can be done to enable domain experts to do more with
less hassle? More specifically, what can be done to enable cryptography and/or security
experts with little to no programming capabilities to develop privacy preserving applications?

Domain-Specific Modelling (DSM) is a relatively young discipline whereby applications1

are modelled at a high-level of abstraction using constructs that are tightly coupled to some
restricted domain’s concepts [25, 19, 6]. Subsequent Model Transformations transform the
models into a collection of low-level artifacts that form the final applications. The advan-
tages of using model-driven approaches as opposed to code-centric approaches to application
development are numerous; some of them are listed below.

� Domain experts can model applications/protocols/etc. using notions familiar to them.
This implies that interaction with a programmer and/or concept translation to code-
related constructs (e.g. classes and functions) are longer necessary.

� Code-generation from models makes it possible to quickly develop robust applications
and makes the fact that small conceptual changes (at the model level) may cause sig-
nificant changes in the code irrelevant, thereby speeding up not only development but
also maintenance and evolution. Already, several real-world experiments using DSM for

1A wide variety of artifacts can be modelled ranging from configuration files, to data schemas, to protocols,

to partial or complete applications. For brevity, we restrict our discussion of DSM to the modelling and

synthesis of applications.

69

70CHAPTER 5. MODELLING AND SYNTHESIZING PRIVACY-PRESERVING APPLICATIONS

small to medium scale development efforts have reported decreases of up to an order of
magnitude in their development times [8, 32, 25].

� Appropriately designed model transformations enable targeting code-generation to dif-
ferent platforms (e.g. PDAs, Internet Browsers, etc.) without any changes to the
models.

� Models are often easier to simulate and analyze (e.g. possibility of deadlocks, possibility
of anonymity break due to usage patterns) then coded applications.

Despite the many advantages of DSM, it is by no means a magical technique that enables
the synthesis of any functionality from a few mouse clicks. For instance, although we argue
that privacy preserving applications should be modelled by domain experts and synthesized
automatically rather than coded manually by programmers, the necessity of some sort of
library to support the modelled security-related operations remains. For instance, a model of
a privacy preserving application which depicts the anonymous authentication of two parties
and subsequent secure transfer of data requires that authentication and transfer services
be available. Thus the relationship between the proposed framework and our modelling
techniques is revealed: the synthesized applications will contain appropriate code snippets to
make use of the framework.

5.2 Case Study: Prescription Issuing Protocol

Due to the abstract nature of DSM, we begin by introducing an example which we will use
to clarify and strengthen some of our previous allegations. Our example describes the issuing
a prescription from a doctor to a patient. We will present it in three different forms: in
layman’s terms, as understood by a cryptography expert and as it could be modelled in a
DSM tool.

The prescription issuing protocol can be described quite simply by a few interactions
between patient and doctor2:

1. The patient P electronically contacts someone he believes to be doctor D;

2. D authenticates himself as a certified physician without revealing his identity;

3. P authenticates himself as a valid patient (e.g. insured) without revealing his identity;

4. Using P ’s credentials, D verifies that P should receive the requested medicine M ;

5. D writes and securely transmits a prescription to P such that it may only be used n
times and only by P ;

6. P takes whatever steps are necessary to receive M (e.g. communicate with a pharma-
cist, etc.).

2For brevity, we leave out the subsequent interaction between patient and pharmacist.

5.2. CASE STUDY: PRESCRIPTION ISSUING PROTOCOL 71

Figure 5.1 shows how this protocol is described by a cryptography expert. The bidirec-
tional arrow between Dr. and Patient represents steps 1 through 4. The following arrow
from Dr. to Patient represents step 5. Finally, the rest of the diagram represents step 6
(the interaction between patient and pharmacist).

Figure 5.1: Prescription Issuing described by a cryptography expert

Let us now turn our attention towards Figure 5.2 which shows how the protocol can be
modelled in a DSM tool tailored for cryptographic protocol and privacy preserving applica-
tion designers. The concepts of parties and their actions are represented by two instances of
the ActorApplication construct, DoctorApplication and PatientApplication, and their
associated LifeLine instances respectively. The concept of selective disclosure is embodied
by instances of the ReadData construct which enables the specification of arbitrary data
sources (e.g. user input or Belgian eID card) and attributes to be read. The concept of
authentication is comprised within instances of the ShowCredential construct which can be
customized to use arbitrary data sources, credential types and multiplicities, and certification
authorities. The concept of secure transfer of data is encapsulated within instances of the
SendData construct. Finally, instances of the InformationMessage construct enable the
modeller to include arbitrary text in the application. In our example model, these are used
for “introductory” and “concluding” messages.

The crucial element we wish to point out by introducing these various representations of
the prescription issuing protocol is the strong similarity between the modelled representation
of the protocol and the cryptographer’s mental model. A one to one relationship between
the constructs in both representations can be readily established which we argue shows that
the proposed modelling language is indeed at the level of abstraction of how cryptography
experts choose to describe their protocols. Furthermore, the constructs in the modelling
language are sufficiently customizable to enable the generation of a wide variety of privacy
preserving applications and to properly populate the required function calls to the underlying
framework.

72CHAPTER 5. MODELLING AND SYNTHESIZING PRIVACY-PRESERVING APPLICATIONS

Figure 5.2: Prescription Issuing modelled in a DSM tool. The stick figures are instances
of the ActorApplication construct; the vertical black lines are instances of the LifeLine

construct; the information bubbles are instances of the InformationMessage construct; the
blue folders with upward arrows are instances of the ReadData construct; the ID cards with
sideways arrows are instances of the ShowCredential construct; and the blue folders with
sideways arrows are instances of the SendData construct.

5.3 Synthesizing Applications from Models

We targeted two distinct platforms for our generated applications: Java applets (that can be
embedded and run in web browsers) and Google Android (an operating system designed for
mobile devices). As mentioned earlier when listing the benefits of DSM, a single high-level
model is used to generate applications for various platforms (i.e. the models need not be
altered based on the target).

5.3.1 The Domain-Specific Modelling Language

Before detailing the steps that bring us from a high-level model of a privacy preserving
application to the application itself, we will formally describe the modelling language we
propose. Figure 5.3 shows the UML class diagram that defines our modelling language.
Table C.1 details the purpose, meaning and syntax of its classes and relationships. Finally,
Table C.2 details the purpose, meaning and syntax of the classes’ attributes. Note that in
the interest of brevity, we omitted an important part of any modelling language: syntactic

5.3. SYNTHESIZING APPLICATIONS FROM MODELS 73

and semantic constraints. For instance, though these do not appear in our class diagram, we
define several constraints to ensure such things as uniqueness of id attributes and “temporal
consistency” (e.g. a ReadData instance shouldn’t be referenced before it appears).

Figure 5.3: The UML class diagram that defines the proposed privacy preserving application
modelling language.

5.3.2 Model Transformations

There are a wide variety of means of synthesizing low-level artifacts from models [15]. Our
approach consists in dividing the transformation process into modular rules which contain a
left-hand side (what we wish to match), a right-hand side (what we wish to produce in place
of what we matched), an application condition (some snippet of code which must complete
successfully for the rule to be applicable) and a priority (which is used to arbitrarily order
the execution of rules). Due to the flagrant similarities between the transformation rules that
synthesize Java applets and Google Android applications from our domain-specific models, we
will restrict ourselves to a discussion on how to synthesize Google Android applications. First,
we introduce PhoneApps, a meta-model – simplistically put, a modelling language definition
– that we recently proposed for modelling mobile device applications [26].

The PhoneApps Meta-Model

Mobile device applications often require high levels of user interaction. It can thus be argued
that behavior and visual structure make up the domain of such applications. The PhoneApps
meta-model encompasses both of these aspects at an appropriate level of abstraction. Fig-
ure 5.4 shows its class diagram. Essentially, timed, logical and user prompted transitions
describe the flow of control between Containers – that can contain other Containers and
Widgets – and Actions – mobile device specific features – with each screen in the final
application modelled as a Container contained in no other. With a series of graphically
defined model transformations rules, PhoneApps models are translated to increasingly lower

74CHAPTER 5. MODELLING AND SYNTHESIZING PRIVACY-PRESERVING APPLICATIONS

level formalisms until a complete Google Android application is synthesized. Figure 5.5 gives
an overview of the hierarchical relationships between the meta-models in play. For more
information on artifact synthesis from PhoneApps models, see [26].

