
A Modelica Statecharts Compiler

Reehan Shaikh

School of Computer Science, McGill University
Montréal, Québec, Canada
reehan.shaikh@cs.mcgill.ca

http://moncs.cs.mcgill.ca/people/reehan

Abstract. We present a method in which statecharts, which are com-
monly described visually, can be textually described using Modelica syn-
tax. We also provide a compiler used to compile these Modelica state-
charts to DES specification files. These DES specification files are then
used by the Statechart Compiler (SCC) to produce executable code in
some target language such as Java, C++, etc. . . ; Python will be our
language of choice.

Key words: Modelica, Statechart, Compiler, AToM3

1 Introduction

Statecharts have become a widely used formalism for modelling complex systems.
They are intuitively easy to learn, which is good for those who are trying to use
such a formalism. They are extremely powerful and expressive. Moreover, the
widespread work done in the field of statecharts has provided researchers with a
plethora of information to start and continue with. We extend that research by
first looking into Modelica specifications of statecharts.

Modelica1 is a modelling language which has also been diligently looked at
and has grown to become the de facto for model specifications. It is high-level,
multi-domain and object-oriented, used mostly for complex, heterogeneous phys-
ical system descriptions. The abundance of recent work done with Modelica also
suggests that it too will soon become a widely used method of describing models.

We wondered, with two such extensively used methods of modelling, why
there wasn’t a link between them and as such, have tried to narrow that gap.
Thus, secondly, we look at and provide a compiler that compiles statecharts
described textually in Modelica to DES[2] specification files. These specification
files are also text-based and human-readable. The DES specification is then
given to the Statechart Compiler (SCC)[2] which compiles the specification into
an executable in some target language.

This paper is divided as follows. Section 2 discusses related work done by
Song[3] using DEVS and Modelica. Section 3 explores our work with statecharts
and Modelica. We finally conclude and highlight some future work in Section 4.

1 www.modelica.org

2 Shaikh

2 Related Work - Modelica DEVS compiler

2.1 (py)DEVS

The D iscrete EV ent system Specification was first established in 1976 by Bernard
P. Zeigler[1]. This formalism gave a detailed structure to discrete-event mod-
elling. PyDEVS is an implementation of this formalism using Python2, an ex-
tremely high-level, interpreted and object-oriented language. The PyDEVS pack-
age contains two files; DEVS.py gives the class architecture for hierarchical
model definitions while Simulator.py implements the simulation engine. We
will go into further detail about the modelling architecture, so that we may re-
late it to Modelica, but no description of the simulation engine is given as it
doesn’t fall into the scope of this paper. For those interested, please refer to [1].

Atomic DEVS An atomic DEVS model is used for describing a simple sys-
tem and is primarily referred to by its state. Each atomic model starts in an
initial state and has an associated set of states. The time-advance function is
used to calculate when the next internal transition is scheduled for. The internal

transition function allows an atomic model to change its state. Prior to the in-
ternal transition, the output function permits an atomic model to send messages
to other models by the use of the poke method. These messages are sent over
channels connected by ports. Ports are either input or output and there is a
clear distinction between them (i.e. the same port cannot be used for input and
output).

Messages are received via the peek method, exclusively used in the external

transition function. If a message is received, an external transition is triggered.
This also allows the atomic model to change state but based on external stimuli
only. When a model is interrupted by a message, the elapsed time since the last
transition is stored. Access to this value is also exclusive to the external transition
function. Once there is an external transition, the time-advance function is called
to schedule the next internal transition.

The initialization of an atomic model allows the modeller to set the initial
state, set the starting elapsed time (so that the model can begin its time stamping
of events at some time other than the default 0.00) and define the model’s set of
ports. The default behaviour of the atomic model’s time-advance function is to
return ∞(infinity). The internal and external transition functions both return
the current state if not overridden. The default output function does absolutely
nothing. The constructor will set the elapsed time to the default 0.00 and the
model’s state to None - Python’s null object. No ports are defined.

In summary, an atomic model will first call its time-advance function to
schedule the next internal transition at time x. It will then set itself to its initial
state. If no external stimuli interrupts the model before time x is reached, then
the model outputs its messages if any, an internal transition takes place and the
time-advance function schedules the next internal transition at time y. If the

2 www.python.org

A Modelica Statecharts Compiler 3

model is interrupted before time x, no messages are sent, an external transition
is triggered and the time-advance function is called to schedule the next internal
transition at time z.

Coupled DEVS A coupled DEVS model is used to describe complex systems.
It consists of, possibly several, submodels that are either atomic or coupled. A
coupled model has only one function of importance to the modeller, the select

function. This method is used as a tie-breaker if and when two submodels of
the coupled model have events scheduled at exactly the same time. It allows the
modeller to choose a specific model whose events should be carried out first.

