
TRANSFORMING STATECHARTS TO DEVS

Spencer Borland and Hans Vangheluwe
Modelling, Simulation and Design Lab

School of Computer Science
McGill University

http://msdl.cs.mcgill.ca

Keywords: Statecharts, DEVS.

Abstract

This document discusses the transformation of a model
in the Statechart formalism to a model in the DEVS for-
malism. Only the core elements of Statecharts are ana-
lyzed. In each section, an essential element of the State-
chart formalism is described as well as how to convert it
to its DEVS equivalent. Finally, a general procedure for
converting from the Statechart formalism to the DEVS
formalism is given.

1 INTRODUCTION

The DEVS formalism [1], created by Zeigler, is a mod-
ular, discrete-event formalism. It rigourously defines
model structure as well as operational semantics. The
Statechart formalism [2] was developed by Harel for
modelling reactive systems such as embedded electron-
ics. It uses Higraphs to extend state machines with hier-
archy, orthogonality and broadcast communication. To-
day, there exist several different versions of Statechart
semantics [3]. By transforming Statecharts into DEVS,
insight is gained into this semantics. Previous efforts
to define an equivalence between Statecharts and DEVS
[4] illustrate a conversion by means of examples. Here,
a more explicit transformation procedure is given.

2 NOTATION

The following is a summary of some of the notations
used in this document. First, some of the symbols used
are described followed by a description of the notations
used in the DEVS figures.� ε: Denotes a DEVS state where ta

�
ε ��� 0.� ω: Denotes a DEVS state where ta
�
ω ��� ∞.��� ϕ � : Indicates a location which can hold any state

in the state space.

�	� : Boolean operator used to indicate the replace-
ment of the left-hand set with the right-hand set.

e1 w1

ta(w1)=infyL(e1)=c

e2

a b

L(e2)=d

Figure 1: A DEVS diagram.

Figure 1 depicts an atomic DEVS model. The dashed
lines denote internal transitions while the solid lines de-
note external transitions. State names starting with ’e’
usually represent ε states and those starting with ’w’
represent an ω state. The label ta

�
w1 �
� in f y means

the time-advance of the ω1 state is ∞. L
�
e2 ��� h means

λ
�
ε2 ��� h. The external transition of ω1 is as follows.

δe
��

ω1 � e � � � ϕ ���� �
ε1 if � ϕ ��� a
ε2 if � ϕ ��� b
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Figure 2: Transforming Statecharts to DEVS.

3 MOTIVATION
The Statechart formalism makes use of very high level
constructs not seen in many formalisms developed to
this day. DEVS, on the other hand, has few high level
syntactic elements. Thus, it is natural to transform the
high-level to the low-level and try to learn about the se-
mantics of the high-level formalism which is hidden in



its execution/simulation engine. In effect, part of the se-
mantics of Statecharts is removed from the engine and
is modeled using DEVS (see figure 2. Furthermore, not
only Statecharts, but also many other formalisms can be
mapped onto DEVS [5]. Thanks to the closure under
coupling of the DEVS formalism, this allows for multi-
formalism modelling.

4 0-TIME OUTPUTS
Outputs may only be generated after an internal transi-
tion, in DEVS. Thus, a Statechart transition must cor-
respond to a DEVS model with an extra intermediate
state, ε, with ta

�
ε ��� 0. This can be referred to as an

ε-insertion. Moreover, a f ter
�
x � on a transition origi-

nating from A, corresponds to a DEVS transition origi-
nating from A such that, ta

�
A ��� x.

5 GLOBAL SCOPE 0-TIME EVENT RELAY
Events generated in a Statechart model have global
scope. DEVS, however, is modular and all event com-
munication occurs through interfaces. One simple and
naive approach to global events in DEVS is to simply
output all external messages that are intercepted by each
coupled model. This is done by maintaining a state
which remembers which external event was generated
and then outputs this event on the next internal transi-
tion. This can be represented by the following atomic
DEVS. Note that the input and output sets, X and Y re-
spectively, are the set of all events.