Figure 5.4: The UML class diagram that defines the proposed mobile device application
modelling language.

Figure 5.5: The trace map of the formalisms in play with arrows indicating transformations
from one to the other.

From Privacy Preserving Application Models to PhoneApps Models

The process of transforming our domain-specific models into PhoneApps models is comprised
of 12 model transformation rules which are listed and described in Table 5.1. Note that
although many rules have priority 3, only one of them is applicable at any given time. This is
because each rule is equipped with an application condition which restricts pattern matching

5.4. EVALUATION 75

to the top-most unhandled Operation. For example, if the top-most Operation that hadn’t
yet been handled by a priority 3 rule on the chosen party’s LifeLine were to be an instance
of the SanitizeData construct, only the SanitizeData2PhoneApps rule would be applicable
and would thus be chosen to run after which some other rule would become applicable and run
and so on and so forth. See Figures 5.6 and 5.7 for concrete illustrations of two of the described
rules, DelayInformationMessage2PhoneApps and ReadDataFromEidCard2PhoneApps.

Rule Priority Description

ChooseApplicationToGenerate 1 Chooses a random or arbitrary party to generate the appli-

cation for.

FirstOperation2PhoneApps 2 Initializes the PhoneApps model.

ClickInformationMessage2PhoneApps 3 Generates appropriate PhoneApps constructs for an instance

of the InformationMessage construct where the exitEvent

attribute is set to userClick.

DelayInformationMessage2PhoneApps 3 Generates appropriate PhoneApps constructs for an instance

of the InformationMessage construct where the exitEvent

attribute is a numeric delay.

ReadDataFromEidCard2PhoneApps 3 Generates appropriate PhoneApps constructs for an instance

of the ReadData construct where the dataSource attribute is

set to eIDCard.

ReadDataFromUser2PhoneApps 3 Generates appropriate PhoneApps constructs for an instance

of the ReadData construct where the dataSource attribute is

set to userProvided.

SanitizeData2PhoneApps 3 Generates appropriate PhoneApps constructs for an instance

of the SanitizeData construct.

SendData2PhoneApps Src 3 Generates appropriate PhoneApps constructs (from the data

sender’s perspective) for an instance of the SendData con-

struct.

SendData2PhoneApps Dest 3 Generates appropriate PhoneApps constructs (from the data

receiver’s perspective) for an instance of the SendData con-

struct.

ShowCredential2PhoneApps Src 3 Generates appropriate PhoneApps constructs (from the cre-

dential “shower”’s perspective) for an instance of the

ShowCredential construct.

ShowCredential2PhoneApps Dest 3 Generates appropriate PhoneApps constructs (from the

credential verifier’s perspective) for an instance of the

ShowCredential construct.

LastOperation2PhoneApps 4 Finalizes the PhoneApps model.

Table 5.1: The 12 rules that form the complete transformation from our privacy preserving
application models to PhoneApps models.

5.4 Evaluation

In this section, we evaluate our approach. We begin by presenting photographs of our
synthesized applications and move on to a short discussion about the experienced versus

76CHAPTER 5. MODELLING AND SYNTHESIZING PRIVACY-PRESERVING APPLICATIONS

Figure 5.6: The model transformation rule DelayInformationMessage2PhoneApps as seen
in our DSM tool. A PhoneApps Container containing a TextLabel with the text specified
by the message attribute of the matched InformationMessage is created. It transitions to a
dummy Container after the delay specified within the exitEvent attribute of the matched
InformationMessage. Note that both Containers 4 and 7 are dummy Containers which we
use to facilitate the connection of the first Container of one rule to the last Container of
the previous rule.

advertised benefits of using DSM.

5.4.1 Synthesized Applications

Figures 5.8 and 5.9 show samples of the generated applications running on a real HTC Magic
phone, a Google Android enabled device. In Figure 5.8, we show a “welcome screen” – which
corresponds to the InformationMessage instance at the top of the patient’s LifeLine in
Figure 5.2 –, and two eID card related screens – which correspond to the ReadData instance
of the patient’s LifeLine in Figure 5.2 –. The two latter screens were generated by the
ReadDataFromEidCard2PhoneApps model transformation rule, hence the similarities between
them and the right-hand side Containers from Figure 5.7. In Figure 5.9, we show a “welcome
screen” – which corresponds to the InformationMessage instance at the top of the doctor’s
LifeLine in Figure 5.2 –, and a data entry screen – which correspond to the ReadData
instance of the doctor’s LifeLine in Figure 5.2 –. Finally, notice how a minute change at
the domain-specific model level (i.e. changing the dataSource attribute from eIDCard to
userProvided) can result in significantly different generated applications.

5.4.2 Benefits of DSM

The development time speed-ups and raise of abstraction levels promised by DSM were in-
deed confirmed. A cryptography protocol expert and co-author of this document, Mohamed
Layouni, required only a few minutes to familiarize himself with the domain-specific language

5.4. EVALUATION 77

Figure 5.7: The model transformation rule ReadDataFromEidCard2PhoneApps as seen in our
DSM tool. Three PhoneApps Containers containing instructions pertaining to the interac-
tion with a Belgian eID card are created. Between them, two ExecuteCode constructs are
inserted; the first one waits for the insertion of a valid Belgian eID card before proceed-
ing while the second verifies the user provided PIN against the one stored on the card and
reads the data specified in the matched ReadData from the card. Note that ExecuteCode in-
stances containing calls to the proposed framework are generated by other rules, most notably
ShowCredential2PhoneApps Src and ShowCredential2PhoneApps Dest.

due to its strong coupling with notions from his own domain. Furthermore, he was able to
design and create the model from Figure 5.2 within less than ten minutes whereas program-
ming two separate bug free applications – one for the patient and one for the doctor – on two
different platforms – Java applets and Google Android – would have taken an intermediate
programmer such as himself several hours if not days.

78CHAPTER 5. MODELLING AND SYNTHESIZING PRIVACY-PRESERVING APPLICATIONS

Figure 5.8: Generated patient application running on an HTC Magic phone

Figure 5.9: Generated doctor application running on an HTC Magic phone

Chapter 6

Conclusions and Future Work

6.1 The Adapid Framework

In this deliverable, a framework to assist the application developer to integrate privacy in
his client-server applications has been presented. The focus is on the disclosure of personal
certified properties of the user over the network. Therefore, a uniform interface has been
proposed to establish connections, to issue and use credentials and to store credentials and
other related data. Providers have been made to implement these interfaces. For instance
support for the Belgian eID card, X.509 certififcates and Idemix are present. Although not
all the technologies that can be plugged into the framework must be privacy enhancing, it
is very easy to do so. The application developer only has to do minimal changes in order
to mke his application more provacy enhancing if better implmentations for the framework
are released.. The focus of this deliverable was on the so called handlers, the interfaces for
a family of technologies (connections, persistence and credentials). The validation has shown
that the framework indeed offers a significant gain to the application developer.

However, still, a lot of future work is possible. The privacy manager and handler will
be considered, since they are of key importance in order to keep the user informed about
his anonymity towards other parties. The handlers offer lower level interfaces, but on top of
these handlers, higher level functionality can be offered as sketched in the deliverable. Another
aspect for future work is running the framework on mobile devices. Therefore, performance
is of key importance. As mentioned several times in the deliverable, policies need to be
developed for the framework. Based on the input of application developers, a new iteration
can be made. For instance export and import functionality is still only to a limited extend
present in the current version. With the current framework, some steps have been made, but
this paragraph tries to convince the reader that there are still a lot of open issues.

6.2 Modelling and Synthesizing

Domain-specific modelling has proven itself in the past to be a good means of leveraging the
different expertise of programmers and non-programmers as well as considerably reducing
development times. The large conceptual gap between the domains of privacy-preserving eS-
ervices and reactive applications as well the commonalities between various eServices make
them prime candidates for the application of DSM techniques. We have proposed and demon-

79

80 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

strated a means of elevating the accessibility of the proposed framework to non-programmer
cryptography experts by means of a tailored DSM language and environment.

A few key elements need to be developed further to fully benefit from the use of DSM
in this context. First, extending the primitives available in the modeling environment will
enable a wider variety of privacy preserving applications to be modeled. Second, extending
the model transformation rules will enable a wider variety of platforms to be targeted and
for the generated applications to be more polished. Finally, model analyses and simulation
facilities should be developed to assert certain protocol properties such as linkability.