A coupled model may also have ports. The only difference is that the input
(output) port of the coupled model must be connected to the input (output) port
of one of the coupled model’s submodels. Essentially, only atomic models can
send messages to each other. If some atomic model A1 (that is a submodel of a
coupled model C1) must send a message to atomic model A2 (that is a submodel
of C2), then A1 must send the message from its output port to the output port
of C1, C1 will send the message from its output port to the input port of C2 and
finally C2 will deliver the message from its input port to the input port of A2.
Hence, three separate channels must be defined for this communication to take
place. The channel that connects C1 and C2 must be defined in a coupled model
C3 which has as submodels C1, C2 and possibly other models. The channel that
connects C1 and A1 must be defined in C1. Finally, C2 defines the channel that
connects it to A1.

The initialization of a coupled model first instantiates all its submodels and
then defines the channels between submodels as well as between itself and any
of its submodels. The default select function will return the first element in the
list of colliding submodels. When a model is instantiated, it is given a unique
myID attribute and this list is lexicographically sorted based on this attribute.
The default constructor for a coupled model will do absolutely nothing.

2.2 Modelica

Modelica is a well-known multi-domain, object-oriented modelling language used
primarily to describe heterogeneous complex physical systems. It is very powerful
and, as such, is used to describe pretty much any type of model, physical or
not, complex or not, etc. . . . It is declarative, as opposed to most programming
languages which are imperative. Hence, it allows the modeller to specify what
the solution is whereas in most programming languages, how the solution would
be executed is specified. This is a key difference in understanding that Modelica is
at an abstraction level higher than programming languages and users don’t need
to worry about implementation details. This gives the opportunity for modellers,
who are usually domain experts, not to be technically inclined in the software
domain. This allows these experts to concentrate on their expertise.

Basic primitive types Real, Integer, Boolean and String are available in Mod-
elica. An enumeration type is given to represent list/array behaviour. Thus,

4 Shaikh

Modelica comes in the flavour of typical programming languages. There are
classes which encapsulate related tasks. There is also a notion of class inheri-
tance and composition, consequently allowing hierarchical models to be built.
Packages give rise to class organization. Conceived on the idea of reuse, Mod-
elica comes with a partial model clause that lets modellers build incomplete
models that may be reused in complete models. For example, suppose a model
of a motor is built. This (partial) model may be used in a (complete) model of
a vehicle, a motorbike, a motorboat, etc. . . .

clause specialization

model like a class, not used in connections

connector allows connections to be connected, no equations

record groups data, no equations allowed, not used in connections

block not used in connections, causal behaviour with input/output

type alias used to extend an existing class

Table 1. Specialized Modelica classes

Certain types of specialized classes exist that give the modeller a bit more
restrictive use of classes. Table 1 shows some of these classes and their specializa-
tions (restrictions). Modelica follows the use-before-declaration approach, hence
variables can be used before declaring them. Nonetheless, a Modelica compiler
should verify that all variables are declared. There are functions, if-then-else
blocks and for/while loops, much like regular programming languages. One of
the most important features for physical modelling is equations, specifically non-
causal ones where the relationship between variables is described. For example,
a + b = c is the same as c = a + b. These equations can be manipulated as
sum-to-zero relations or as equivalent relations at connections and in some sense,
depict the behaviour of the given class. For a detailed example of a real-world
circuit, please refer to [6, pg. 7].

2.3 µModelica

Song[3] discusses how to model DEVS specifications using Modelica. Just as in
pyDEVS [1], a library of base classes is provided for users to inherit from. These
classes give the basic functionality required for building a DEVS model. In Mod-
elica, the extends clause allows a class to inherit from a superclass. To build a
DEVS model, one must declare all the Atomic- and Coupled-DEVS components
as classes that inherit from superclasses AtomicDevs and CoupledDevs respec-
tively. Each subclass of AtomicDevs can then define its internal and external

transition functions as well as the output and timeAdvance functions. These
functions are exactly like standard Modelica functions with no special meaning.
The same goes for a CoupledDevs’ select function.

The keywords input and output, used in Modelica to respectively depict the
input and output of a function, have a second special meaning within DEVS

A Modelica Statecharts Compiler 5

models. They also allow the compiler to respectively distinguish between input
and output ports. Recall that a pyDEVS port can either be an input or output
port, but not both. So, when declaring a DevsPort, one must also declare what
kind of DevsPort it is by combining the declaration with one of the keywords. The
standard connect clause is used to connect two ports together. See Appendix A
for an actual DEVS Modelica model of a generator which produces, at random
intervals, a job to be processed by some processor.

The original µModelica compiler developed by Xu[5] focused primarily on the
algebraic part of Modelica[6]. An abstract syntax tree (AST) of the input is built.
Import statements are resolved. There is some type-checking done and scope
analyses/symbol tables are also available. The compiler expands class inheritance
and then flattens the Modelica code. Finally, the differential algebraic equations
are analyzed and Octave code is produced. The compiler is very extensible. The
visitor pattern is implemented to traverse the AST. Song[3] used this feature to
implement a custom visitor that handled DEVS specifications. Upon reaching a
DEVS node in the AST, the appropriate pyDEVS code was output to file. This
also allowed very easy implementation of a new Statecharts visitor, described in
the following section. For those interested in exactly how the DEVS compiler
works, please refer to chapter 4 in [3].