S � � ω � � ε � ϕ � ���
δe
��

ω � e � � � ϕ ���� ε � ϕ �
δi
�
ε � ϕ � ��� � ϕ �

λ
�
ε � ϕ � ��� � ϕ �

ta
�
ω ��� ∞

ta
�
ε � ϕ � ��� 0

The parent coupled DEVS must ensure that all events
that are output from each of its atomic DEVS are routed
to the event relay and returned, in 0-time, to all sub-
components. This is done by properly specifying the in-
fluencee sets and the output-to-input transfer functions.
If r � D is the event relay component in the coupled
model, � Xsel f � Ysel f � D � Mi � Ii � Zi � j � select � , then the Z and
I functions would be as follows.

Ii � r , � i � �
D ��� sel f ��� ��� r �

Ir � �
D �!� sel f �"� �#� r �

Zsel f � r � � ϕ ���� � ϕ �

Zr� sel f
� � ϕ ���� � ϕ �

Zi � r � � ϕ ���� � ϕ � , � i � �
D �#� r ���

Zr� i � � ϕ ���� � ϕ � , � i � �
D �#� r ���

Note how an optimized event relay would only send
messages if a particular component can actually respond
to external events.

6 BOOLEAN EXPRESSIONS & CURRENT
STATE REFERENCES

Statechart transitions can have guards which are
boolean expressions. Boolean expressions are easily en-
coded in a DEVS framework. AND expressions corre-
spond to transitions linked consecutively while OR ex-
pressions are converted to several transitions emanating
from one state.

A state reference, is a special boolean expression. There
are three ways of modelling state reference in DEVS.
The first and most naive method is to completely flat-
ten the entire model, including orthogonal components,
so that each state becomes a long tuple. This method
is not desirable as the number of states grows exponen-
tially with the number of orthogonal components. It is
important to come up with a solution which exploits the
DEVS hierarchy.

6.1 The Pull Method
The pull method utilizes a query event which is narrow-
cast to the parent of the state in question. This compo-
nent’s current state must then have an external transition
which reacts to the query event. The query event will
trigger the component to switch the current state to a
0-time-advance state, ε. The internal transition of ε will
return to the previous state and will also output the value
of the current state encoded in the output event. This
mechanism is called a Current State Response Loop.

Below are the abbreviated definitions for the component
doing the referencing in which there is a transition from
A � S to B � S which has trigger a[X1 $ X2 $%$&$ Xn].

S � S ��� ε � ω �
δi
�
ε �'� ω

δe
�(�

A � e � � a �)� ε
λ
�
ε �'� CS

�
X1 � $&$%$ � Xn * 1 �

δe
�(�

ω � e � � � ϕ �(�+� �
B if � ϕ ��� CSR

�
X1 � $&$%$ � � Xn �(�

A otherwise

X � X ��� CSR
�
X1 � $&$%$ � � Xn ��,�

Y � Y �!� CS
�
X1 � $%$&$ � Xn * 1 ���



Below are the definitions for the component being ref-
erenced. A state, � Xn �#� S, which lies in orthogonal re-
gion X1 $ X2 $%$&$ Xn * 1, which can be queried, should have
the following definitions included in the atomic DEVS
in which it is defined to build its Current State Response
Loop. Note that, � Xn � represents the current state in
component Xn * 1 and each of X1 � $$($ � Xn * 1 are the names
of components.

S � S ��� ε �
δe
�� � Xn � � e � � CS

�
X1 � $&$%$ � Xn * 1 �(�'� ε

δi
�
ε �)� � Xn �

ta
�
ε �'� 0

λ
�
ε �'� CSR

�
X1 � $&$%$ � � Xn ��

X � X �!� CS
�
X1 � $&$&$ � Xn * 1 ���

Y � Y ��� CSR
�
X1 � $&$&$ � � Xn �(���

6.2 The Push Method
A Statechart model that includes a transition with a state
reference, may wish to store one boolean switch in an
atomic DEVS for each different state reference. In this
case, the components with the states being referenced
must send notifications every time these states move in
and out of the current state tree.

