
Adding Rule-Based Model Transformation

to Modelling Languages in MetaEdit+

Simon Van Mierlo

University of Antwerp, Belgium

Abstract

MetaEdit+ is a commercial tool by MetaCase for creating domain-specific,
syntax-directed visual modelling environments. MetaEdit+ synthesizes such
environments from user-provided metamodels and contains a generator editor
for code/text generation. An API is provided to allow external manipulation
of models through SOAP. Currently, the MetaEdit+ tool does not natively
support rule-based model-to-model transformation. Such transformations
are useful as they allow domain experts to intuitively (using domain-specific
notations) model either operational semantics (a simulator) or denotational
semantics (through model-to-model transformation onto a model in a known
formalism) of a modelling language. We will demonstrate how to add rule-
based operational semantics to modelling languages in MetaEdit+ . Rules
are visually created in MetaEdit+ . The rule editor is synthesized using mod-
ified versions of the original language’s metamodel. This modification is done
in a structured fashion using a process called RAMification. Both the model
and the rules are exported from MetaEdit+ to Python code. This code is
combined with Py-T-Core, our library of transformation language primitives,
to execute the rules on the model. Our demonstration has a client-server ar-
chitecture, with the MetaEdit+ visual modelling environment as the client
and the transformation engine as the server. After each transformation step,
in-place changes to the model are propagated to MetaEdit+ for visualiza-
tion using the SOAP API. A (manufacturing) Production System modelling
language is used as an example.

Keywords: Model-Driven Engineering, Modelling Languages, MetaEdit+,
Rule-Based Model Transformation

Preprint submitted to Elsevier January 25, 2012

1. Introduction

Domain-specific languages are used to create abstractions of a problem
using concepts and notations that are bound to a specific domain. It allows
not only developers, but also domain-experts to rapidly and intuitively create
models to develop software. Domain-specific visual languages are a special
kind of domain-specific language which provide a visual modelling interface.
There are lots of tools supporting the creation of these visual modelling
languages. Central to most of those is the concept of a metamodel, which
defines the concepts of the language and the relationships that can exist be-
tween them. This metamodel defines the abstract syntax of the modelling
language and models created in the language are said to conform to the
metamodel of that language. In the case of visual modelling languages, the
developer also has to define the graphical appearance of the concepts, which
is called the concrete syntax of the modelling language. Using these two
concepts, a model which belongs to the language can be visually created.
Model-to-model transformation is another essential concept of the Model
Driven Engineering (MDE) approach. They allow the modeller to, for exam-
ple, define semantics for a modelling language, either by simulating the model
(operational semantics) or mapping onto a known formalism (denotational
semantics). These transformations can be defined in a number of ways. In
ATL [Jouault et al. (2008)], the modeller has to textually define the trans-
formations. This approach closely resembles programming, and may not be
desirable for some purposes. The domain-specific notation provided by visual
modelling languages is one of their biggest advantages, and this advantage is
partly lost using when using ATL and similar tools. Another option is to use
the domain-specific notation of a visual modelling language to create rules
that define transformation steps. By reusing the domain-specific notation,
the threshold for effective use of transformations is lowered. To prescribe
the order in which rules should be tried, they may be combined using some
scheduling language. In Fujaba [Nickel et al. (2000)] and AToM∧3 [de Lara
and Vangheluwe (2002)], amongst others, this approach is used.
In this paper, we show how to add operational semantics to MetaEdit+1.
MetaEdit+ currently does not natively provide support for model-to-model
transformation. It does provide an API for externally manipulating models
through SOAP, and a generator editor for code/text generation. We will