3 Modelica Statecharts compiler

3.1 Statecharts

First we discuss the statecharts formalism. The building blocks of a statechart
are as follows (in no particular order): basic states, composite components, or-
thogonal components, history states and transitions from components and/or
states to components and/or states (including self-loops). There is also a notion
of containment where a child component and/or state is contained within some
other parent component. At the top of the parent-child hierarchy, there exists a
root node so that one knows where the hierarchy begins.

Composite components are like Boolean OR operators where the system must
reside in only one child of the composite (an OR over the set of children). Orthog-
onal components are composed of orthogonal sections. Each orthogonal section
behaves like a composite component such that the system must be in exactly
one child within that section. As a whole, an orthogonal component is like the
Boolean AND operator where the system must reside in exactly one child within
each of the orthogonal component’s orthogonal sections (an AND over the sec-
tions). This effectively means the total state of an orthogonal component must
be an element of the cross-product of all the states from each orthogonal section.

Each composite component, including the root if it is a composite, must have
a default child. This allows for a modeller to enter a component without having
to specify exactly which child needs to be entered and hence, the default child
is entered. Orthogonal components cannot have a default orthogonal section
because, essentially, each orthogonal section is active at the same time and thus,

6 Shaikh

all are default simultaneously. Nonetheless, each orthogonal section itself must
have a default child. Moreover, at the start of a simulation, the system must
be able to reason about its initial state configuration and having a default child
also permits that.

A transition may have a trigger (event) that enables its firing, a guard
(Boolean condition) that restricts its firing and some action to be carried out
when the transition is taken. Each of these are optional and any combination
of them is allowed. Transitions, when drawn visually, start from a source node
and end at a destination node. These nodes are mandatory when defining a
transition. If no trigger is given, when the system enters the source node of that
transition, the transition is unconditionally taken. If no guard is present, it de-
faults to True. If the source node is a component, then the transition is taken
irregardless of which child of the source component the system is currently in. If
the destination node is a component, then the system enters that component’s
default state when the transition is fired.

Basic states and composite components may carry enter and exit actions.
History states can either be regular or deep and reside within some component.
If a regular history state is entered, the system goes to the component’s default
child. If a deep history state is entered, the system proceeds to the component’s
most recent active child before last leaving the component. There are also ports
and servers but these aren’t taken care of by the compiler at this moment.

A

B D

C E

F

A

B

a) b)

e e [g] / o o

Fig. 1. a) Composite and b) Orthogonal components

Please refer to Figure 1 for a simple example of a) a composite component
and b) an orthogonal component. Note that a circle is just a basic state and
a heavy circle depicts a default child. The dashed line(s) within an orthogonal
component separate each orthogonal section. If within the composite component,
the system can only be in state (A or B) at any given time, but not both. If
residing within the orthogonal component, the system must be in state [(A or
B) and (C or D) and (E or F)].

There is only one unconditional transition (in the composite component). If
the system enters state A of the composite, it will perform any action associ-
ated with state A and then go on to state B unconditionally. The other three
transitions (in the orthogonal component) all involve an event. One transition
is guarded by a condition g and has action code associated with it to output

A Modelica Statecharts Compiler 7

the event o. Suppose the orthogonal component is in its default states and we
give it the event e. In the left most orthogonal section, the state will change
from A to B. If the guard g is False, there will be no changes in the middle
and right orthogonal sections. If the guard is True, the middle section will fire
its transition, produce the event o which will then be given as input to the or-
thogonal component and finally change its state from C to D. Then the right
most orthogonal section will fire its transition based on the produced event o

and change its state from E to F.

3.2 µModelica

Building on the concept of using base classes, the same approach will be used
to model statecharts in Modelica. A library of base classes for basic and history
states, composite and orthogonal components, as well as for transitions (also
known as hyperedges) is available for modellers to inherit from. This inheritance
approach also doubles as a tagging technique so that the compiler can keep track
of user-defined classes and their kind. Each base class comprises of input variables
that hold the key information for that class. For example, the Hyperedge class
contains input variables BaseStatechart src for the source node, BaseStatechart
des for the destination node, String trigger for the trigger event, Boolean guard

for the guard condition and String action for the action code to be executed.
Please refer to Appendix B for the full library code.

One might think that Modelica’s connect function would be useful for depict-
ing transitions. A problem arises when transitions carry additional specifications,
such as conditions, event triggers and/or actions, that have no place to reside
within the connect function. One might argue that a wrapper class to encapsu-
late transitions and then use the connect clause is a good idea, but that would
require additional bookkeeping of transitions and goes on to be a mess in the
compiler’s design.

Developing a Modelica statechart Developing a statechart in Modelica
should and will be as straightforward as drawing it in some modelling tool.
The following describes the generic process for developing a Modelica statechart
but refers the reader to our example statechart (see Figure 2, developed using
AToM3[8]) so that a concrete sense of the development process can be realized.