First, a boolean switch is installed into the coupled
DEVS to track if state Xn is current or not. This switch
resides in its own atomic DEVS. Wherever state Xn re-
sides, it must have the same machinery installed to in-
dicate to other components whether or not it is a current
state. This can be done by building extra states and in-
ternal transitions for each incoming and outgoing transi-
tion. Consider a transition, t, whose destination is state
X . Force t to point at a new, extra state, ε. Then create
an internal transition from ε to X . Finally, λ

�
ε � should

be a value which indicates to other components that X
is now a current state. Transitions leaving X have a sim-
ilar, converse structure.

6.3 Summary of State Reference
Note the distribution of messages relayed for the two
different methods of the state reference implementation.
The Pull Method pumps a message through its event re-
lay and then receives a message. The Push Method can
receive several messages, but only needs to communi-
cate locally to determine the boolean value of a state
reference. If the cost of passing messages is not the
same everywhere, it may be more advantageous to use
the push over the pull method, or vice versa.

7 FLATTENING

Flattening a Statechart is the process of transforming a
hierarchical Statechart into a new Statechart which has
a depth of 1. A simple and effective way of transform-
ing Statechart features such as an interlevel transition is
to flatten the surrounding contours. Orthogonal regions
should never be flattened when transforming to DEVS
as the number of states in the resultant model grows ex-
ponentially.

Two issues need to be resolved when flattening: non-
determinism and state references made to non-basic
states.

7.1 Flattening with Non-Determinism
Different types of non-deterministic transitions are al-
lowed thanks to priority schemes used in different se-
mantics [3]. Irrespective of the scheme, one transition is
completely redundant because the priority scheme will
never allow that transition to fire. Thus, this redun-
dant transition can simply be eliminated in the flattened
DEVS. Moreover, by giving each transition a numbered
priority, it becomes easy to represent different semantics
by simply changing these values.

7.2 References to Non-Basic States
Consider figure 3. If D is flattened, the D contour, re-
ferred to by - in � U $ D �/. will cease to exist. There are two
different ways of correcting this problem. One solution
is a preprocessing step while the other is a solution mod-
eled in DEVS.

e[in(U.D)]

D

V U

f

g h

A

B

C

E

F

Figure 3: U $D is referenced.

Method 1: Guard Transformation
The first corrective measure is to change the actual
boolean expression in the guard itself. Simply, OR to-
gether other in statements with the guard’s boolean ex-
pression for each basic state within the contour. For ex-
ample, the guard on the transition from A to B would
become, - in � U $D $ E �10 in

�
U $D $ F �2. .



Method 2: Current Response Loops
For every contour around a basic state, simply add a cur-
rent state response loop to that basic state in the trans-
formed DEVS model. For example, the basic states, E
and F, within D in figure 3 should have extra current
state response loops for the state D.

Method 3: State Reference Switches
This solution also makes use of the Push Method used to
model state references. In this scheme, state reference
switches are maintained for each state reference, just as
discussed in section 6.1. However, a message should
be sent to the state reference switch indicating the ref-
erenced state is current when any state within the ref-
erenced state is current. Conversely, a message should
be sent to the state reference switch indicating the refer-
enced state is not current when no state within the refer-
enced contour is current.

8 FLATTENING ALGORITHM
Note that flattening is a preprocessing step. This means
that flattening can be viewed as a function, F , defined on
the set of all Statecharts, S, as F : S 3 S. The flattening
algorithm is not included here for brevity.