1http://www.metacase.com/

2

use these two facilities to export a rule-based model transformation model
constructed in MetaEdit+ to Python and there execute it, using our graph
transformation kernel T-Core [Syriani and Vangheluwe (2010)]. After exe-
cuting the graph grammar, the results of rewriting the graph are propagated
to MetaEdit+ for visual feedback. A similar method was used in construct-
ing booggie [Helms et al. (2009)]. There, the developers have constructed a
visual environment around the graph rewriting kernel GrGen.NET [Jakumeit
et al. (2010)].
As a running example, we will use a production system formalism. This
language defines production lines as a collection of machines, conveyor belts
and operators. The production line manufactures armoured personnel carri-
ers (APC’s). The parts that are used to construct these APC’s are generated
at the start of the production line, after which they move on conveyor belts to
an assembler. There, an APC is constructed by an operator. Subsequently,
an APC is inspected in a quality control station and if needed repaired in
a repair station, both operated by an operator. Finally, a sink removes the
APC from the model and keeps count of the total amount of finished APC’s.
The structure of this paper is as follows. Section 2 explains the process
of creating a visual modelling language in MetaEdit+ . In Section 3, the
construction of the rule editor in MetaEdit+ is explained, starting from the
original metamodel of the language. Section 4 explains what the architecture
of our solution looks like. Section 5 takes a closer look at the flow of execu-
tion when a rule is executed. Section 6 concludes and make suggestions for
future work.

2. Creating a Language in MetaEdit+

In this section, the visual modelling environment for our example lan-
guage is created. The first task is to define the static semantics of this
language in MetaEdit. These are given by the following rules.

1. A production system is a set of connected machines and conveyor belts.
2. Machines can be operated by an operator.
3. A conveyor belt carries (unfinished) products.
4. Machines are connected to exactly one conveyor belt on which they can

drop processed products.
5. Machines can either generate the parts of an APC (wheels, tracks,

bodies, machine guns or water cannons), or process these parts or as-
sembled APC’s.

3

6. Machines that process can be assemble machines, quality control or
repair machines.

7. Machines that process are connected to exactly one conveyor belt from
which they take products that are to be processed.

8. Conveyor belts can be connected.

9. Quality control machines are a special kind of machine, as they can put
products that need to be reworked on a different conveyor belt.

MetaEdit+ metamodels are created in the meta-metamodelling language
GOPRR. It is an acronym for the concepts it provides: Graph, Object, Prop-
erty, Relationship and Role. A graph is the top-level element and represents
the metamodel. A graph consists of objects and relationships. An object
represents a concept in the visual modelling language (for example, an oper-
ator in the production system language). A relationship relates two or more
objects with each other. Each object that is part of a relationship has a
role associated with that relationship. Properties can be assigned to objects,
relationships and graphs.
In Figure 1, the metamodel for the production system language is visually
represented. The rectangles represent objects, diamonds relationships and
circles roles. Multiple inhertiance is not supported, which is why assem-
blers, repair machines and generators all have a seperate relationship to an
outgoing conveyor belt. If multiple inheritance would be supported, this re-
lationship could be moved to a common superclass. Some of the properties
will be further explained in Section 3.
It is possible to define constraints in the GOPRR language. There are two
types of constraints: role connectivity constraints and relationship connec-
tivity constraints. They define in how much roles or relationships a certain
object can be in, respectively. It is only possible to define an upper bound,
not a lower bound. Defining ’an Operator can be in at most one relationship
of type OperatorToProcessor’ is possible, but defining ’an Operator has to
be in at least one relationship of type OperatorToProcessor’ is impossible.
Defining visual constraints, for instance saying that a part always has to be
on top of the conveyor belt it is connected to, is not supported either. Fig-
ure 2 shows the interface for creating a relationship connectivity constraint.
Once the abstract syntax of the language is defined, a concrete visual repre-
sentation has to be given to each entity. By default, each object is a rectangle
with its name in it. To define a custom representation, the symbol editor
can be used. Figure 3 shows how the symbol editor was used to create the

4

Figure 1: The metamodel for the production system language, as represented in the GO-
PRR meta-metamodelling language in MetaEdit+ .

5

Figure 2: MetaEdit+ provides support for defining certain types of constraints.

Figure 3: Defining the graphical appearance of a ConveyorBelt object.

6

Figure 4: A sample model created with the production system visual modelling language.

7

visual representation of a conveyor belt. Optionally, icons for entities can be
created. These icons will be used in the visual modelling environment for
the language to make the buttons to create entities more visually appealing.
The icon editor is very similar to the symbol editor. It is now possible to use
the language we defined to create visual models of production systems. An
example model is given in Figure 4.
Once the abstract and concrete syntax of the language is developped, it is
time to add meaning, or semantics to it. The sample model in Figure 4 is
meaningless until proper semantics are defined for it. In this paper, we will
define operational semantics that can simulate a model using graph gram-
mars consiting of rules. The semantics are given by the following rules.