Appendices

81

Appendix A

eTicketing

A.1 Introduction

Tickets are used for an innumerable number of events: soccer matches, music festivals, ex-
hibitions, etc. These tickets are ever more bought electronically. An increasing number of
countries issue electronic identity cards to their citizens. Examples are Belgium, Estonia
and Austria. These eID cards usually allow the holder to authenticate and to digitally sign
documents, but often, they are very privacy unfriendly. For example, authentication using
the Belgian eID card will usually lead to the divulgement of important personal data such as
your national registration number (NRN). Despite these privacy dangers, the use of the eID
card is promoted by the governments. We can thus expect that in the near future, electronic
ticketing systems will arise based on the eID card. A trivial solution is easy to devise. How-
ever, this solution is not acceptable because it further endangers the card holder’s privacy as
profiles can easily be compiled, linked to each other and to the identity of the card holder.
An advantage of the use of eID cards is that it is straightforward to impose restrictions on
the maximum number of tickets that can be bought by one user, hence, thwarting the sales
on black markets. Sometimes, special offers are available for buyers under or over a certain
age or living in the region where the event is organized. Here too, eID cards can help in
securely conveying (proving) that these conditions are satisfied for the buyer. However, the
use of these cards will usually disclose more information than is required.

For big events with thousands of attendants, the police would be helped if tickets were not
anonymous, but could be linked to the identity of the attendants, or at least to the identity
of the buyers of these tickets. Especially, when riots occur, it would make it easier to identify
and prosecute the instigators. However, the use of tickets attributable to individuals poses
severe privacy risks and brings us closer to a ”Big Brother” state.

This section proposes two solutions where the eID card is needed to obtain an anonymized
permit, allowing a user to obtain tickets in a privacy friendly way. The role of the eID card is
thus reduced to a bootstrapping role. A first solution is based on pseudonym certificates, i.e.
X.509 certificates containing a user’s nym instead of a real identity. A second solution is based
on the more enhanced anonymous credential systems, which allow to anonymously disclose
only a subset of the personal attributes (or properties thereof) embedded in the credential.
Both solutions are validated and compared with the trivial solution and with each other.

We start by listing the mailn reletad work in section A.2. The main requirements are

83

84 APPENDIX A. ETICKETING

given in section A.3. Section A.4 explains notations and specifies the assumptions. Sections
A.5, A.6 and A.7, discuss the trivial protocol and two privacy friendly alternatives and are
followed by a comparison in section A.8.

A.2 Related Work

Ticketing framework [21], hybrid electronic ticketing [34] and ticket for mobile user and com-
munication [9] [28] are valuable contributions for building future ticketing systems. However,
except for [34], all fall short in properly addressing user privacy. In comparison, we propose
two solutions that preserve the user’s privacy and avoid arbitrary blacklisting.

Heydt-Benjamin et al.[34] propose a hybrid electronic ticketing system which uses passive
RFID transponders and higher powered computing devices such as smart phones or PDAs.
Their hybrid ticketing system framework takes the advantage of e-cash, anonymous creden-
tials and proxy re-encryption[22] to alleviate the concern of privacy in public transportation
ticketing systems.

In general, anonymous credential protocols as described in [13], [12] commonly use a
Trusted Third Party (TTP) to selectively deanonymize (or link) misbehaving users. However,
Patrick et al. [27] strongly argued that deanonymizing a user with the help of TTP is a too
heavy measure against a misbehaving user in a privacy-preserving system. Some applications
might not necessarily need deanonymization to discourage misbehaving users, they can simply
blacklist user pseudonyms, to block a user without actually revealing that user’s identity.
Thus, the authors propose a scheme where user misbehaviour is judged subjectively and
blacklisted by each individual service provider (SP) without the need for TTP. Although
subjective blacklisting reduces the size of a blacklist in comparison with the usual centralized
blacklisting approach, it can empower a SP to arbitrarily discriminate (or freely blacklist)
among its ticket users. In comparison, our protocols do not allow SPs to blacklist a user or to
maintain its own blacklist. As discussed previously, in our protocols the blacklist is centrally
managed by a trusted government instance and forwarded to the SPs. Moreover, arbitrary
user blacklisting is forbidden without a judicial verdict.

A.3 Requirements

The protocols that are discussed will be evaluated based on the following requirements. F4
and F5 are optional.

Functional/Security Requirements

F1 Every event may have a policy that limits the number of tickets obtainable by one
buyer. The limit may depend on a property of the buyer.

F2 Event organizers may choose to offer a subscription for a series of events.

F3 Every event can have a pricing policy that differentiates between different groups
of buyers (e.g. youngsters or elderly people).

(F4) When abuse is detected or when serious incidents happen during the event, it
should be possible to identify the buyer of the ticket(s) involved.

A.4. ASSUMPTIONS AND NOTATION 85

(F5) Individuals who have been imposed a banning order for a particular event type,
should not be able to buy tickets for this kind of events.

Privacy Requirements

P1 Buyers of tickets should not directly be identifiable.

P2 Except when subscriptions are used, it should not be possible to compile buyer’s
profiles.

P3 It should not be possible to identify an individual on a blacklist.

A.4 Assumptions and Notation

The general assumptions and notation w.r.t. the protocols are now summed up.

A.4.1 Assumptions

� For every protocol, a server always first authenticates to U using a classical X.509
certificate. Also, an integrity and confidentiality preserving connection is established
during a protocol. Anonymity at the network layer is added when necessary.

� A ticketing server can service multiple events. However, for each event, there is only
one ticketing server.

� Tickets do only contain a ticket identifier (e.g. event name, date and seat number) and
are unforgeable.

A.4.2 Notation

� Each protocol requires the following roles: user U (client), ticket server T (issues tickets
to users), event organizer E and the court of justice J .

� U � B� T : (PayProofU, PayProofT)← pay(price, Msg). U pays an amount of money,
via an intermediary bank B, to T . A message can be linked to the payment. The bank
can deliver proofs of the payment to both parties. The payment protocols can preserve
U ’s privacy.

� U � T : (desc[], price, [Proof])← negotiate(cert ∨ Cred, Nym ∨ Id, event, eventPolicy,
#tickets, specification) allows U and T to agree on the exact seat numbers as well
as on the total price. Therefore, U gives an identifier (Nym or Id), shows (properties of)
credential/certificate attributes. The event policy can state e.g. that people younger
than 18 get reductions. Evidently, the number and (general) specification of the tickets
are given as well. The restrictions on the blacklists can further constrain the possibilities
of the user. U can give T a proof of the agreement (signed by cert or Cred).

� O: Nym ← retrieveOrGenerateNym(Id ∨ Nym
′
) returns a newly generated nym if the

user referred to by Id or Nym
′

does not yet have a nym with O. However, if that user
already has been given a nym in the past, it is simply retrieved from the local storage
system.

86 APPENDIX A. ETICKETING

� T : Restrictions ← retrieveRestrictions(Blacklist, Nym ∨ Id). The ticketing service looks
up the restrictions of a Nym or Id in a blacklist.

� G: Restriction[] ← getRestrictionBooleans(Id) implicitly uses all blacklists, and returns
for each event type whether or not the user is blacklisted or not.

� Other, self explaining methods are: add(), lookup(), store(), update () and
generateTickets().

A.5 Trivial eID-based Solution

A.5.1 Introduction

Without alternatives, this protocol will most likely be be implemented in Belgium as the
government is really promoting the use of the eID card in commercial applications. However,
this protocol has serious privacy drawbacks.

A.5.2 High Level Description

U uses his eID card to authenticate to T , revealing a lot of personal data to T . A government
agency G maintains a blacklist containing identifiable user ids. This blacklist is checked by
T before issuing tickets.

A.5.3 Protocols

The protocols are given in table A.1 and are quite self explaining. The user authenticates to
T using his eID card. T first checks whether the user is blacklisted. Based on the user’s id
and personal attributes, the user can be given the possibility to buy a number of tickets as a
result of the negotiation phase. After the payment and ticket issuance, T finally stores ticket
selling info.

Dispute handling is straight forward: since T knows the link between the seat (or ticket)
and the user’s id.

