
Higher-Order Transformations in

AToMPM

Simon Van Mierlo

University of Antwerp

1 Introduction

Higher-Order Transformations, or HOTs, are transformations which
receive a model of a transformation as input and produce a model of
a transformation as output [2]. A specific use-case for HOTs is the
evolution of domain-specific languages, where HOTs are constructed
to co-evolve existing transformations together with their domain- or
target language. This document describes how higher-order transfor-
mations are supported in AToMPM. In AToMPM, RAMification [1]
is performed on the original metamodel of a language, which results
in the pattern languages used to contruct to patterns which appear
in the rules of a transformation. As a first step, this process will be
modelled explicitely as a transformation on the abstract and con-
crete syntax models of a language, which is outlined in Section 2. In
3, the changes made to the transformation engine are explained. To
conclude, current issues with the RAMification transformation and
transformation back-end are listed as a reference for future work.

2 Explicitely Modeling RAMification

RAMification is the process of modifying the metamodel of a lan-
guage in such a way that it can be used in the patterns of transfor-
mation rules. It consists of three adaptation phases:

1. Relaxation, which relaxes constraints on the language which are
no longer valid for the pattern language. For instance, it should
be possible to instantiate abstract classes in rule patterns.

2. Augmentation, which augments metamodel elements with at-
tributes used by the transformation engine.



3. Modification, which modifies the data type of attributes such
that they can express constraints on attribute values or actions
which compute the new value of the attribute.

In AToMPM, this is implemented by a hard-coded routine which
operates directly on the compiled metamodel. However, the RAMi-
fication process can be encoded as a transformation which takes as
input the models describing the abstract and concrete syntax of the
original language and transforms these in such a way that it results
in the models describing the abstract and concrete syntax of the
pattern language. An advantage to this approach is that the RAM-
ification process is made explicit, which makes it easier to discover
faults and adapt the transformation. In Figure 2 the transformation,
as it appears in the AToMPM model editing environment, is shown.
In detail, these are the steps taken by the transformation, followed by
the letter which denotes to which phase in the RAMification process
they belong (R, A or M):

– disableAction and disableConstraint (R): Disables global ac-
tions and constraints defined on the metamodel.

– removeLowerBound (R): Sets the lower bound of multiplicites
to 0.

– renameClass, renameAssociation and renameSelfAssoci-
ation (M): Appends ’ p’ to classes and associations, which is
needed for the transformation engine.

– changeAttrType (M): Changes the type of attributes to ’string’,
which allows conditions and actions to be specified on attribute
values in patterns. Also appends ’ ’ to attributes starting with
’ ’. This is because the pLabel and pMatchSubtypes attributes
(introduced in one of the next steps) need to be scoped ap-
propriately for HOTs. The first time a metamodel is ramified,
each class will have a pLabel and pMatchSubtypes attribute.
The next time, these attributes are renamed to pLabel and

pMatchSubtypes, to allow a condition/action to be specified
for the pLabel and pMatchSubtypes attributes which were
introduced in the first RAMified metamodel.

– makeConcrete (R): Makes abstract classes concrete.
– disableClassActionsConstraints (R): Disables actions and con-

straints defined on the classes of the metamodel.

2



Fig. 1. RAMification Transformation in AToMPM

3



– renameCardinalities (M): Modifies the cardinalities such that
they reflect the change in name of the association.

– addPLabel (A): Adds the pLabel attribute to classes, which
is used to identify elements across patterns of a rule.

– addPLabelAction (A): Adds the action which automatically
assigns the pLabel attribute when a class is instantiated.

– addMatchSubtypes (A): Adds the pMatchSubtypes attribute,
which signifies whether instances of the subclasses of an element
of a pattern should also be matched.

– addSelfAssociationAttributes and addAssociationAttributes
(A): Adds the pMatchSubtypes and pLabel attributes to as-
sociations.

– renameCS (M): Renames the concrete syntax icon of a class to
match its new name.

– renameCSConnector (M): Renames the concrete syntax con-
nector of an association to match its new name.

– clearParserMappers and clearIconParserMappers (M): Dis-
ables parsers and mappers of classes and icons.

– addCS (A): Adds a concrete syntax icon for (former) abstract
classes.

– addCSPLabel and addCSConnectorPLabel (A): Adds a con-
crete syntax representation for the pLabel attribute.

– addCSContents (A): Adds a concrete syntax representation to
the icon introduced for (former) abstract classes.

– remove*Link*: Removes GenericLinks introduced during the
transformation.

To create a pattern language, a modeller loads both the models of
the abstract and concrete syntax of the modelling language. He then
executes the RAMification transformation and compiles the resulting
model first to an abstract syntax metamodel called <OriginalName
>.ramified.metamodel and a concrete syntax metamodel called
<OriginalName>.ramified.defaultIcons.metamodel. The con-
crete syntax metamodel can then be loaded as a toolbar in AToMPM
to be used in patterns.
As explained, this transformation is capable of both RAMifying the
metamodel of a modelling language, as well as its RAMified ver-
sion(s). It is as such possible to model higher-order transformations.

4



However, to make sure rules which use these pattern models are ex-
ecuted correctly by the transformation engine, some modifications
had to be made. These are outlined in the next section.

3 Modifying the Transformation Engine

The following changes were made to AToMPM to accomodate for
the changes in the RAMification process:

1. The contraint on which elements can appear in patterns has been
relaxed: elements which belong to a *.ramified.metamodel meta-
model are accepted besides *.pattern.metamodel. This change
had to be made in the contraints on the Transformation meta-
model, as well as in the code of the transformation back-end,
which only considered *.pattern.metamodels.

2. Handle multiple RAMifications of pLabel and pMatchSubtypes
attributes. This basically introduces scoping, which had to be
added in the code of the transformation back-end.

4 Issues and Future Work

These are the current issues with the RAMification transformation
and the use of the RAMified metamodels:

1. The concrete syntax that is added for abstract classes is ’stretched’
because the icon and its content are placed on a different position.
This results in a bounding box which is too large.

2. When RAMifying an already RAMified metamodel, the concrete
syntax of the pLabel attribute should appear on another posi-
tion than the previously introduced concrete syntax for the at-
tribute which is now called pLabel.

3. Metamodels aren’t loaded automatically when a transformation
has to create an instance of a class of a metamodel which isn’t
loaded already.

References

1. Thomas Kühne, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and Manuel
Wimmer. Explicit transformation modeling. In Sudipto Ghosh, editor, Models in
Software Engineering, volume 6002 of Lecture Notes in Computer Science, pages
240–255. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-12261-3 23.

5



2. Massimo Tisi, Frdric Jouault, Piero Fraternali, Stefano Ceri, and Jean Bzivin. On
the use of higher-order model transformations. In Richard Paige, Alan Hartman, and
Arend Rensink, editors, Model Driven Architecture - Foundations and Applications,
volume 5562 of Lecture Notes in Computer Science, pages 18–33. Springer Berlin /
Heidelberg, 2009.

6