9 ORTHOGONALITY
It is desirable to maintain orthogonal regions in sep-
arate atomic DEVS components. The first reason is
that it is a natural and intuitive transformation. Atomic
DEVS which lie at the same hierarchical depth repre-
sent a cross product state set just as orthogonal regions
in a Statechart contour.

Another reason for keeping orthogonal regions in sep-
arate atomic DEVS components is that the dynamics
within each orthogonal region can be simulated or ex-
ecuted in parallel. The simulation/execution engine for
DEVS is well-defined and there already exists several
DEVS software packages1.

A problem arises from this arrangement, however. This
problem can best be illustrated with an example. Notice
that in Figure 4 there exist two contours with orthogonal
regions, C and D. Thus, it is natural to put the orthog-
onal regions into two separate atomic DEVS. These are
denoted by E, F and K, L.

Now the question remains, where do the remaining
states A and B go? They must reside within an atomic
DEVS, since only atomic models have a state set. No
matter where one puts the atomic DEVS containing the
dynamics for R � � C � D � , it will appear as though they

1http://www.sce.carleton.ca/faculty/wainer/standard/
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Figure 4: A Statechart exhibiting orthogonality.

are orthogonal to C and D. However, A, B, C and D
are not orthogonal to each other as can be seen in the
Statechart model.

E

R\(C or D) Relay

F

Relay

K

L

Relay

Figure 5: A topological view of the altered DEVS
model.

After flattening, the resultant topology of the DEVS
model can be seen in figure 5. Since only one OR-state
can be current within a Statechart contour, something
must be done to indicate that one of A, B, C or D is
current.

In general, consider a Statechart contour, R, with states
X1 � $$($ � Xn � O1 � $$($ � Om where the X states do not con-
sist of orthogonal regions and the O states do consist
of orthogonal regions. Moreover, the ith O state con-
sists of O1

i � $$($ � Oki
i orthogonal regions. After flatten-

ing, the following regions are obtained which are in
a one-to-one correspondence with the atomic DEVS
which will appear in the resulting DEVS model. Let
Ψ ��� O1

1 � $($$ � Ok1
1 � $$($ � O1

m � $$($ � Okm
m � . There will

be one atomic DEVS for each item in set Ψ, and one
atomic DEVS for R � Ψ. Each of these atomic DEVS
is given an extra state, π, to denote whether or not it
is out-of-scope. The practical use of this approach is



explained in more detail in the following two sections
about hyperedges and history.

10 HYPEREDGES
Each hyperedge segment can have a different trigger and
guard. This means these events must occur simultane-
ously (see section 13). All of these triggers and condi-
tions must be monitored so that it is known when the
transition fires.

S

V

a
A

B

C

Figure 6: A Statechart exhibiting a hyperedge.

Consider the Statechart in figure 6. The hyperedge tran-
sition moves from state

�
A � B � to C. The mechanism

which monitors the occurrence of the hyperedge’s trig-
ger could appear at any scope level. A natural location
is at the same scope level as the destination of the hy-
peredge transition. This mechanism will track the oc-
currence of the event, a. Once a has occurred, events
(OUTSCOPE

�
S � and (INSCOPE

�
V � ) will be generated

signaling S to move out of scope and C to move into
scope. INSCOPE

�
V � is a short hand notation to denote

that V � S is in scope. This mechanism is quite simple.
It waits in an ω state then moves to an ε state where it
outputs scoping events for the current coupled model.

11 HISTORY
The general topology of a Statechart model is quite dif-
ferent from the topology of its equivalent DEVS model.
In the DEVS framework that has been built so far, two
situations arise with respect to history. A history state
may be present within an orthogonal region or within a
composite state which is to be flattened.

12 NON-ORTHOGONAL HISTORY
Each History entity in a Statechart model must corre-
spond to an atomic DEVS memory unit. The memory is
stored in an atomic DEVS for each History node since
flattening non-orthogonal states destroys the boundaries
which History entities use to determine the last known
current state configuration.