A.5.4 Evaluation

The functional/security requirements are trivially fulfilled. However for the privacy require-
ments, this protocol fails completely. T knows the user’s id and all other attributes contained
in the eID certificate (P1). User profiling is trivial for T as well as sharing and linking of
profiles (P2). The users’ ids are on the blacklist (P3). In addition, many countries simply
forbid blacklists on which users are identifiable due to privacy legislation. Deployment will
often thus result in omitting the F5 requirement.

A.6. SOLUTION BASED ON PSEUDONYM CERTIFICATES 87

(A.1.a) Getting a ticket

(1) U → T : authenticate(eID)

(2) T : Restrictions← getRestriction(eID .NRN , Blacklist[EventType])

(3) U � T : (SeatNB[], Price) ← negotiate(eID , eventPolicy, Restriction[])

(4) U, T : if (SeatNb[] = ∅) abort

(5) U � B
� T

: pay(price, H(SeatNR[], . . .))

(6) U ← T : tickets[] ← generateTickets(SeatNb[])

(7) T : update [eID .NRN , event, tickets[]]

(A.1.b) Maintaining the blacklists

(1) J → G : eID .NRN , Restrictions, eventType

(2) G : Blacklists[EventType].add(eID .NRN , Restrictions)

(3) G → T : Blacklists

Table A.1: Protocols in trivial implementation

A.6 Solution based on Pseudonym Certificates

A.6.1 Introduction

This approach improves the privacy of the user by using pseudonymous permits. A unique
pseudonymous root certificate is issued by the government. This allows the user to obtain
pseudonymous permit certificates from different permit servers. One permit server could for
instance be responsible for one event type (e.g. soccer matches). With such a pseudonymous
permit a user can buy tickets for events that happen in a small (permit specific) time period1.
The user will thus most likely need multiple permits. The blacklists no longer contain user
identifiers, but pseudonyms.

A.6.2 Roles

Besides the already defined U , T and E, a government agency G is needed to issue root
certificates and a permit server PS issues permit certificates.

A.6.3 Assumptions

� All certificates contain a unique serial number, a pseudonym or id, a public key and an
expiry date.

� There are many pseudonym servers (PS) and many ticket servers (T).

� For every event, the ticket server (T) accepts permits. issued by a limited set of
pseudonym servers. However, the user sets of different pseudonym servers do not overlap
(necessary for requirement F1).

1 The fixed time period is introduced to minimize linkabilities.

88 APPENDIX A. ETICKETING

� Only one entity G can issue valid pseudonymous root certificates.

� Nyms that are no longer valid, are forgotten by the permit server.

High Level Description and data structures. The user receives a pseudonymous root
certificate (CertR), which contains a rootnym (NymR) and possibly other attributes (such
as year of birth, citizenship, place of residency, . . .). CertR is used to authenticate to the
permit server PS.
The user can apply to the PS for a pseudonym (NymP) that is valid during a predefined
time period. NymP will be certified in a (pseudonymous) permit certificate (CertP). Each
certificate also contains a public key used to verify authentications and signatures with
CertP, and possibly (properties of) other attributes that were copied from the root certificate
(CertR). Using permit certificates with non-overlapping time-slots, each user can have at
most one valid CertP to order tickets for a particular event. The PS can refuse permits to
users who have been sentenced to a banning order for events supported by the PS.

A.6.4 Protocols

Getting a root certificate. A governmental instance G issues a single pseudonymous root
certificate CertR to each citizen. This CertR contains a pseudonym NymR that was either
newly generated or retrieved by G in case the user was already assigned a NymR in the past.
The user can request G to copy (properties of) attributes from in his eID card into his CertR2.
G finally stores the user’s NRN and CertRs (which include NymR.)

Getting a permit certificate. U authenticates with a valid root certificate CertR to the
PS. PS will issue a number of permit certificates CertPs which have to be used before a (user
specified) date (validThru). For instance, the user can request permit certificates that allow
him to buy soccer tickets for the upcoming year. PS generates a set of nyms (NymR) or
retrieves them (if they were already assigned in the past): one nym per time period3. Each
nym NymP is also certified in a permit certificate CertP which also contains a validity period
(for NymP), possibly a set of attributes and an encryption of the user’s root pseudonym
NymR. The validity periods of NymPs are non-overlapping. Hence, users cannot buy tickets
for the same event using different nyms. Also, when a user requests a new permit for the
same period (e.g. because the previous one was lost or the private key was stolen), PS will
always use the same nym (NymP). Each CertP contains a probabilistic encryption of NymR

with the public key of PS. This allows to enforce certain control measures in case of abusive
behaviour (see further). PS finally updates the list of CertPs that are issued to NymR. PS
can derive the time intervals for which a NymR has obtained a valid CertP from that list.

Buying tickets for an event. The user first authenticates to the ticket server T using the
permit certificate CertP that is valid for that specific event and specifies the number of tickets

2 The user can request several root certificates, each including a different set of properties/attributes.

However, all certificates will refer to the same NymR.
3The length of the non-overlapping time periods is chosen by the PS in such a way that the number of

events that fall in each period is limited.

A.6. SOLUTION BASED ON PSEUDONYM CERTIFICATES 89

he wants to order. T then verifies whether the pseudonym NymP is blacklisted for that event.
T also checks whether NymP can still order the requested number of tickets for that event.
If both conditions are fulfilled, the user and the ticket server agree on the price of the tickets
and the seats. The price can depend on certain attributes that are embedded in the permit
certificate (such as the user’s age). After payment, the user retrieves the tickets. Finally, the
ticket server updates the number of tickets that are sold to NymP for that event.

Updating anonymous blacklists. To fulfil requirement F4, anonymous blacklists are
used. Four entities are involved in updating blacklists (see table A.3).
A law enforcement entity J forwards the court orders (NRN , banning order) to G. G sub-
stitutes the NRN s with the corresponding NymRs and forwards the list to the permit server
PS. PS can then add NymR to a blacklist for certain event types (i.e. PS will no longer
issue CertPs to NymR for the event types that are specified in the blacklist).
Finally, PS retrieves the valid NymPs for each NymR with a banning order, substitutes every
NymR-record in the blacklist with a number of NymP-records and forwards the new list to
the ticket server T . T no longer issues tickets to pseudonyms in the blacklist. Note that the
ticket service can even revoke tickets that were already issued to pseudonyms in the blacklist.

Identifying buyer of a ticket To reveal the identity of a participant with a specified
seat number, the ticket service T looks up the NymP of the user that ordered the ticket. The
corresponding permit certificate CertP is kept by the ticket server and is passed to pseudonym
server. The latter can link CertP to NymR (as NymR is encrypted with the public key of the
pseudonym server in CertP). G can reveal the user behind NymR (as G knows the mapping
between NRN and NymR). Note that a law enforcement entity J typically intermediates in
the deanonymization procedure (see table A.3).

A.6.5 Evaluation

F1 This requirement is easily fulfilled as each user has only one NymPto buy tickets for a
particular event.

F2 If NymP can be used to order tickets for multiple events (such as multiple soccer games
during a World Cup contest), T can even restrict the total number of tickets that can
be bought for the whole contest (i.e. a set of events).

F3 A user can get a lower price for some tickets based on the attribute values of CertP.
However, tickets can be passed on. Hence, T should be careful with price reductions.

F4 Fulfilled (cfr. ”Identifying buyer of a ticket” protocol).

F5 Three entities are needed to ban a user from event types for which a user already has
a permit certificate, namely G, PS and T . Two entities are needed to ban a user from
event types for which a user does not yet have a permit certificate, namely G and PS.

P1 As discussed in ”Identifying buyer of a ticket”, four entities are needed to reveal the
user’s identity. Moreover, G (and maybe PS) are governmental instances. Hence, users
can trust that players in the commercial sector (such as E and T) cannot identify users
without help of governmental instances.

