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1 Introduction

I have used the Matlab image processing toolbox to implement this assignment. The electronic version of my
report with the images is available at http://moncs.cs.mcgill.ca/MSDL/people/slacoste/school/cs766b/ass2.html.

2 Part I: The Heat Equation

2.1 Gaussian Blur

To implement the Gaussian blurring, I have used a square kernel with a radius of 4σ (i.e. a square with side
of 8σ + 1), since the Gaussian is mostly zero outside of it. I have convolved this kernel with the image using
the filter2 function of Matlab. The 2D kernel was of course:

K(x, y, σ) = (2πσ2)−1e−
x2+y2

2σ2 (1)

with the origin placed at the center of the neighborhood. We note that the case presented in the assignment
was the heat equation in a unbounded domain with homogeneous boundary conditions. So this means that
the image needs to be embedded in a infinite domain with zero intensity at infinity, and thus we simply
padded the surrounding of the image with zeros to do the convolution.

The original image is given in figure 1, with the blurred image with σ = 2, 4, 16 pixels given in figure 2,
3 and 4 respectively.
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2.2 Heat Equation Blur

To implement the derivatives of the heat equation, we used centered difference for the space derivatives
and forward difference (Euler integration) for the time derivative (formulas which can be derived from
manipulation of the Taylor series).

centered difference: f ′′(x0) =
f(x0 + h)− 2f(x0) + f(x0 − h)

h2
+ O(h2) (2)

forward difference: f ′(t0) =
f(t0 + h)− f(t0)

h
+ O(h) (3)

So the Euler integration step gives:

u(t + dt) = u(t) + dt · (uxx(t) + uyy(t)) (4)

We used of course a step size of h = 1 since we only have intensity values at each pixel. An important point
to consider is which boundary value to use. The real problem is in an unbounded domain. But to simplify
the implementation, I have used a homogeneous boundary condition just outside of the image (instead of at
infinity). At the beginning, I hadn’t really thought about it, I just padded the image with zeros around it
to compute the derivatives like I had padded with zeros to compute the convolution. But as we’ll see in the
next section, this yields a major difference between the convolution solution and the heat equation solution.
In order to choose a step size for the time integration, I have computed the difference of the solution obtained
with two different step sizes. To quantify the difference between two solutions, I have looked at the max
norm (maximum of the absolute value of the difference of the two images over all pixels) and the mean
norm (mean value of the absolute value of the difference). By computing the solution at t = 2 (this was to
compare with Gaussian blur with σ = 2) with dt = 0.2, 0.1 and 0.01, I obtained the images I1, I2 and I3
respectively. Then I had the following results:

max mean
|I1− I2| 0.0329 0.0013
|I2− I3| 0.0078 0.0003

Note that the image intensities were double floating point numbers between 0 and 1. Since that the correction
given by dt = 0.01 over dt = 0.1 was small, I used dt = 0.1 for all my integrations (which gave a running
time of roughly 15 seconds on my home computer for each second of needed integration - and thus roughly
30 minutes to obtain an equivalent blur than σ = 16). To compare the heat equation solution with the
Gaussian convolution, we use the equivalence t = σ2/2, and thus I have computed the solution for t = 2,
8 and 128. To visualize the differences between the heat equation solution and the Gaussian convolution, I
have plotted a bitmap image of the pixels where the absolute difference is greater than 0.001 (0.1% error).
These are plotted in figure 5, 6 and 7. There were two main sources of the error:

Discretization of derivative When the gradient of intensity is high, the error made with finite difference
to approximate the spatial derivative is the greatest. This is why at t = 2 (figure 5) we see more error
close to the edges of the original picture. As the image gets smoother and smoother, this error averages
out and disappears completely as we can see at t = 128 (figure 7).

Boundary conditions This error is caused because I have used homogeneous boundary conditions at
the boundary of the image instead than at infinity. Ideally, I should have increased the domain of
computation at the same time as the value around the images became non-zero (instead of just keeping
them to zero). But in my implementation, the influence of the homogeneous boundary conditions
spread gradually inside the image as time increased. This is why you can see on the figures that the
error region close to the boundary gets larger and larger (this is all we see on figure 7 where t = 128!).