If a separate atomic DEVS monitors the history of a cer-
tain contour, all that needs to be done is to communicate

changes in the history as well as retrieving the history
value itself. Mechanisms which perform similar tasks
have already been discussed in section 6.
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Figure 7: A Statechart exhibiting history.

A Traffic Light example is present in figure 7. The only
time the memory mechanism must be notified of a his-
tory change is when the L contour is departed. In a
flattened model, this corresponds to leaving R, Y or G
to a state outside L, namely D. These transitions must
have ε-insertions in order to facilitate an output notifi-
cation. Moreover, the transition from D to the history
node should have an ε � ω-insertion. This ensures a his-
tory value query is issued to the memory mechanism
and the response indicates the next current state.
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De,v

wH1 eH1

L(eH1)=GH1
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d(R)
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H1(R)

H1(Y)
H1(G)

L((e,v))=SH1(v)

Figure 8: A DEVS model capable of history.

The corresponding DEVS model can be viewed in fig-
ure 8. Notice that each path from R, Y and G to D
is interrupted by a 0-time state, (ε � � ϕ �� , which outputs
a SHi

� � ϕ �(� (Set History) event. Furthermore, the path
from D back to the history node corresponds to an ε-ω
sequence. The 0-time ε state sends a GHi (Get History)
request and the ω state waits for the reply. Below is the
formal definition of the δe for the ωH1 state.

δe
�(�

εH1 � e � � � ϕ �(�4� 56 7 G if � ϕ ��� H1
�
G �

Y if � ϕ ��� H1
�
Y �

R otherwise



Notice that if � ϕ � is equal to neither H1
�
G � nor H1

�
Y � ,

the current state will become R. This means that R be-
comes the current state even if the L contour does not
have any history information. This is precisely the Stat-
echart semantics described in [6].

12.1 Orthogonal History
If the history is present in a top level orthogonal compo-
nent, the out-of-scope state, π, will track the history for
that area. Upon re-entering an orthogonal domain, an
INSCOPE event can be parameterized to indicated that
the system should move to a history state.

13 SIMULTANEOUS EVENTS
In a Statechart model several events may be generated
before the maximal set of transitions have fired. These
events are considered to have been generated in 0 simu-
lation time or in parallel. Statechart transitions can react
to multiple simultaneous events. This syntactic element
must be constructed in corresponding DEVS models.

Events have no duration in a DEVS model and must
therefore be remembered. However, to catch simulta-
neous events it is important to reset the memory mecha-
nism after any elapsed time. This is natural in an exter-
nal transition since one of its parameters is the elapsed
time since the last external transition.

To monitor the simultaneous event chain a1 8 a2 8$($$ 8 an as a trigger on a transition from A to B,
the following must be encoded into the atomic DEVS� S � ta � δi � X � δe � Y � λ � .

S � S �!� Ω �
δe
�(�

A � e � � ai �'� Ω
� � i ��� if 1 9:� i 9:� n

δe
��

Ω
�
X � � e � � ai �'� 5;;;;;;6 ;;;;;;

7
Ω
� � X �!� i �<���>=X ��� i �1="9 n 8

1 9:� i 9:� n
B =X ��� i � =?� n 8

1 9:� i 9:� n
A e @ 0
Ω
�
X � otherwise

This model, in effect, simulates an event queue. When
all the required events have been accounted for, it is safe
to proceed to state B.

14 TRANSFORMATION ALGORITHM
The algorithm presented here is a very loose description
and needs to defined in more detail. Basically, each sec-
tion described above represents a step in the algorithm,
but the order is very important.

1. Flatten
2. Transform boolean expressions

3. Transform simultaneous events
4. Add hyperedge trackers
5. Transform history states
6. Add event relays (optimization is optional)

15 CONCLUSION
A general approach to mapping Statechart models onto
DEVS was presented. More work is needed to address
the details of the Statechart formalism as well as UML
Statecharts.
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