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Abstract

Incident gamma rays from a 137Cs source are scattered from an alu-

minum target and the spectrum at various angles is taken with a NaI scin-

tillator detector. By evaluating the energy corresponding to the peaks of

the number of counts, the Compton formula for the frequency shift can be

validated. Further investigations of the differential cross-section allow dis-

crimination between the classical approach and the quantum-mechanical

one.
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1 Introduction

Early in the 20th century, many successful theories established that interactions
between electromagnetic radiation of frequency ν and matter occur through the
emission or absorption of discrete quanta of energy E = hν. This idea, initiated
by Planck1, solved the problem of the blackbody spectrum (1901). It was also
shown later that the explanation of the photoelectric effect (Einstein, 1905) and
the hydrogen spectrum (Bohr, 1913) required such redefinition of light.
In 1920, an American physicist named Arthur H. Compton decided to in-

vestigate another phenomenon which classical physics failed to explain. Its ex-
periments on monochromatic X-rays scattered from various materials revealed
that their energy (frequency) was decreased after the scattering. Classical elec-
tromagnetic theory couldn’t explain this frequency shift because frequency is a
property of the electromagnetic wave and cannot be altered by the change of
direction implied by the scattering2. On the other hand, we can explain this
result by considering light as a beam of photons which undergo elastic colli-
sions with the electrons in the material (as explained in section 2.1). Compton
demonstrated in 1923 [8, p.231] a complete agreement between his experimental
results and the predictions from the quantum theory of light, giving rise to one
of the most impressive successes of quantum theory.
We will describe the results of a similar experiment in this paper. We have

studied the angular energy dependence of gamma rays (from 137Cs) scattered
by electrons in an aluminum target. Our goal wasn’t restricted to verify his-
torical successes of Quantum Mechanics. Implicitly, such laboratory work is
an excellent introduction to modern experimental methods. For the purpose
of this experiment, our main objective was to discriminate between the classi-
cal treatment of the Compton scattering phenomenon (Thomson cross-section
and no angular dependence for frequency) and the quantum-mechanical one
(Klein-Nishima and Compton scattering formula).

2 Theory

2.1 The Compton Effect

We consider the situation where γ-rays are incident to a metal. As mentioned
in the introduction, Compton explained the decrease of their energy after being
scattered (called the Compton Effect) by treating the incoming radiation as
quanta of light with energy hν and momentum hν/c, where ν is their frequency,
as proposed by Einstein. Indeed, we can then consider the interaction of light
with the electrons in the metal as a simple collision of particles and apply the
classical relativistic conservation laws.
First of all, we can neglect the binding energy of the electrons in the metal

compared to the γ-ray energy, and thus treat them as essentially free. Similarly,

1see [2] for example
2see, for example, chapter 10 of [5]
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Figure 1: Compton scattering of a photon from a free electron

we can assume that their momentum in the lab frame is negligible compared to
the one of incident photons. The interaction between a photon and an electron
is then as shown in figure 1: γi represents the incident photon, γf represents the
scattered photon which makes an angle θ with the x-axis and e− is the scattered
electron.
So let pi and pf be the momentum of the incident photon and scattered

photon respectively, Ei and Ef be their energy; and let m be the mass of the
electron and pe its momentum after the collision. Energy conservation can then
be expressed as:

Ei +mc2 = Ef +
√

(mc2)2 + (pec)2 (1)

Also, momentum conservation requires that

~pi = ~pf + ~pe (2)

Square ~pe in Equation (2) to obtain

p2e = (~pi − ~pf ) • (~pi − ~pf ) = p2i + p2f − 2pipfcos θ (3)

Next, we multiply both sides of Equation (3) by c2 and replace pic and pfc by
Ei and Ef . Thus

(pec)
2 = E2i + E2f − 2EiEfcos θ (4)

Now, we get another expression for (pec)
2 by squaring the square root part of

Equation (1):
(pec)

2 = E2i + E2f + 2mc
2(Ei − Ef ) (5)
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Finally, by equating expressions (4) and (5) and rearranging, we arrive to the
result

1

Ef

−
1

Ei

=
1

mc2
(1− cos θ) (6)

which is the equation we’ll use in this lab; but the Compton scattering equa-
tion is more often written in terms of the change of wavelength ∆λ, using the
relationship λ = h/E:

∆λ =
h

mc2
(1− cos θ) (7)

which expresses the change in wavelength of the γ-ray in terms of its recoil angle
θ and the Compton wavelength h

mc2
, as defined for an electron of mass m.

From the Compton equation, we can notice that the change of wavelength is
independent of the wavelength of the incident photon, and that this change is
proportional with the Compton wavelength. Even for very light electrons, the
Compton wavelength is quite small, 2.42× 10−3 nm, compared with the wave-
length of visible light. This means that the fractional change in wavelength by
Compton scattering is only substantial for X-rays or γ-rays. In this experiment,
we use γ-rays from a 137Cs source which have an energy of 662 KeV and scatter
on electrons with rest mass (energy) of 511 KeV, so that the energy of the scat-
tered photon at an angle of 90o should be shifted to 288 KeV. This is indeed a
noticeable shift, and was observed during our experiment.