1. There is only one direction in which products can be moved from one
conveyor belt to the other.

2. Products can move from a conveyor belt to a connected conveyor belt.

3. A generator for a certain APC part can put such a part on its connected
conveyor belt.

4. Machines can only process when there is an operator at the machine.

5. An operator can go from one machine to the other.

6. An assemble machine with an operator can take two tracks, a body
and a machine gun from the input conveyor belt and process them into
a war APC that is put on the output conveyor belt, or can take four
wheels, a body and a water cannon from the input conveyor belt and
process them into a riot APC that is put on the output conveyor belt.

7. A repair machine with an operator can take an (unfinished) product
from the input conveyor belt, repair it, and put it on the output con-
veyor belt.

8. A quality control machine with an operator can take an assembled piece
from the input conveyor belt and in case of a successful outcome puts
it on the output conveyor belt, and in case of an error puts it on the
other conveyor belt for pieces that need to be reworked.

The next sections explain how to define these rules and execute them on
MetaEdit+ models.

3. The Rule Editor

A rule editor is a visual environment for creating graph transformation
rules. Graph transformation systems consist of a number of rules, which can

8

be executed on a model. These rules re-use the domain-specific visual nota-
tion of the elements to be transformed. They consist of three parts: exactly
one left hand side (LHS), exactly one right hand side (RHS) and one or more
negative application conditions (NACs). The LHS holds a pattern to indicate
which part of the model that is to be matched. If the rule is executed and a
match is found for the LHS, the transformation engine will also try to find a
match for the NACs. If a match for one of the NACs is found, the rule will
not be executed. If no such match can be found, the rule will rewrite the
model by replacing the elements in the LHS by the elements in the RHS.
The rule objects decompose into graphs conforming to the rule meta-model,
which consists of the three elements mentioned above: one LHS, one RHS
and one or more NACs. A rule also has a name and a precedence, hich is a
positive integer. The precedence defines layers in the graph grammar. The
graph grammar will, while it is executing, choose a rule at random from the
currently executing layer. Once none of the rules in the current layer can be
executed, the execution of the rules of the next layer begins. As we use model
transformation for simulation, our graph grammer semantics loops back to
the first layer once no more rules can be fired in the last layer. The LHS and
NAC objects of a rule decompose into graphs conforming to the precondition
pattern metamodel. The right hand side object of a rule decomposes into a
graph conforming to the postcondition pattern metamodel. We create these
metamodels starting from the original metamodel and applying a process
called RAMification [Kühne et al. (2010)] on them. RAM stands for Relax-
ation, Augmentation and Modification. . In particular, the following steps
were taken to create the modified versions of the metamodel.

1. Relax the constraints on the metamodel’s well-formedness. A rule often
only matches a part of a model and this may not be a well-formed
model conforming to the original metamodel. It’s also possible for
abstract superclasses to appear in rules, which is impossible in the
original modelling language.

2. Append the suffix ’ LHS’ (precondition pattern) or ’ RHS’ (postcondi-
tion pattern) to the class names of the objects and relationships.

3. Add a property called ’GG Label’ of type ’Number’ to each object and
relationship. This property is used by the graph matcher to identify
nodes across the different parts of a rule.

4. Append the suffix ’ LHS’ (precondition pattern) or ’ RHS’ (postcondi-
tion pattern) to each property of an object or a relationship and change

9

Rule

name: string

precedence: int

GraphGrammar

name: string

PreConditionPattern

condition: string

PostConditionPattern

action: string

NACs LHS* 1 RHS 1

*

Element_LHS

GG_Label: int

Element_RHS

GG_Label: int

* *

Figure 5: Structure of a graph grammar. Adapted from [Kühne et al. (2010)].

its datatype to ’String’. The properties now define a condition (precon-
dition) or an action (postconsition pattern) instead of an actual value.
The strings are, in this case, Python executable code that has to eval-
uate to a boolean value in case of a condition, or to the new value of
the property in case of an action.