Basic states are at the lowest level of the hierarchy, so they do not need to be
modelled. Any basic state will be an instantiation of the class Basic, provided
by the Modelica statecharts library. Basic states, when instantiated, can be given
modifiers (in Modelica, modifiers are known as parameters to a class construc-
tor that modify the default class behaviour). These are: Boolean default, String
enter and String exit. The same goes for history states and transitions, classes
History and Hyperedge are respectively given and need only to be instan-
tiated for use. History classes have the modifiers Boolean default and Boolean
deep. A Hyperedge’s modifiers are described above. The Modelica statecharts
library also supplies base classes for Composite and Orthogonal components,

8 Shaikh

but these cannot be at the lowest level of the hierarchy and thus need to be
modelled. Hence, a user will extend these classes to model her own compos-
ite and orthogonal components as user-defined classes. Composite components
contain the same modifiers as Basic states and orthogonal components have no
modifiers.

All of the above classes, except for Hyperedge, extend the generic base Mod-
elica class BaseStatechart. The use of a base Modelica class was to group to-
gether relevant classes. For example, a hyperedge’s start and destination nodes
may either be a basic state, history state, composite component or an orthogonal
component. To easily allow for this, we say that the start and destination nodes
must be of type BaseStatechart. Also note that some notion of the root node of
the statechart is needed. We chose to allow the root user-defined class to extend
BaseStatechart. When a class that extends BaseStatechart is encountered, it is
stored as the root of the model. This would be regarded as the canvas in some
visual modelling tool and as such, there can only be one root.

In our example statechart, Figure 2, the root component contains two ba-
sic states Setup and Stopped, a composite component NORMAL MODE and
two hyperedges. NORMAL MODE in turn only contains two orthogonal compo-
nents, MODE and CHRONO. MODE contains only basic states and hyperedges,
while CHRONO contains basic states, hyperedges and a composite component
RUNNING. Within RUNNING, there are only basic states and hyperedges. Now
we attempt to textually describe this model in Modelica.

Our use-before-declaration approach allows us to model the statechart’s com-
ponents in any order. Thus, a modeller can pick any component she wishes,
model it and move onto the next. For each component, we first figure out if it
is a composite, orthogonal or root and extend the proper base class. Now we
declare, in any order, the basic states, hyperedges and other subcomponents of
the component with the appropriate modifiers to the class constructors. Hence,
at this point, we must know the class type of the other subcomponents that we
will model so that we can use those specific types in our declarations. This also
allows for component reuse. Suppose we model a component C, then anywhere
in our model we can instantiate C, as many times as one wishes.

A simple yet concrete example While describing the textual modelling pro-
cess, please refer to Appendix C for a description of the partial3 statechart in
Figure 2. We first choose to model the MODE orthogonal component. We de-
scribe the class that models the component and later instantiate it, so we give
the class the name Mode in camel-case. When it is instantiated, it will be given
the identifier MODE (the name and identifier can be anything, but in order to
coincide with the naming in the visual statechart of Figure 2, we stick to this
method). Since Mode is an orthogonal, we first extend the Orthogonal base class.

3 For the purpose of a simple example, this is a stripped down version of the entire Digi-
talWatch, only depicting the running time and chrono mode. The entire DigitalWatch
is included with the distribution of the µModelica package, under the example folder,
available at http://moncs.cs.mcgill.ca/people/reehan/15_projects.dtml

A Modelica Statecharts Compiler 9

RUNNING

NORMAL_MODE

RESET

START

PAUSE

DEF_CHR

RUN

ALMOST_STOP STOP

Setup Stopped

RUN_ALM

RUN_CHR

CHRONO

MODE

brp [in RUN_CHR]

after 0.01

brp [in RUN_CHR]

brp [in RUN_CHR]

blp [in RUN_CHR]

chrono

resume / time

blp / alarm

trp / indiglo

trp / indiglo

trp / indiglo

trp / indiglo

tlp / chrono

tlp / time

resume / time

start

stop

brr

brp

after 1.5 / edit

Fig. 2. A simple example statechart

10 Shaikh

Within Mode, there are 5 basic states which are instances of the Basic class and
have the same names as in Figure 2. The basic state RUN is the default state of
this component, so we pass the modifier default=true to the constructor. There
are also 12 hyperedges. Since hyperedges don’t have an explicit name in our
visual tool, we choose the general naming convention of h followed by a number.
Once again, you can choose to name them as you wish. For each hyperedge, we
pass the appropriate modifiers to the constructor as well. The same thing is done
for the RUNNING component by defining a class Running.

Now we wish to model the CHRONO component. Exactly the same steps as
above are done except that CHRONO uses the Running component. So, along
with instantiating the Basic states and Hyperedges, we also instantiate the Run-
ning component with the identifier RUNNING (to follow the visual statechart
naming). The same is done for modelling the NORMAL MODE component. Fi-
nally, we model the root of the statechart. We give this class a name, in our
example we call it Statechart, extend BaseStatechart and follow the same steps
of instantiating its children. Note that we model containment of children by some
component via explicitly instantiating those children within the given class of
that component. Also note that if a transition is required from a child A of a
component C to a child B of C’s subcomponent D, it is possible to accomplish
this by separating each name in the hierarchy with a “.”. Thus, we would have
a transition within C from A to D.B. An example of this situation is included
with the complete DigitalWatch, in the RING component.