90 APPENDIX A. ETICKETING

(A.2.a) Getting a pseudonymous root certificate CertR

(1) U → G : authenticate(eID)

(2) G : NymR← retrieveOrGenerateNym(eID .NRN)

(3) U ← G : CertR← issueCert({NymR, attributes . . . })

(4) G : store[eID .NRN , CertR]

(A.2.b) Getting a permit certificate CertP

(1) U → PS : authenticate(CertR)

(2) U → PS : validThru, attributes to include

(3) PS : ∀ [from,till], from ≤ validThru:

(4) PS : NymP← retrieveOrGenerateNym(CertR.NymR, [from,till])

(5) U ← PS : CertP← issueCert(NymP, [from,till], attributes

encpkSP
(rand || CertR.NymR),)

(6) PS : store[CertR.NymR. [from,till], CertP]

(A.2.c) Buying tickets

(1) U → T : authenticate(CertP)

(2) U → T : event, #tickets, specification

(3) T : Restrictions← retrieveRestrictions(CertP.NymP, EventType)

(4) U � T : (SeatNb[], price) ← negotiate(CertP.NymP, event,

#tickets, eventPolicy, CertP.attr, specification, [Restrictions])
(5) U, T : if (SeatNb[] = �) abort

(6) U � B
� T

: pay(price, Hash(SeatNb[], . . .))

(7) U ← T : tickets[] ← generateTickets(SeatNb[])

(8) T : update [CertP, event, tickets[]]

Table A.2: Protocols with pseudonym certificates

P2 Each NymP only has a limited validity period. The number of tickets that is issued to
the same NymP is restricted. Hence, T and E can only compile limited profiles. PS
can link all NymPs to the same NymR. However, multiple pseudonym servers PS can
be used. If each PS can only issue permit certificates for specific types of events, the
one PS cannot link multiple interests of the same NymR.

P3 Only NymRs and NymPs are kept in blacklists.

A.7 A Ticketing System Based on Anonymous Credentials

A.7.1 Introduction

We further increase the user’s privacy. The user needs a single permit - issued by a government
agency - which allows the user to buy tickets for every event. In case of abuse, the transcript

A.7. A TICKETING SYSTEM BASED ON ANONYMOUS CREDENTIALS 91

(A.3.a) anonymizing the blacklists

(1) J → G : [NRN , banning order eventType]

(2) G : NymR← lookupNym(NRN)

(3) G → PS : [NymR, banning order eventType]

(4) PS : NymP← lookupNym(NymR, eventType)

(5) PS → T : [NymP, banning order eventType]

(A.3.b) Identifying buyer of a ticket

(1) J ← E : complaint, seatNb

(2) J → T : event, seatNb

(3) J ← T : [CertP, event, ticket] ← lookup(event, seatNb)

(4) J → PS : CertP

(5) J ← PS : (rand || NymR) ← decprkSP
(CertP.enc)

(6) J → G : NymR

(7) J ← G : NRN← lookup(NymR)

Table A.3: Protocols with pseudonym certificates (bis)

resulting from the permit show can be deanonymized. For each event type, there is a privacy-
preserving blacklist, summing up the user’s rights restrictions.

A.7.2 Roles

Besides U , E, T , and J , we define G as a government agency that issues permits and manages
blacklists.

A.7.3 Assumptions

In the ticketing system based on anonymous credentials, we assume the following:

� The anonymous credential system provides the unlinkability property to permits. The
user does not reveal identifiable permit attribute properties.

� All Es and all T s and G have a unique, publicly available provable one-way function;
fE() for E, fT() for T) and fG(. , .) for G. Note that the latter requires two arguments.
These functions could for instance be included in their X.509 certificate.

� The opening info generated by a commit method does not reveal any information about
the content contained in the commitment. This is easily achieved using a symmetric
key K:
Comnew ← (Com, encK(OpenInfo)) OpenInfonew ← K combined with integrity pre-
serving measures (e.g. MACs).

92 APPENDIX A. ETICKETING

A.7.4 High Level Description

The permit is an anonymous credential containing a set of personal attributes, a boolean
value for each event type indicating whether or not the user is blacklisted, and two nyms.
One nym (NymR) is known by G and used to blacklist persons. The other nym (NymP), is
not known to G, but is used to generate an event specific nym, allowing T to keep track of
the number of tickets sold to that person for that specific event.

Per event type, a blacklist is maintained by G. This blacklists contains user pseudonyms
(NymRs). These nyms are converted to event specific nyms (NymEs) before the blacklist is
sent to a specific T as a way to avoid linkabilities.

A.7.5 Protocols

Getting an anonymous Permit Certificate. The actual issue of the permit (A.4.a.5)
includes a subset of the user’s personal attributes (attributes) contained in the user’s eID.
These can be selectively disclosed during a credential show protocol.

The permit contains for each event type a boolean Restrictions[EventType] stating
whether or not the user is blacklisted. G can easily extract this information out of the
blacklists it manages (cfr. below).

Each permit contains two user unique pseudonyms NymR and NymP. NymR is known to
both U and G and is the nym under which the permit is issued by G. G possesses a provable
link SigR between the U ’s id and his NymR. This can be used in case of disputes.

The second pseudonym in the permit, NymP, is known to the user U only and is included
in the permit as an attribute that is not known to G. This is done using a commitment,
whereof U proves that he knows the corresponding UserSecret and NymP (underlined) such
that NymP← fG(NymR, UserSecret).

To obtain a new permit, after the previous one was lost, step 6 changes. After recalculating
NymP← fG(NymR, UserSecret) and generating a new commitment Com2 ← commit(NymP)
(Step 4 and 5), U decrypts c, resulting in the opening info of the previous commitment. This
allows U to prove that Com.NymP= Com2.NymP(corresponds to step 6), convincing G that
the same NymPwas used.

Buying a Ticket. For each ticket order, U sends NymE← fE(NymP) to T and proves
possession of the corresponding NymP. (A.4.c.1,2). The use of one-way function gives the
user for each event a different, but event-unique nym. This gives T the possibility to limit
the number of tickets per user while at the same time, this function avoids linking of T ’s
customers to the customers of other T s. Collusion with G does not help, because G does not
even know NymP.

When ordering a ticket, the user proves that he is not blacklisted by showing
Restrictions[EventType]. If U is blacklisted, he sends NymT← fT(NymR) to T and proves
that NymT is correctly formed with CredP.NymR. T now looks up the exact restrictions
associated with NymT on the blacklist (A.4.c.3). This limits linking possibilities and possible
collusion with G. The latter is only useful for blacklisted Us.

The negotiation phase (A.4.c.4) requires the user’s permit as input, such that
RequestProof can be generated. RequestProof is a proof for G that U did request the nego-
tiated tickets at the negotiated price. This proof is also deanonymizable by J which provably
reveals NymR.

A.7. A TICKETING SYSTEM BASED ON ANONYMOUS CREDENTIALS 93

(A.4.a) Getting the first anonymous permit certificate CredP

(1) U → G : authenticate(eID)
(2) G � U : (NymR, SigR) ← generateSignedNym(eID .NRN)
(3) G : Restriction[] ← getRestrictionBooleans(eID.NRN)
(4) U � G : NymP← fG(NymR, UserSecret)
(5) U → G : (Com, OpenInfo) ← Comm(NymP)
(6) U → G : Com, prove(Com.NymP = fG(NymR, UserSecret)),

c ← encH(UserSecret)(OpenInfo)
(7) U � G : CredP← issueCred(NymR, {Com.NymP,

Restriction[], attributes})
(8) G : store[eID .NRN , NymR, SigR, Com, c]

(A.4.a) Buying tickets

(1) U → T : NymE← fE(CredP.NymP), event
(2) U → T : authenticate(CredP, {CredP.NymP'NymE,

CredP.Restriction[EventType]})
(3) T : if(CredP.Restriction[EventType] = true) do
(3.a) U → T : NymT← fT(CredP.NymR)
(3.b) U → T : prove(NymT'CredP.NymR)
(3.c) T : Restrictions← retrieveRestrictions(BlacklistT, NymT)
(3.d) T : end if
(4) U � T : (SeatNb[], price, RequestProof) ← negotiate(CredP, event;

NymE, eventPolicy, [Restrictions])
(5) U � B � T : (PayProofU, PayProofT) ← pay(price, Hash(SeatNb[], . . .))
(6) U ← T : tickets[] ← generateTickets(SeatNb[])
(7) T : update [event, NymE, RequestProof, tickets[]]

Table A.4: Protocols with anonymous credentials

Blacklist Maintenance and Retrieval. A law enforcement entity J forwards the court
orders (NRN , Restrictions) to G. G substitutes the NRN s with the corresponding NymRs.
Each NymRis further converted to NymT← fT(NymR) before the blacklist is sent to a specific
T to avoid linkabilities and profiling by T (A.5.b).