5. Add a property called ’constraint’ (precondition pattern) or ’action’
(postcondition pattern) to the metamodel. These represent, respec-
tively, the condition that has to be satisfied before a rule can be exe-
cuted and the action that has to be taken after the rule has executed.

In order to make simulation possible, the original metamodel also has to
be modified. As the layered architecture of the graph grammar gives priority
to layers with a lower precedence value, mechanisms to ensure fairness have
to be implemented. We have done this by adding properties to objects that
are modified by the rules (see Section 2). These properties can be checked
in the negative application condition(s) or LHS of a rule: only when a par-
ticular value is found can the rule be executed. To disable the rule, the RHS
sets the property to anything else than that value. For instance, we’ve added
a ’moved’ property to the ’Operator’ object, which has to be 0 in order for
the rule ’MoveOperator’ (which moves an operator from one machine to an-

10

Rule

ExporterSOAP API

Model

Metamodel Rule Metamodel

<<conforms to>> <<conforms to>>

Abstract Syntax

Graph

T-Core Graph

T-Core Rule

call

modifyquery

reply

RAMify

create

modify

compile

modify

MetaEdit+

Python

compile

Figure 6: The architecture used for our demonstration, including calls and relations be-
tween different components.

other one) to execute. The right hand side sets this property to 1. The top
layer of our graph grammar consists of rules that set these properties back to
their initial values so all rules become enabled again. In that way, each pass
through all the rules only considers each rule once and fairness is achieved.

4. Architecture

Our solution has a client-server architecture. The transformation engine
acts as the server, MetaEdit+ as the client. The architecture is visually rep-
resented in Figure 6.

4.1. Python: Abstract Syntax Graph

We started by creating an abstract representation of MetaEdit+ models
in Python. This component has two functions: it provides a data structure to
export models to using the MetaEdit+ generators, and it acts as an abstrac-
tion layer for the SOAP API. All methods defined on this structure make

11

use of the SOAP API to reflect changes visually in the MetaEdit+ model.
These classes are as generic as possible. It is therefore possible to export
any type of MetaEdit+ model to this Python structure. The architecture
for this ASG is visually represented in Figure 7. All necessary information
is included, i.e. objects, relationships, roles and properties. Also, the area
id and object id which are used by the MetaEdit+ API to identify objects,
relationships and representations are stored.

4.2. MetaEdit+ : API and Generators

The SOAP API of MetaEdit+ is heavily used in our demonstration. It
provides methods to query and update models, which are used by the ASG
component in Python.
The generator editor facility of MetaEdit+ was used to create two types of
generator: one for models, and one for rules. As we saw in Section 3, a
rule consists of exactly one LHS, one or more NACs and exactly one RHS.
These components of a rule are, like models, mapped to the ASG structure
in Python.

4.3. T-Core: Graph Rewriting

T-Core is a libray of graph transformation primitives. It is used in con-
junction with a scheduling language, which in our case is Python. We only
need a small subset of T-Core: the ARule (Atomic Rule) will be used, which
chooses one match of the set of all matches (matching the LHS, considering
the NACs) and transforms the LHS to the RHS. Before we can use T-Core,
we need to take care of the following.
T-Core has its own data structures for graphs and rules. A compiler was
built to compile the ASG representation into a T-Core graph (for models) or
a T-Core rule (for rules).
The compiler works as follows. For compiling a model, it iterates over all
nodes in the ASG twice. The first time, it adds all nodes to the graph. This
includes both object nodes and relationship nodes. When adding a node,
it copies all properties of the source node to the target T-Core node and
adds an attribute to the T-Core node which will be used to identify it in the
source ASG. This attribute will be used when T-Core has executed a rule on
its graph representation, as the changes have to be propagated to the ASG
(see Section 5). It corresponds to the area id and object id of the object,
and should therefore be ignored by T-Core in the matching phase as it is
not a property of the corresponding object in the model. T-Core provides a

12

Graph

+__init__(self,objectID,areaID,name,editable=True)

+addNode(self,node)

+addRelationType(self,relationType,fromClasses,

 toClasses,fromRole,toRole)