Compiling to DES We now describe the compiling process. The compiler first
parses the given file and produces an AST, then performs scoping analyses and
builds symbol tables. Finally, the AST is given to the statechart visitor where
the primary objective is to build an easy-to-manipulate data structure holding
the hierarchical information of the given statechart. No naming verification is
done yet since we allow use-before-declaration. We only permit package, class,
model or partial model declarations at the top-level. In our example, we chose
package. Within this top-level, there can only be class declarations that extend
the appropriate Modelica library class and conform to the previous rules of
specification.

The hierarchical information is stored as follows. For each user-defined class,
a Python dictionary (equivalent to a hashmap) entry is created where the key
is the name of the class and the value is a list. The first element of the list is
either a C for composite, an O for orthogonal or an R for root. The second and
subsequent entries are all the declared children and hyperedges of that class. Each
entry is a list, where the first element is the type of the declaration, the second
entry is the identifier of the declaration and the third entry is a list of modifiers
for that declaration. These modifiers are stored as [modifierName, value] tuples.
Once the hierarchical information is complete, we verify the hierarchy for correct
statechart semantics.

First we make sure that if, in a given component, an orthogonal component
is present, then only orthogonal components are present within that component.

A Modelica Statecharts Compiler 11

Second, we verify that each Hyperedge declaration has src and des modifiers.
We also check if the given node in the modifier is within the scope of the compo-
nent. Third, we make sure that all user-defined components that are instantiated
within other components are actually declared. Finally, we verify that each com-
ponent has a valid default child and format the output for the compiler to return.

Appendix D gives the produced DES[2] code of the statechart in Figure 2.
The format of the DES specification file is as follows: each section is preceded
by a descriptor. There are many descriptors, but those of importance to us are
STATECHART, ENTER, EXIT and TRANSITION. Under the STATECHART
descriptor, the node hierarchy is given. If node B is a child of node A, then B
must be written under and to the right of A. Moreover, all of A’s children must
have the same number of spaces from the left. If a node is a default node, the
annotation [DS] (for Default State) is written next to the node. If the node is an
orthogonal component, the annotation [CS] (for Concurrent State) is written. By
the nature of orthogonal sections, they are always both default and concurrent.
If a node is a history state, [HS] (for History State) is written. For example, in
our DES code, START and PAUSE are children of RUNNING, where START
is the default state. There is always only one STATECHART descriptor.

The ENTER (EXIT) descriptor is used to keep track of the enter (exit)
actions of nodes. For each node with an enter (exit) action, an ENTER (EXIT)
descriptor is written, followed by an N (S) to depict that we are entering (exiting)
the state, the state’s fully qualified name (separating each hierarchical parent
with a “.”), an O to symbolize that there is an output action and finally the
action itself. There can be more than one action, written on separate lines under
the first O. The O is only written once. There can be zero or more ENTER
(EXIT) descriptors, even more than one per node. In our example, there is only
one ENTER action and no EXIT actions.

Finally, we prepare to write the hyperedge output. For each hyperedge found
in the hierarchy, we write out the descriptor TRANSITION. This is followed by
an S with the fully qualified name of the source node and an N with the fully
qualified name of the destination node. Then either an E or a T is present. If the
trigger is an event of type string, then E is used with the event. If there is no
event, then T is used and a time of 0 with the annotation [RTT] is written out.
The RTT stands for repeated timed transition, meaning that the transition is
taken repeatedly at the time interval, in our case, 0. This is useful in the case of
self-loops; in any other case, the transition will never repeat since the destination
node will not be same as the source node, meaning the system will end up in a
state other than the one slated for a repeated transition. If the event is a special
macro AFTER(x), meaning that the transition should be taken every x seconds,
then we write out a T followed by x and [RTT]. We always output a C for the
guard. If there is no guard or the guard is true, we output a 1, otherwise we
output the given guard. If there are many guards, they are written each on a
separate line and, in entirety, the AND of all the guards is taken. Finally, if there
is an action, we output an O with the action. Once again, there can be more

12 Shaikh

than one action and they are separated one per line. The O is the only optional
piece of information, all others are mandatory.

4 Conclusion

With the ultimate goal of standardization, a possible method by which mod-
ellers may model statecharts in Modelica is given. A compiler that takes such a
statechart model and produces DES specification code is the major contribution
of this work. The widespread use of the statechart formalism and the Modelica
language further promoted this research.

Short-term future work includes cleaning up the code and documenting it,
executing SCC automatically behind the scenes so that the user doesn’t have
to manually do this task and is solely left with the executable code. Long-term
goals include rewriting the front-end so that is uses sableCC4 and possibly allow
declarations of meta-models so that when a model is specified, it can be checked
against some meta-model.