Misbehaviour and Deanonymization Protocol A.5.c illustrates how the collaboration
of E, T and G is required in order to obtain a (provable) link between the ticket and the
user’s id. The proof is (RequestProof, deanProof, SigR). If someone is put on a blacklist
for EventType, his permit CredP is revoked. U can obtain a new CredP, with the updated
restrictions booleans Restriction[EventType], immediately.

A.7.6 Evaluation

We now evaluate by checking the requirements

94 APPENDIX A. ETICKETING

(A.5.a) Maintaining the blacklists

(1) J → G : NymR, Restrictions, EventType

(2) G : Blacklists[EventType].add(NymR, Restrictions)

(3) J → G : revokeCert(NymR)

(A.5.b) Obtaining a blacklist

(1) G : for each (NymR, Restrictions) in Blacklists[EventType]:

BlacklistT.add(fT(NymR), Restrictions)
(2) T ← G : BlacklistT

(A.5.c) Identifying buyer of a ticket

(1) J ← E : complaint, seatNb

(2) J → T : event, seatNb

(3) J ← T : RequestProof← lookup(event, seatNb)

(4) J : NymR, deanProof ← deanonymize(RequestProof)

(5) J → G : (NRN , SigR) ← lookup(NymR)

Table A.5: Protocols with anonymous credentials (bis)

Functional and Security Evaluation

F1 NymE← fE(NymP) enables T to link ticket orders of the same U for the same event.

F2 A subscription can be issued by T or a coordinating organization. It can be an anony-
mous credential that contains NymP, NymR, the Restriction[EventType] booleans and
information about the subscription. It can be anonymously shown to a ticketing service
in order to obtain tickets without a payment phase. Alternatively, a multiple-use ticket
with an expiry date can be issued.

F3 The user can selectively disclose properties in the permit.

F4 is explained in section A.7.5.

F5 is done using the anonymized blacklists. Revocation of tickets issued to persons that
were blacklisted after the ticket order is possible if NymR is systematically shown to T .
However, the price is an increase in linkabilities.

Privacy Evaluation

P1 Deanonymization requires the collaboration of T , G and J as we argued in Misbehaviour
and Deanonymization.

P2 We argued that a user has for each E a different NymE← fE(NymP). NymP is needed
to do linking to other Es, but can only be obtained if both the user’s secret UserSecret
and the user’s NymR are known. For blacklisted users, G can link NymR and NymT.
Collusion of T and G is then possible.

P3 G knows the links between nyms on a blacklist and the user’s id. However, such con-
victions are publicly available. Collusion of T and G can reveal the identity associated
with NymT.

A.8. EVALUATION 95

Trivial Pseudonym certs. Anon. creds.

F1 - # Tickets X X X

F2 - Subscription X X X

F3 - Pricing X X X

F4 - Deanon. X X- J interacts with E,
T , PS, G.

X- J interacts
with E, T , G.

F5 - Ban — X+ ticket revocability X(2)

P1 - User anon. T knows
user id

If no collusion of E, T,
PS, G. T knows permit
atts.

X

P2 - User profiles T can link
everything.

Linkability during lim-
ited, fixed period.

X(1)

P3 - Anon.
blacklists

— If no collusion PS, G. only G can iden-
tify. U .

(1): If the user is blacklisted, G can collude with one or more T s.
(2): Ticket revocability is possible at the cost of increased linkabilites.

Table A.6: Comparison of the three approaches

A.8 Evaluation

A comparison of the three approaches is given in table A.6. It is clearly possible to fulfil the
main functional/security requirements, while at the same time giving the privacy a serious
boost. To maintain user-friendliness, the interactions with e.g. PS can be done transparently
to the user. The anonymous credential based protocol is computationally the most intensive.
Tests are needed to quantify this.

We have to be aware that the two proposed solutions disallow a banned person to buy
tickets for someone else (e.g. father buys tickets for his children) and that it is still possible
that a person buys tickets and gives them to a banned person. The solution is thus not perfect
and still, police presence is needed on e.g. soccer matches.

A.9 Conclusions and Future Work

Two privacy preserving ticketing systems were proposed; one based on pseudonym certificates
and one on anonymous credentials. We showed that it is possible to offer the user a high degree
of privacy, while the other requirements remain fullfilled. Still the privacy unfriendly eID card
is used as bootstrap.

A prototype implementation will be made, using an applet for registration and ticket
ordering. Entering the event can be done using a bar code reader. The influence of mix
networks on the overall performance must be examined.

96 APPENDIX A. ETICKETING

Appendix B

ePoll

B.1 Introduction

In a poll, opinions of people are collected and processed. In paper-based polls the collection
and processing takes a lot of time and effort. Electronic poll systems (ePoll), however, offer
several benefits with respect to the paper-based polls. ePolls enable users to sign polls any-
where at any time and now reach wider sections of society. Moreover, automatic processing
of the results can make the polls more reliable.

On the other hand, electronic poll systems introduce some new problems. Some systems
are unreliable and may return incorrect results as for instance a user may sign a poll more
than once. Other systems, use personal information to prevent multiple signing. However
these systems are not privacy friendly.

This section presents PetAnon, a privacy-preserving poll system using Idemix anonymous
credentials. PetAnon combines good privacy properties with reliable results.

This appendix is structured as follows. Section B.2 presents the main related work. Section
B.3 gives the requirements of the system. Section B.4 discusses the protocol used in PetAnon
and is followed by section B.5 with an evaluation of the protocol in respect of the requirements.

B.2 Related Work

Many voting protocols that guarantee anonymity of the voter have been divised. A distinction
needs to be made between voting protocols that require a physical appearance of the user in
a booth and online voting protocols. We are interested in online protocols ([5], [2], [16], etc.).
In pure voting protocols, not all the flexibility described in the introduction is required. On
the other hand, secure voting protocols need to be receipt-free, which is a requirement that
is not fullfilled by all voting schemes presented in the past.

Recently, an e-Petition implementation based on the Belgian eID card and Idemix was
developed [10], which presents similarities with our ePoll solution, but it is less flexible and
reliable. For instance, user’s cannot prove that their vote was removed. In fact, we focus on a
flexible and reliable poll infrastructure and its implications on anonymity and policy aspects,
while their focus was presenting a proof of concept implementation of an anonymous petition
system combined with a discussion about the legal issues.

97

98 APPENDIX B. EPOLL

B.3 Requirements

The requirements of the privacy-preserving ePetition system are discussed below. They are
classified according to security and privacy requirements.

Security requirements

S1 A user can sign a certain petition only once.

S2 A petition may possibly address only a subset of the potential signers; therefore the
signer may be required to prove that he belongs to that subset.

S3 A user can verify that his signature is included in the petition’s database.

S4 Everyone can verify the correctness of the petition results.

Privacy requirements

P1 Signers are anonymous.

P2 Signatures cannot be linked to a user. Moreover, signatures of different petitions cannot
be linked to each other.

P3 A petition may request optional attributes that the user can release in order to get more
differentiated results. The user has the choice if he wants to disclose these attributes or
not.

B.4 Protocols

Roles and setting. A user U possesses an eID card, which is used when U authenticates
towards the registration server R. This authentication is required before R issues a voting
credential to U that can be used to sign an ePetition on a petition server P . The registration
server R has a certificate containing the public key information used in the credential-issue
and credential-show protocols.

Setting up an ePetition. The petition organizer P contacts R and offers to R the title,
description and validity period of the petition. R generates a new, unique provable one-way
function fpetition(., .) which needs two arguments. This function, as well as the user provided
petition info are included in a (X.509) petition certificate certpetition that is issued by R to P .
As a result, the latter obtains a corresponding private key PKpetition.

Retrieving a signPetitions credential. In order to sign a petition, U has to obtain a
signPetitions credential. Therefore, he authenticates using his eID card (1). This actions
reveals the personal data contained in the eID card to R.

Every citizen is only allowed to have one signPetitions credential. This is first checked by
R. If the user did not register beforehand (2a), the user generates a (long) secure random
number (2a.1), puts it in a commitment (2a.2), which is sent to R, and proves that he knows
the committed value (2a.3). R also generates a (potentially shorter) random value (2a.4).

B.4. PROTOCOLS 99

These two random values will be used to prevent voting multiple times for the same petition,
as we will see later.