+getNodesByTypes(self,types)

+refreshDisplay(self)

+removeNode(self,node)

+searchRepresentations(self)

Node

+__init__(self,className,objectID,areaID,

 parent)

+addProperty(self,name,value)

+delProperty(self,name)

+getPlace(self)

+getProperty(self,name)

+getPropertyNames(self)

+getRepresentation(self)

+moveTo(self,x,y)

+remove(self)

+setProperty(self,name,value)

+setRepresentation(self,representation)

+updateProperties(self)

NodeRepresentation

+__init__(self,objectID,areaID)

+getPlace(self)

+moveTo(self,x,y)

+remove(self)

1

 nodes

*

 representation

1

1

RelationshipNode

+__init__(self,className,objectID,areaID,

 parent)

+addToGraph(self,x,y)

+getObjects(self)

+remove(self)

ObjectNode

+__init__(self,className,objectID,areaID,

 parent)

+addInitRelationshipID(self,initRelationshipID)

+addRelation(self,relation)

+addToGraph(self,x,y)

+getRelation(self)

+remove(self)

+removeRelation(self,relation)

ObjectFactory

+createObject(self,graph,type)

RelationshipFactory

+createRelationship(self,graph,type,fromRole,

 toRole,fromObj,toObj)

Figure 7: The architecture used for the ASG component in Python.

13

mechanism to achieve this by naming the property in a particular way. The
second time, edges are added from relationship nodes to its source and target
nodes. These aren’t present in the source graph, but are needed by T-Core.
Compiling a rule is almost identical. First, a T-Core rule object is instanti-
ated. Then, the LHS, RHS and NACs are compiled as outlined above and
added to the rule. However, an extra step has to be taken for the attributes
of these nodes. In the LHS, RHS and NACs, T-Core expects the properties
to be functions. Properties in the LHS and NACs have to return a boolean
value, properties in the RHS have to return a value which corresponds to the
new value of that attribute. The string that is entered for these properties
are wrapped in functions that evaluate the string as Python code and return
the result of this execution. The pattern condition for the LHS as well as the
pattern action for the RHS are wrapped in a similar way.
As both the model and rules are now represented as T-Core graphs, the rules
can be executed.

5. Executing Rules

This section explains how a rule is applied on a model. We start by
creating a rule in MetaEdit+ , then exporting it to Python. There, it will be
compiled together with an exported model to T-Core. T-Core will rewrite its
graph and report back the changes, which will be used to modify the ASG
accordingly.

5.1. Creating the Rule

We will consider the moving of an operator from one machine to another
as an example rule. For a visual representation of the rule as it would appear
in the rule editor, see Figure 8. An operator in our language can be connected
to either an assembler, a quality control station or a repair machine. All three
of these machines inherit from the processor abstract superclass. In the
LHS of the rule we define what should be matched: two processors, one of
which the operator is connected to. As a condition for the ’moved’ property,
we state that it should be equal to 0. As we do not want two operators
connected to the same machine, we also define a NAC. There, the processor
we want the operator to move to (with ’GG Label’ equal to 4) has an operator
connected to it. By defining this NAC, we make sure whenever the rule is
executed no operator is connected to this processor. The RHS defines what
the matched subgraph of the LHS should look like after executing the rule.

14

Processor Processor Processor Processor Processor

5 1 1

2

3

4

6

4 2 4

5

NAC

moved == 0 moved = 1

LHS RHS

Figure 8: En example rule: the moving of an operator from one processor to another one.

There, the relationship between the operator and the original processor has
been removed, while a new one is created between the operator and the new
processor. The ’moved’ property of the operator is set to 1, which ensures
this rule is only executed once until it is reset back to 0.

5.2. Compiling and Executing the Rule

As was explained in Section 4.3, the model and the three parts of the
rule are compiled to T-Core structures.It is important to point out that
subtype matching is used. Without subtype matching, the moving of an
operator would have to be split into several rules, to include every possible
combination of processor classes. This would lead to an explosion of the
number rules. T-Core support subtype matching: a list of subtypes for each
type needs to be passed to T-Core. To execute the rule, the compiled rule
(which is an ARule object) is given the T-Core representation of the model.
T-Core will try to match the LHS, and then choose one of the matches in
case there is more than one. Then, it will perform the necessary operations
as defined by the RHS of the rule on this match. Internally, it changes its
own representation of the model, and reports back a list of changes (an “edit
script”). These changes include, but are not limited to, the changing of
attributes, the creation or removal of nodes and the creation or removal of
edges.

