
Code Generation of Class Diagrams in
AToMPM

Simon Van Mierlo

1. Introduction
Class diagrams1 are used to model the design of a system visually, containing classes (which have

methods and attributes) and their relationships (inheritance, association, …). Commercial tools such

as Enterprise Architect2 allow for the creation of class diagrams and the generation of code in a

chosen programming language from these models. This document shows how support for modeling

class diagrams and code generation from these models was added to AToMPM. Section 2 explains

the ClassDiagram formalism as it was created in AToMPM. Section 3 does the same for the

SourceTree formalism, which allows for the modeling of a directory structure. Section 4 explains how

the code generation process works. This process consists of two parts: first a SourceTree model is

generated from a ClassDiagram model, then code is generated from this SourceTree model. In

Section 5, lastly, open issues are discussed.

2. The ClassDiagram Formalism
Firstly, a formalism which allows for the creation of class diagrams has to be created in AToMPM. The

metamodel of the ClassDiagram formalism is shown in Figure 1.

Figure 1: ClassDiagram metamodel.

1 http://www.agilemodeling.com/artifacts/classDiagram.htm
2 http://www.sparxsystems.com.au/

The attributes of Class are shown below.

[

 {

 "name": "name",

 "type": "string",

 "default": "Class_"

 },

 {

 "name": "attributes",

 "type": "list<$ATTRIBUTE>",

 "default": []

 },

 {

 "name": "cardinalities",

 "type": "list<$CARDINALITY>",

 "default": []

 },

 {

 "name": "abstract",

 "type": "boolean",

 "default": false

 },

 {

 "name": "methods",

 "type": "list<$METHOD>",

 "default": []

 }

]

Where the type $METHOD is defined as follows in types.js:

'$ARG':'map<[name,type],[string,string]>',

'$ARGS':'list<$ARG>',

'$METHOD':'map<[name,returnType,args,body],[string,string,$ARGS,code]>'

Currently, there is support for Inheritance and Association relationships between classes. A Package

has a name and can contain zero or more classes and/or packages.

This allows for the creation of class diagram models. An example is shown in Figure 2.

Figure 2: An example of a ClassDiagram model.

It would be possible to create a code generator which generates code in a certain programming

language starting from this class diagram. However, this would mean that a generator has to be

created for every programming language we might want to generate code for, as each language has

its own specific syntax for specifying inheritance relationships, method declarations, etc. For this

reason, first an intermediary model will be generated from the class diagram. All language-specific

behavior will then be encoded in the transformation which generates this model. This intermediary

formalism will be explained in the next section.

3. The SourceTree Formalism
The SourceTree formalism allows for the creation of models which represent a directory structure.

Directories contain files and other directories, while files have content. The metamodel of this

formalism is shown in Figure 3.

Figure 3: SourceTree metamodel.

An example of such a model, modelling the root AToMPM source folder, is shown in Figure 4.

Figure 4: Model of the root AToMPM source folder.

The next section explains how the ClassDiagram and SourceTree formalisms are used in tandem to

generate source code from a ClassDiagram model.

4. Code Generation
This section will explain how, starting from a ClassDiagram model, source code is generated. The

language of choice is Python, but transformations can be developed for every (object-oriented)

programming language. First, the ClassDiagram model is transformed to a SourceTree model, as

explained in Section 4.1. Then, the code is generated by an AToMPM plugin.

4.1. Transforming ClassDiagram Models to SourceTree Models
To transform ClassDiagram models to SourceTree models, the transformation shown in Figure 5 was

created.

Figure 5: CDtoST transformation.

The transformation generates a SourceTree structure containing Python files. It generates a file for

each class and a folder for each package. It supports subclassing across packages, but does not do

anything with association relationships.

4.2. Generating Code from FileSystem Models
AToMPM allows for the creation of plug-ins, which intercept HTTP requests and perform an action in

response. A code generator plug-in was created, intercepting POST HTTP requests to the

/generatecode URL. It allows for the specification of a ‘root’ directory, in which all generated code

will be placed. The root will itself be a subfolder of the ‘generated_code’ folder, which is located in

the root AToMPM folder. A toolbar was created with one button, performing the following action:

_openDialog(

 _CUSTOM,

 {'title':'Insert the name of the root folder.',

 'widgets':[{'id':'folder_name',

 'type':'input',

 'label':'Folder Name',

 'default':''}]

 },

 function(data) {

 _httpReq('POST',

 '/plugins/codegenerator/generatecode?wid='+_context.wid,

 {'root':data['folder_name']});

 }

);

5. Issues
Currently, the body of a method has to be specified as a string. This means that each line has to be

ended explicitly by a ‘\’, and each tab has to be encoded by a ‘\t’. During the transformation, each

line is stripped of leading whitespaces and tabs, because this would otherwise lead to syntax errors

in the Python files.