If U previously had been issued a signPetitions credential (2b), these two random values
are retrieved from R’s storage and will be reused (2b.2). Also the credential’s serial number
is retrieved, which allows to revoke this credential before issuing a new one (2b.1).

After a serial number for the new credential is generated (3), all the parameters for the
credential issuance are known and the signPetitions credential is issued (4). It contains the
two random values, the serial number and a subset of the attributes (or properties thereof)
that were extracted from the eID card. Note that R never gets hold of the user’s secure
random number.

Finally, U stores the credential (6), and R stores the commitment, the other random
number and the serial number, as well as the user’s NRN (National Registration Number) (5).
This will allow R to check whether a user already has been issued a signPetitions credential,
to revoke signPetitions credentials and to issue new ones.

Signing a petition. Initially, the petition server P authenticates using his petition specific
certificate certpetition. P additionally sends an overview of required and optional personal
properties that must or can be proved when signing the credential. Each petition has certain
required and optional attributes. For instance to sign a certain petition you must be older
than 18 years. However, it is up to the user if he wants to reveal his gender or zip code.
Finally, P sends a list of options for which the user can vote to U (1).

With the help of the petition’s one-way function and the two random values contained
in the vote credential, the user generates his petition specific nym (2), and sends it to P ,
together with the description of the personal properties that U is willing to disclose and the
option for which he wants to vote (3).

Now, the interactive Idemix show protocol is run (4): U proves the selected properties, as
well as that the petition specific nym for that user is correctly formed based on the random
values contained in the credential. Thereby the user’s vote choice is anonymously signed.

If that nym has not yet signed that specific petition (5), the protocol continues by gener-
ating a vote number. This is a reference to the petition-record that is being generated. The
vote number, the hash of the proof and the user’s nym are signed with the petition secret
key, and stored by P together with that signature. The resulting record is made public. The
signature is sent to and stored by U and allows U to check that his signature is included
in the petition’s database and to file a complaint otherwise and proof whether the record is
changed by P .

Verification. The user can request from P the record with index voteNrand which was
signed by the user. If the vote was tampered with, either the P -provided signature will no
longer equal the signature stored by U , or the P -provided signature will no longer match the
(proof, nym, voteNr)-tuple made public by P .

If all the records are made publicly available, everyone can verify the correctness of the
petition by verifying for each record the proof and the respective signature.

100 APPENDIX B. EPOLL

(B.1.a) Retrieving an anonymous credential

(1) U → R : authenticate(eID)
(2a) R : if (!credExists(eID .NRN))
(2a.1) U : secureRand← genSecureRand()
(2a.2) U : (Comm, OpenInfo) ← commit(secureRand)
(2a.3) U → R : Comm, prove({x | Comm== commit(x)}, Comm,OpenInfo)
(2a.4) U → R : randR← genRand

(2b) R : else
(2b.1) R : (serialOld, Comm, randR) ← retrieveCredInfo(eID .NRN)
(2b.2) R : revokeCred(serialOld)
(3) R : serial← genSerial()
(4) U � R : Cred← issueCred(serial, Comm.secureRand, randR,

subset(propertieseID))
(5) R : store(serial, eID .NRN , Comm, randR)
(6) U : store(Cred)

(B.1.b) Signing petitions

(1) U ← P : authenticate(certpetition), Optionsprops, choices[]
(2) U : Nym← certpetition.fpetition(Cred.secureRand, Cred.serial)
(3) U → P : Nym, props ← select(Optionsprops), choice ← select(choices[])
(4) U � P : proof← showCred(Cred, props && Nym0 v Cred){choice}
(5) P : if (petitionSigned(Nym) abort()
(6) U ← P : voteNr← getVoteNr()
(7) U ← P : receipt← sig(SKpetition, (voteNr, hash(proof), Nym0))
(8) P : store[voteNr, Nym0, proof, receipt]
(9) U : store[receipt, hash(proof), voteNr]

Table B.1: Protocols for PetAnon

B.5 Evaluation

S1 is easily fulfilled, as for each petition the user is known by P under a petition specific
nym. If that nym already signed that specific petition, the vote is cancelled.

S2 and [P3] are fulfilled. Some attributes in the credential show may be required by P ,
while others are up to U if he wants to disclose the information or not.

S3 is fulfilled. U can detect if his vote was tampered with based on the P -provided signa-
ture.

S4 If the records are made publicly, everyone can verify the correctness of the petition by
verifying the proofs and signatures.

P1 Using the Idemix credential show protocol, as long as no identifying attributes are
revealed, the user U remains anonymous, and different shows are unlinkable. Moreover,
privacy is preserved in case of collusion of R and P .

B.5. EVALUATION 101

P2 is fulfilled. To sign a petition, U authenticates anonymously using his credential (Cred).
Signing the petition is done anonymously, and there are no identifiable actions linked
to the signature.

102 APPENDIX B. EPOLL

Appendix C

Modelling

Class Description

ActorApplication This construct models the interacting parties.

LifeLine This construct provides a visual means of ordering a party’s operations over time.

Operation This abstract construct represents an operation that involves one or more parties.

SingleActorOperation This abstract construct represents an operation that involves a single party. For

instance, data input by the user.

InterActorOperation This abstract construct represents an operation that involves two or more parties.

For instance, the transmission of data from a source to a destination.

ReadData This construct models the gathering of user information. The said information may

be referenced by other constructs by means of the inherited id attribute and can be

transmitted or used for authentication purposes.

SanitizeData This construct models the hiding of arbitrary information. For instance, a party may

wish to hide certain of its attributes from some parties but not from others.

InformationMessage This construct is more related to the user-interface aspect of the application that any

of the others. It models the display of textual information to the user to guide him

through the application.

SendData An InterActorOperation which connects two distinct LifeLines that represent the

source and destination parties. This construct models the transmission of data be-

tween parties.

ShowCredential An InterActorOperation which connects two distinct LifeLines that represent the

credential “shower” and credential verifier. This construct models the authentication

of one party to another.

Table C.1: A description of the classes and relationships from Figure 5.3.

103

104 APPENDIX C. MODELLING

Class Attribute Description

ActorApplication name A party’s descriptor.

Operation id This attribute is inherited by all children of the

Operation construct. It enables unique referencing of

one construct by another.

ReadData

clientChosenAttributes A comma separated list of attributes the concerned

party chose to provide.

issuerChosenAttributes A comma separated list of attributes the verifying

party requires.

issuerChosenIdentificationAttribute A unique identifier attribute the verifying party re-

quires.

dataSource The location from which to retrieve the data. This at-

tribute may take values userProvided (indicating data

will be entered by the user at runtime) or eIDCard (in-

dicating the data should be read from a Belgian eID

card).

dataTitle The read data’s descriptor.

inputPrompt A message that should be displayed to the user to

inform him that some of his data is required.

SanitizeData
attributesToRemove A comma separated list of attributes to remove from

the current data.

readDataId Identifies the ReadData instance whose data will be

sanitized.

InformationMessage
exitEvent This trigger that will prompt the application to navi-

gate away from the displayed message. This attribute

may take values userClick (indicating that the user

will click an “Ok” button when he wishes to move on)

or a numeric value in milliseconds (indicating the delay

that should elapse before automatically moving on).

message The message to be displayed.

SendData readDataId Identifies the ReadData instance whose data will be

transmitted to the destination party.

ShowCredential

credentialType The type of credential we wish to show. This attribute

may take values publicKeyCertificate or anonymous-

Credential.

credentialIssuingAuthority In the case of public key certificates, this attribute

indicates the certification authority which will be con-

tacted to verify the credential.

predicatesToProve A comma separated list of predicates that an anony-

mous credential must satisfy.

readDataId Identifies the ReadData instance whose data will be

used to build the credential.

showingMultiplicity Indicates the possibly infinite number of times this

credential can be shown before it expires. This will

impact the created credential and the generated code

for the following ShowCredential instances.

Table C.2: A description of the class attributes from Figure 5.3.

Bibliography

[1] Belgian certificate revocation list. http://status.eid.belgium.be/.

[2] Alessandro Acquisti. Receipt-free homomorphic elections and writein ballots. Technical
report, 2004.

[3] Patrick Andries. eID Middleware Architecture Document. Zetes, 1.0 edition, 2003.

[4] N. Asokan, Els Van Herreweghen, and Michael Steiner. Towards a framework for handling
disputes in payment systems. Technical Report RZ 2996, 1998.