5.3. Modifiying the ASG

We use the list of changes made to the T-Core graph to modify the original
ASG of the model. In the compilation process of the ASG, we made sure the
nodes in the T-Core graph can be linked back to their original ASG nodes.
This makes it possible to perform exactly the same changes to the ASG as
were made to the T-Core graph and ensures both graphs represent the same

15

model. On top of that, the operations that change the ASG propagate these
changes through the SOAP API to the original model in MetaEdit+ , which
gives us visual feedback.

6. Conclusion and Future Work

In this paper, we have shown how to add operational semantics to lan-
guages created in MetaEdit+ . First, a rule editor was created in MetaEdit+

which allowed us to visually create rules, which were combined in a gaph
grammar. The graph grammar was then exported to Python, where it was
executed on an exported MetaEdit+ model using T-Core as a backend. The
execution of a graph grammar is a series of graph rewritings, which visually
propagate to the original MetaEdit+ model by using the SOAP API.

Future work is outlined below.

• Denotational Semantics of MetaEdit+ Languages: In this paper,
we have added operational semantics to a (production system) mod-
elling language. Further research will investigate adding denotational
semantics to languages. The difference with the work described above
is that multiple metamodels have to be combined. In the rule editor,
it should be possible to use concepts of the source language as well as
the target language.

• Automatic RAMification of Metamodels in MetaEdit+: In MetaEdit+,
metamodels of languages can be exported to and imported from XML.
It should therefore be possible to automate the RAMification process
of metamodels.

• Other Environments: The technique outlined in this paper could
be used with other front- and backends. An example of this would
be to add model-to-model transformations to the Eclipse Graphical
Modelling Project2, using for example the very efficient graph rewriting
kernel GrGen.NET as backend.

2http://www.eclipse.org/modeling/gmp/

16

7. Acknowledgments

I would like to thank several people at Metacase that have made this
project possible. Steven Kelly for his continuous support and prompt replies
on the MetaEdit+ forums, Juha-Pekka Tolvanen and Janne Luoma for the
help they’ve given me. I would also like to thank Professor Hans Vangheluwe,
who has assisted me on every step of this project.

References

de Lara, J., Vangheluwe, H., April 2002. AToM3: A Tool for Multi-formalism
and Meta-Modelling. In: Kutsche, R.-D., Weber, H. (Eds.), FASE’02. Vol.
2306 of LNCS. Springer, Grenoble, France, pp. 174–188.

Helms, B., Shea, K., Hoisl, F., 2009. A framework for computational design
synthesis based on graph-grammars and function-behavior-structure.
ASME Conference Proceedings 2009 (49057), 841–851.
URL http://link.aip.org/link/abstract/ASMECP/v2009/i49057/p841/s1

Jakumeit, E., Buchwald, S., Kroll, M., 2010. Grgen.net - the expressive,
convenient and fast graph rewrite system. STTT 12 (3-4), 263–271.

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., June 2008. ATL: A model
transformation tool. Science of Computer Programming, Special Issue on
Second issue of experimental software and toolkits (EST) 72 (1-2), 31–39.

Kühne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M., 2010.
Explicit transformation modeling. In: Ghosh, S. (Ed.), Models in Software
Engineering. Vol. 6002 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, pp. 240–255, 10.1007/978-3-642-12261-3 23.
URL http://dx.doi.org/10.1007/978-3-642-12261-3 23

Nickel, U., Niere, J., Zündorf, A., June 2000. The FUJABA environment. In:
ICSE’00. ACM, Limerick (Ireland), pp. 742–745.

Syriani, E., Vangheluwe, H., March 2010. De-/Re-constructing Model Trans-
formation Languages. Electronic Communications of the European Asso-
ciation of Software Science and Technology 29.

17