References

[1] Bolduc, J and Vangheluwe, H., A modelling and simulation package for classical
hierarchical DEVS. MSDL technical report MSDL- TR-2001-01, McGill University,
(2001)

[2] Feng, H., DCHARTS, A FORMALISM FOR MODELING AND SIMULATION
BASED DESIGN OF REACTIVE SOFTWARE SYSTEMS Master’s thesis. McGill
University. School of Computer Science. (2004)

[3] Song, H., Infrastructure for DEVS Modelling and Experimentation. Master’s thesis.
McGill University. School of Computer Science. (2006)

[4] Song, H., Infrastructure for DEVS Modelling and Experiment. Presentation. McGill
University. School of Computer Science. (2006)

[5] Xu, W., The Design and Implementation of the µModelica Compiler. Master’s
thesis. McGill University. School of Computer Science. (2005)

[6] Xu, W., The Design and Implementation of the µModelica Compiler. Presentation.
McGill University. School of Computer Science. (2005)

[7] Modelica Language Specification. Version 3.0, http://www.modelica.org/

documents/ModelicaSpec30.pdf (2007)
[8] AToM3 homepage. http://atom3.cs.mcgill.ca/

Appendix A

package queue

import devs.*;

import externalfunctions.*;

import simulator.*;

4 www.sablecc.org

A Modelica Statecharts Compiler 13

class GeneratorState

Generator.SeqStates seqState(start=Generator.SeqStates.G_IDLE);

end GeneratorState;

class Generator

extends AtomicDEVS;

parameter Integer ia=0;

parameter Integer ib=0;

parameter Integer szl=0;

parameter Integer szh=0;

parameter String name="a";

output DevsPort g_out;

GeneratorState state();

type SeqStates = enumeration(G_IDLE, G_GENERATING);

function intTransition

algorithm

if(state.seqState == SeqStates.G_IDLE) then

state.seqState := SeqStates.G_GENERATING;

elseif(state.seqState == SeqStates.G_GENERATING) then

state.seqState := SeqStates.G_IDLE;

end if;

end intTransition;

function outputFnc

DevsEvent evt = null;

algorithm

if(state.seqState == SeqStates.G_GENERATING) then

evt := Job(szl, szh);

poke(g_out, evt);

end if;

end outputFnc;

function timeAdvance

output Integer timespan;

algorithm

if(state.seqState == SeqStates.G_IDLE) then

timespan:=randint(ia, ib);

end if;

if(state.seqState == SeqStates.G_GENERATING) then

timespan := 0;

end if;

end timeAdvance;

end Generator;

class ProcessorState

Job currentJob = null;

list queue();

Integer queueSize = 0;

14 Shaikh

Real timeElapsed = 0.0;

Processor.SeqStates seqState(start=Processor.SeqStates.P_IDLE);

end ProcessorState;

class Processor

extends AtomicDEVS;

parameter Integer qSize=0;

parameter String name="a";

input DevsPort p_in;

output DevsPort p_out;

output DevsPort p_discard;

ProcessorState state();

type SeqStates = enumeration(P_IDLE, P_BUSY, P_DISCARD);

function initialization

algorithm

state.queueSize := qSize;

end initialization;

function extTransition

algorithm

if(state.seqState == SeqStates.P_IDLE) then

state.currentJob:=peek(p_in);

state.timeElapsed:=0;

state.seqState := SeqStates.P_BUSY;

elseif(state.seqState == SeqStates.P_BUSY) then

state.timeElapsed:=state.timeElapsed+elapsed;

if(len(state.queue)<state.queueSize) then

state.queue.append(peek(p_in));

state.seqState := SeqStates.P_BUSY;

elseif(len(state.queue)==state.queueSize) then

state.seqState := SeqStates.P_DISCARD;

end if;

end if;

end extTransition;

function intTransition

algorithm

if(state.seqState == SeqStates.P_BUSY) then

if(len(state.queue)==0) then

state.timeElapsed:=0;

state.currentJob:=null;

state.seqState := SeqStates.P_IDLE;

elseif(len(state.queue)>0) then

state.timeElapsed:=0;

state.currentJob:=state.queue.pop(0);

state.seqState := SeqStates.P_BUSY;

end if;

A Modelica Statecharts Compiler 15

elseif(state.seqState == SeqStates.P_DISCARD) then

state.seqState := SeqStates.P_BUSY;

end if;

end intTransition;

function outputFnc

DevsEvent evt = null;

algorithm

if(state.seqState == SeqStates.P_BUSY) then

poke(p_out, state.currentJob);

state.currentJob:=null;

end if;

if(state.seqState == SeqStates.P_DISCARD) then

poke(p_discard, peek(p_in));

end if;

end outputFnc;

function timeAdvance

output Integer timespan;

algorithm

if(state.seqState == SeqStates.P_IDLE) then

timespan:=INFINITY;

end if;

if(state.seqState == SeqStates.P_BUSY) then

timespan := state.currentJob.size - state.timeElapsed;

end if;

if(state.seqState == SeqStates.P_DISCARD) then

timespan:=0;

end if;

end timeAdvance;

end Processor;

class Root

extends CoupledDEVS;

parameter Integer ria;

parameter Integer rib;

parameter Integer rszl;

parameter Integer rszh;

parameter Integer rsize;

parameter String name;

output DevsPort r_out;

output DevsPort r_discard;