[5] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections (extended ab-
stract). In STOC ’94: Proceedings of the twenty-sixth annual ACM symposium on Theory
of computing, pages 544–553, New York, NY, USA, 1994. ACM.

[6] Jean Bezivin. On the unification power of models. Software and Systems Modeling
(SoSym), 4:171–188, 2005.

[7] S. Brands. A technical overview of digital credentials, 1999.

[8] Alan W. Brown. Model driven architecture: Principles and practice. Software and
Systems Modeling (SoSym), 3:314–327, 2004.

[9] L. Buttyn and J. P. Hubaux. Accountable anonymous access to services in mobile com-
munication systems. In Proceedings of the 18th IEEE Symposium on Reliable Distributed
Systems, 1999.

[10] M. Kohlweiss C. Diaz, H. Dekeyser and G. Nigusse. Privacy preserving electronic peti-
tions, 2008.

[11] J. Camenisch and E. Van Herreweghen. Design and implementation of the idemix anony-
mous credential system, 2002.

[12] J. Camenisch and E.V. Herreweghen. Design and implementation of the idemix anony-
mous credential system. In ACM Computer and Communication Security. 2002.

[13] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In EUROCRYPT ’01: Proceedings
of the International Conference on the Theory and Application of Cryptographic Tech-
niques, pages 93–118, London, UK, 2001. Springer-Verlag.

[14] D. Chaum. Security without identification: transaction systems to make big brother
obsolete. Commun. ACM, 28(10):1030–1044, 1985.

105

http://status.eid.belgium.be/

106 BIBLIOGRAPHY

[15] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transformation
approaches. IBM Systems Journal (IBMS), 45:621–645, 2006.

[16] Peter Y.A. Ryan David Chaum and Steve Schneider. A practical voter-verifiable election
scheme. In Computer Security ESORICS 2005, Lecture Notes in Computer Science,
pages 118–139, Berlin / Heidelberg, Germany, 2005. Springer.

[17] Danny De Cock, Christopher Wolf, and Bart Preneel. The Belgian Electronic Identity
Card (Overview). In Jana Dittmann, editor, Sicherheit 2005: Sicherheit - Schutz und Zu-
verlässigkeit, Beiträge der 3rd Jahrestagung des Fachbereichs Sicherheit der Gesellschaft
für Informatik e.v. (GI), volume LNI P-77 of Lecture Notes in Informatics (LNI), pages
298–301, Magdeburg,DE, 2006. Bonner Köllen Verlag.

[18] Danny De Cock, Karel Wouters, and Bart Preneel. Introduction to the Belgian EID Card:
BELPIC. In Stefanos Gritzalis, Sokratis K. Katsikas, and J. Lopez, editors, European
PKI Workshop: Research and Applications, volume 3093 of Lecture Notes in Computer
Science, pages 1–13, Samos Island,GR, 2004. Springer-Verlag.

[19] Juan de Lara, Hans Vangheluwe, and Manuel Alfonseca. Meta-modelling and graph
grammars for multi-paradigm modelling in AToM3. Software and Systems Modeling
(SoSym), 3:194–209, 2004.

[20] Mohamed Fayad and Douglas C. Schmidt. Object-oriented application frameworks. Com-
mun. ACM, 40(10):32–38, 1997.

[21] K. Fujimura and Y. Nakajima. General-purpose digital ticket framework. In Proceedings
of the 3rd USENIX Workshop on Electronic Commerce, pages 177–186, 1998.

[22] M. Green G. Ateniese, K. Fu and S. Hohenberger. Improved proxy re-encryption schemes
with applications to secure distributed storage. In In: Proceedings of the 12th Annual
Network and Distributed System Security Symposium (NDSS), 2005.

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Professional, 1995.

[24] R.E. Johnson and B. Foote. Designing reusable classes. Journal of object-oriented pro-
gramming 1(2), pages 22–35, 1988.

[25] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling : Enabling Full Code
Generation. Wiley-Interscience, 2008. 427 pages.

[26] Raphael Mannadiar and Hans Vangheluwe. Modular synthesis of mobile device applica-
tions from domain-specific models. Technical report, McGill University, 2010.

[27] A. Kapadia P. P. Tsang, M. H. Au and S. W. Smith. Blacklistable anonymous credentials:
blocking misbehaving users without TTPs. In CCS ’07: Proceedings of the 14th ACM
conference on Computer and communications security, pages 72–81. ACM, 2007.

[28] B. Patel and J. Crowcroft. Ticket based service access for the mobile user. In In Pro-
ceedings of Mobicom’97, 1997.

BIBLIOGRAPHY 107

[29] W. Pree. Meta patterns - a means for capturing the essentials of reusable object-oriented
design. in M. Tokoro and R. Pareschi (eds), Springer-Verlag, proceedings of the ECOOP,
Bologna, Italy, pages 150–162, 1994.

[30] Guy Ramlot. eID Hierarchy and Certificate Profiles. Zetes, Certipost, 3.1 edition, 2006.

[31] Johan Rommelaere. Belgian Electronic Identity Card Middleware Programmers Guide.
Zetes, 1.40 edition, 2003.

[32] Laurent Safa. The making of user-interface designer a proprietary DSM
tool. In 7th OOPSLA Workshop on Domain-Specific Modeling (DSM), page 14,
http://www.dsmforum.org/events/DSM07/papers.html, 2007.

[33] Marc Stern. Belgian Electronic Identity Card content. Zetes, CSC, 2.2 edition, 2003.

[34] B. Defend T. S. Heydt-Benjamin, H. Chae and K. Fu. Privacy for public transportation.
In Proceedings of the Sixth Workshop on Privacy Enhancing Technologies (PET 2006).
Springer, 2006.

	Introduction
	Preliminaries
	Framework General Definition and Principles
	Definition
	General Framework Requirements
	Providers
	Sensitive Data Representation
	Patterns

	Cryptographic Building Blocks
	Commitments
	Proof of knowledge and Zero-knowledge proof
	Verifiable encryptions

	Credential systems
	Belgian eID Card
	Classical X.509 certificates
	Pseudonym Certificates
	Anonymous credentials

	Framework
	Overview
	Design
	Implementing a provider
	Local authentication to the framework.

	Connection Handler & Manager
	Handler Description
	Implementation in a provider
	Connection handler usage example
	Application developer issues
	Manager Description
	Implementations

	Persistence Handler & Manager
	Handler Description
	Implementation in a provider
	Usage by application developer
	Manager Description

	Credential Handler & Manager
	Credential, Pseudonym, Commitment and VerifiableEncryption
	Template
	ShowSpecification
	Disclosure
	Entity
	Transcript
	AttributeValues
	Credential Handler
	Commitment and Verifiable Encryption creation
	Using comitments and verifiable encryptions
	Credential Manager

	Credential handler interface usage examples
	Commitment creation
	Verifiable encryption creation.
	Create a self signed X.509 certificate.
	Creation of an Idemix credential template
	Issue and receive a credential
	A simple authentication protocol
	A more complex authentication example
	Pseudonym code examples

	Other Components
	Privacy Handler & Manager
	Dispute Handler & Manager

	Using Framework on Mobile Devices

	Validation
	Validation based on eTicketing
	High-Level Description
	Usage of the framework
	Evaluation

	Validation based on ePoll
	High-Level Description
	Usage of the framework
	Evaluation

	Modelling and Synthesizing Privacy-Preserving Applications
	Premise
	Case Study: Prescription Issuing Protocol
	Synthesizing Applications from Models
	The Domain-Specific Modelling Language
	Model Transformations

	Evaluation
	Synthesized Applications
	Benefits of DSM

	Conclusions and Future Work
	The Adapid Framework
	Modelling and Synthesizing

	Appendices
	eTicketing
	Introduction
	Related Work
	Requirements
	Assumptions and Notation
	Assumptions
	Notation

	Trivial eID-based Solution
	Introduction
	High Level Description
	Protocols
	Evaluation

	Solution based on Pseudonym Certificates
	Introduction
	Roles
	Assumptions
	Protocols
	Evaluation

	A Ticketing System Based on Anonymous Credentials
	Introduction
	Roles
	Assumptions
	High Level Description
	Protocols
	Evaluation

	Evaluation
	Conclusions and Future Work

	ePoll
	Introduction
	Related Work
	Requirements
	Protocols
	Evaluation

	Modelling