But apart those two sources of difference, the two results are pretty similar (in fact, you can’t really
distinguish one from the other with the eye, except from the small black border at the boundary of the
image which is more apparent with the heat equation (because of the boundary conditions). See figure 8 for
the result with t = 128 using dt = 0.1.
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3 Part II: The Geometric Heat Equation

Here, the heat equation becomes:

ut =
uxxu2

y − 2uxuyuxy + uyyu2
x

u2
x + u2

y

(5)

A potential problem arises when ∇u = 0: the denominator vanishes. To see if there is some way to extend
the equation meaningfully in this case, we do some elementary manipulations to obtain:

uxx

ξ2 + 1
+

uyy

1 + 1/ξ2
− 2uxy

ξ + 1/ξ
(6)

where ξ = ux/uy. Now, depending what is the limiting behaviour of ξ = ux/uy as we approach the point
where ∇u = 0, we will have different values for the RHS of (5). Probably the appropriate way to implement
this numerically would be to compute ux/uy for the points around the pixel (4 values) and take their average
or something similar. But this would complicate a lot the code, so instead, I have just chosen the usual
engineering approach of adding a very small number to the denominator of (5):

ut =
uxxu2

y − 2uxuyuxy + uyyu2
x

u2
x + u2

y + ε
(7)

so that we never divide by zero. At first sight, we could think that this would yield a somewhat different
flow than (6) because the latter can have a non-zero value (and big if uxx is big, for example) even when
∇u = 0; whereas (7) will be zero when ∇u = 0. But, according to Maxime Descoteaux, it was shown in [1]
that the (weak) solution to (7) was the same than the solution to (5) under some reasonable assumptions
on the image. So let’s say it will be enough for this assignment!

3.1 Discretization

We can use the same finite difference equations given in section 2. We will need in addition two new formulas:
the centered difference for the first derivative, and for a mixed derivative:

ux(x, y) =
u(x + h, y)− u(x− h, y)

2h2
+ O(h2) (8)

uxy(x, y) =
u(x + h, y + h)− u(x + h, y − h)− u(x− h, y + h) + u(x− h, y − h)

4h2
+ O(h2) (9)

Again, I used Euler integration with time step dt = 0.1 and spatial grid h = 1. I also used ε = 1010 in
equation (7). The results for t = 8 and t = 128 are given in figure 10 and 11 respectively.

3.2 Level Curve Evolution

We can see the geometric heat equation (5) as the level set implementation of the Euclidean Curve Shortening
Flow:

Ct = κN (10)

where κ is the curvature and N is the normal; i.e. we see the image as an embedding of its level curves
(curves of same intensity). So we would expect those (iso)curves to evolve in the same way as they would
under the curvature flow (i.e. stay smooth, preserve inclusion relationship and asymptotically become an
elliptical point). Indeed, by plotting the isocurve of the intensity between 0.50 and 0.51 on the image, we
can see this somewhat. This is shown on figure 9, 10 and 11, for t = 0, 8 and 128 respectively.

At the beginning (figure 9), we can see several little points curve (especially on the dog). Those will
disappear (be smoothen) after the geometric flow (thus the geometric flow blurs inside a region surrounded
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Figure 1: Original Image

by an edge). By watching the curve just to the right of the dog, we can see that it becomes an ellipse as
required (see figure 11). The fact that some curves are created in the last image could probably be explained
by discretization error (it is, after all 1280 steps). Since the curve around the dog was at an important
edge, it doesn’t move much (since in geometric flow, the edges are preserved). We can truly see on the last
image (figure 11) that the strong edges have been preserved (like the bars of the fence in the back; except
at intersection where some smoothing is done) by the geometric heat equation blur. So the blurring is truly
along edges and not across edges. On the other hand, the Gaussian blur blurs in all direction, and thus it
destroys edges (see figure 4).

4 Images

4.1 Gaussian Blur

4.2 Heat Equation

4.3 Geometric Heat Equation
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Figure 2: Gaussian blur with σ = 2.

Figure 3: Gaussian blur with σ = 4.
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Figure 4: Gaussian blur with σ = 16.

Figure 5: Bitmap of error threshold between Heat and Gaussian for σ = 2. Here the error is mostly
due to the discretization error of the space derivative.
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Figure 6: Bitmap of error threshold between Heat and Gaussian for σ = 4.

Figure 7: Bitmap of error threshold between Heat and Gaussian for σ = 16. Notice that all the
error is concentrated near the boundary, due to the discrepancy of the boundary conditions.
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Figure 8: Heat Equation with t = 128. Notice the larger black boundary compared with figure 4, due to
the difference in boundary conditions.

Figure 9: Original image with isocurve between 0.50 and 0.51.
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Figure 10: Geometric blur with t = 8 and isocurve between 0.50 and 0.51.

Figure 11: Geometric blur with t = 128 and isocurve between 0.50 and 0.51. Notice that significant
edges have been preserved (except that their intersection have been curved a little).
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