Generator g1(ia=ria, ib=rib, szl=rszl, szh=rszh);

Processor p1(qSize=rsize);

Processor p2(qSize=rsize);

Processor p3(qSize=rsize);

equation

connect(g1.g_out, p1.p_in);

connect(p1.p_out, r_out);

16 Shaikh

connect(p1.p_discard, p2.p_in);

connect(p2.p_out, r_out);

connect(p2.p_discard, p3.p_in);

connect(p3.p_out, r_out);

connect(p3.p_discard, r_discard);

end Root;

class Job

extends DevsEvent;

parameter Integer szl;

parameter Integer szh;

Integer id = 0 "ID" ;

Integer size = randint(szl, szh);

end Job;

class RootExperiment

extends DevsExperiment;

Root rootModel(ria=2, rib=5, rszl=3, rszh=10, rsize=2,

name="RootExperiment");

Simulator sim(simModel=rootModel);

end RootExperiment;

end queue;

Appendix B

package statecharts

class BaseStatechart

end BaseStatechart;

class Hyperedge

input BaseStatechart src;

input BaseStatechart des;

input String trigger = "";

input Boolean guard = true;

input String action = "";

end Hyperedge;

class Composite

extends BaseStatechart;

input Boolean default = false;

input String enter = "";

input String exit = "";

end Composite;

class Orthogonal

extends BaseStatechart;

end Orthogonal;

class History

extends BaseStatechart;

input Boolean default = false;

input Boolean deep = false;

A Modelica Statecharts Compiler 17

end History;

class Basic

extends BaseStatechart;

input Boolean default = false;

input String enter = "";

input String exit = "";

end Basic;

end statecharts;

Appendix C

package DigitalWatch

import statecharts.*;

class Mode

extends Orthogonal;

Basic RUN(default=true);

Basic RUN_CHR();

Basic RUN_ALM();

Basic ALMOST_STOP();

Basic STOP();

Hyperedge h1(src=RUN, des=RUN, trigger="topRightPressed",

action="[EVENT(’indiglo’)]");

Hyperedge h2(src=RUN, des=RUN_CHR, trigger="topLeftPressed",

action="[EVENT(’chrono’)]");

Hyperedge h3(src=RUN, des=RUN_ALM, trigger="bottomLeftPressed",

action="[EVENT(’alarm’)]");

Hyperedge h4(src=RUN, des=ALMOST_STOP, trigger="bottomRightPressed");

Hyperedge h5(src=RUN_CHR, des=RUN_CHR, trigger="topRightPressed",

action="[EVENT(’indiglo’)]");

Hyperedge h6(src=RUN_CHR, des=RUN, trigger="topLeftPressed",

action="[EVENT(’time’)]");

Hyperedge h7(src=RUN_ALM, des=RUN_ALM, trigger="topRightPressed",

action="[EVENT(’indiglo’)]");

Hyperedge h8(src=RUN_ALM, des=RUN, trigger="resume",

action="[EVENT(’time’)]");

Hyperedge h9(src=ALMOST_STOP, des=RUN, trigger="bottomRightReleased");

Hyperedge h10(src=ALMOST_STOP, des=STOP, trigger="AFTER(1.5)",

action="[EVENT(’edit’)]");

Hyperedge h11(src=STOP, des=RUN, trigger="resume",

action="[EVENT(’time’)]");

Hyperedge h12(src=STOP, des=STOP, trigger="topRightPressed",

action="[EVENT(’indiglo’)]");

end Mode;

class Running

extends Composite;

Basic START(default=true);

Basic PAUSE();

18 Shaikh

Hyperedge h1(src=START, des=START, trigger="AFTER(0.01)",

action="controller.increaseChronoByOne()");

Hyperedge h2(src=START, des=PAUSE, trigger="bottomRightPressed",

guard="[INSTATE(’NORMAL_MODE.MODE.RUN_CHR’)]");

Hyperedge h3(src=PAUSE, des=START, trigger="bottomRightPressed",

guard="[INSTATE(’NORMAL_MODE.MODE.RUN_CHR’)]");

end Running;

class Chrono

extends Orthogonal;

Basic DEF_CHR(default=true);

Basic RESET(enter="controller.resetChrono()");

Running RUNNING();

Hyperedge h1(src=DEF_CHR, des=RESET, trigger="chrono");

Hyperedge h2(src=RESET, des=RUNNING, trigger="bottomRightPressed",

guard="[INSTATE(’NORMAL_MODE.MODE.RUN_CHR’)]");

Hyperedge h3(src=RUNNING, des=RESET, trigger="bottomLeftPressed",

guard="[INSTATE(’NORMAL_MODE.MODE.RUN_CHR’)]");

end Chrono;

class Normal_Mode

extends Composite;

Mode MODE();

Chrono CHRONO();

end Normal_Mode;

class Statechart

extends BaseStatechart;

Basic Setup(default=true);

Basic Stopped();

Normal_Mode NORMAL_MODE();

Hyperedge h1(src=Setup, des=NORMAL_MODE, trigger="start",

action="[DUMP(’Starting the Digital Watch’)]

\ncontroller=[PARAMS]");

Hyperedge h2(src=NORMAL_MODE, des=Stopped, trigger="stop");

end Statechart;

end DigitalWatch;

Appendix D

Reehan Shaikh’s Modelica Statechart Compiler

Source: /home/reehan/src/cs763/project/muModelica/

example/digitalWatchStatechart/partial.mo

Date: Wed May 28 11:51:01 2008

CONNECTIONS:

STATECHART:

A Modelica Statecharts Compiler 19

Setup [DS]

Stopped

NORMAL_MODE

MODE [DS] [CS]

RUN [DS]

RUN_CHR

RUN_ALM

ALMOST_STOP

STOP

CHRONO [DS] [CS]

DEF_CHR [DS]

RESET

RUNNING

START [DS]

PAUSE

ENTER:

N: NORMAL_MODE.CHRONO.RESET

O: controller.resetChrono()

TRANSITION:

S: NORMAL_MODE.MODE.RUN

N: NORMAL_MODE.MODE.RUN

E: topRightPressed

C: 1

O: [EVENT(’indiglo’)]

TRANSITION:

S: NORMAL_MODE.MODE.RUN

N: NORMAL_MODE.MODE.RUN_CHR

E: topLeftPressed

C: 1

O: [EVENT(’chrono’)]

TRANSITION:

S: NORMAL_MODE.MODE.RUN

N: NORMAL_MODE.MODE.RUN_ALM

E: bottomLeftPressed

C: 1

O: [EVENT(’alarm’)]

TRANSITION:

S: NORMAL_MODE.MODE.RUN

N: NORMAL_MODE.MODE.ALMOST_STOP

E: bottomRightPressed

C: 1

TRANSITION:

S: NORMAL_MODE.MODE.RUN_CHR

N: NORMAL_MODE.MODE.RUN_CHR

20 Shaikh

E: topRightPressed

C: 1

O: [EVENT(’indiglo’)]

TRANSITION:

S: NORMAL_MODE.MODE.RUN_CHR

N: NORMAL_MODE.MODE.RUN

E: topLeftPressed

C: 1

O: [EVENT(’time’)]

TRANSITION:

S: NORMAL_MODE.MODE.RUN_ALM

N: NORMAL_MODE.MODE.RUN_ALM

E: topRightPressed

C: 1

O: [EVENT(’indiglo’)]

TRANSITION:

S: NORMAL_MODE.MODE.RUN_ALM

N: NORMAL_MODE.MODE.RUN

E: resume

C: 1

O: [EVENT(’time’)]

TRANSITION:

S: NORMAL_MODE.MODE.ALMOST_STOP

N: NORMAL_MODE.MODE.RUN

E: bottomRightReleased

C: 1

TRANSITION:

S: NORMAL_MODE.MODE.ALMOST_STOP

N: NORMAL_MODE.MODE.STOP

T: 1.5 [RTT]

C: 1

O: [EVENT(’edit’)]

TRANSITION:

S: NORMAL_MODE.MODE.STOP

N: NORMAL_MODE.MODE.RUN

E: resume

C: 1

O: [EVENT(’time’)]

TRANSITION:

S: NORMAL_MODE.MODE.STOP

N: NORMAL_MODE.MODE.STOP

E: topRightPressed

C: 1

A Modelica Statecharts Compiler 21

O: [EVENT(’indiglo’)]

TRANSITION:

S: NORMAL_MODE.CHRONO.RUNNING.START

N: NORMAL_MODE.CHRONO.RUNNING.START

T: 0.01 [RTT]

C: 1

O: controller.increaseChronoByOne()

TRANSITION:

S: NORMAL_MODE.CHRONO.RUNNING.START

N: NORMAL_MODE.CHRONO.RUNNING.PAUSE

E: bottomRightPressed

C: [INSTATE(’NORMAL_MODE.MODE.RUN_CHR’)]

TRANSITION:

S: NORMAL_MODE.CHRONO.RUNNING.PAUSE

N: NORMAL_MODE.CHRONO.RUNNING.START

E: bottomRightPressed

C: [INSTATE(’NORMAL_MODE.MODE.RUN_CHR’)]

TRANSITION:

S: NORMAL_MODE.CHRONO.DEF_CHR

N: NORMAL_MODE.CHRONO.RESET

E: chrono

C: 1

TRANSITION:

S: NORMAL_MODE.CHRONO.RESET

N: NORMAL_MODE.CHRONO.RUNNING

E: bottomRightPressed

C: [INSTATE(’NORMAL_MODE.MODE.RUN_CHR’)]

TRANSITION:

S: NORMAL_MODE.CHRONO.RUNNING

N: NORMAL_MODE.CHRONO.RESET

E: bottomLeftPressed

C: [INSTATE(’NORMAL_MODE.MODE.RUN_CHR’)]

TRANSITION:

S: Setup

N: NORMAL_MODE

E: start

C: 1

O: [DUMP(’Starting the Digital Watch’)]

controller=[PARAMS]

TRANSITION:

S: NORMAL_MODE

N: Stopped

22 Shaikh

E: stop

C: 1