2.2 Cross-Section

Next we are interested in the differential cross-section for the scattering of the
radiation from the electrons. Differential cross-section is defined as usual by

dσ

dΩ
=
# of particles detected in a direction / unit time-unit solid angle

# of incident particle / unit area-unit time
(8)

or in the case of radiation,

dσ

dΩ
=
power radiated in specific direction / unit solid angle

power incident / unit area
(9)

The classical (nonrelativistic) derivation using the power radiated by the ac-
celerated electrons is given in [7], p. 255. We only state here the final result,
namely the Thomson differential cross-section:

dσ

dΩ
= r20

(

1 + cos2 θ

2

)

(10)

in the direction θ from the direction of propagation of the incoming wave, and
r0 is the so-called “classical electron radius”, r0 = 2.82× 10

−13 cm.
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The quantum-mechanical calculation adds a correction factor which shows
up in the so called Klein-Nishina formula (see [4], p.219)

dσ

dΩ
= r20

1 + cos2 θ

2

1

[1 + γ(1− cos θ)]2

×

[

1 +
γ2(1− cos θ)2

(1 + cos2 θ)[1 + γ(1− cos θ)]

]

(11)

where r0 and θ were defined previously, and γ = Ei/mc
2 (with same variables

as in equation (1)). A comparison of the Thomson (10) and Klein-Nishina (11)
cross-sections, including the results obtained in this laboratory for γ = 1.29, is
shown in Figure 10 on page 19.
Experimentally, the Compton cross-section can be obtained by:

dσ

dΩ
=

yield

(dΩ)NI0
(12)

where yield is the number of hits per second reaching the detector in a specific
direction3, N is the total number of electrons in the target which lie in the path
of the incident beam and I0 is the flux density of γ-rays at the target [7, p. 264].
How we can use this equation in our experiment will be explained in section 4.2
in the Data and analysis section.

3 Experiment

3.1 Setup

The experimental setup is shown in figure 2 and can be visualized in the follow-
ing sequence. A radioactive 137Cs source produces 662 KeV γ-rays which can
escape the shielded cavity only through a small hole. The beam created is col-
limated and reaches an aluminum rod (the target). Some portion of the γ-rays
are scattered by the electrons in the target according to the Compton Effect
described in section 2. By rotating the circular basis, the NaI scintillator can
detect these radiations at various angles. Though the detector will be described
thoroughly in section 3.2, for now we can say that the effect in the detector will
be a current pulse with amplitude proportional to the energy of the incoming
radiation. The signal is converted and amplified to a compatible voltage for the
PCA card of the computer which has to discriminate the amplitudes into 2048
intervals, each pulse increasing the count in the so called channels. The PCA-II
software from Nucleus analyzes this data and produces a live spectrum on the
screen, which we can now browse to find peaks, area under curve, etc.

3Note that this is usually not what you can read directly from your spectrum since no
detector can detect all the incoming photons; they only detect a constant fraction of it (called
its efficiency factor) depending on their energy.
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Figure 2: Experimental Setup
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Figure 3: NaI Scintillation Detector

3.2 Detector

Considering its strong links with the statistical errors (see section 4.1.4), our
detector deserves a thorough description of its functioning [1, p.13]. Figure 3
represents the schematic processes involved in the transformation of an incident
radiation into a current pulse. Enclosed in a light-proof box, the system is
composed of two parts: a scintillator and a photomultiplier. The first one, a
2”diameter x 2” cylindrical crystal of NaI(Ti), receives the incident ionizing
photon of energy E. The latter dissipates its energy in the excitation of the
electrons which are rapidly stopped in the material. Hence, a fraction of E is
converted into N photons radiated in all directions, as seen in the picture.
The surrounding reflector maximizes the number of these photons which fall

on the photocathode and extract electrons from it by photoelectric effect. The
photo-electrons are accelerated by the potential applied between the cathode
and the first dynode of the photomultiplier and strike it, ejecting more elec-
trons in the same way. This multiplication process is repeated at subsequent
dynodes, each one being at a higher potential than the previous one. In the
end, such an electrons avalanche produces a current pulse at the anode which is
transformed after. In our experiment, the determination of the response N of
the scintillator as a function of E enables the instrument to be calibrated for use
as a spectroscope. Such curve giving the efficiency comes with the apparatus.
A last note concerns the presence of magnetic fluctuations in every physics lab.
Their origins can vary from the nearby wires to the magnetic field of the Earth,
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but their altering effects during the accelerations in cascade are diminished by
a metallic shielding around the photomultiplier.

3.3 Procedure

With a single series of spectra for several angles, the analyst has more or less all
the material needed in order to achieve this experiment (see section 4.1). The
evaluation of the position of the peaks allows to verify the Compton’s hypothesis
while the number of counts under these peaks is related to the differential cross-
section. However, some preliminary settings have to be accomplished before
these results become in a sense worthy. The first and crucial step consists in
a systematic calibration before each set of measures, i.e. to know the energy
associated to each channel at that time. A day-to-day drifting in the detector
calibration was observed through sporadic variations in the peaks’ positions.
Four radioactive sources provided five peaks of known energy: 511 KeV for the
22Na4, 81 and 356 KeV for the 133Ba, 122 KeV for the 57Co and 662 KeV for
the 137Cs [3]. Since these cesium rays were the more energetic to be detected,
the voltage gain imposed to each pulse by the amplifier was adjusted in order
to have this peak sitting in the far right of our spectrum screen.
Precision requires a second conscientious measure: the evaluation of the zero

angle. Unfortunately, a direct measurement at small angles could be fatal to
our detector which cannot endure the high intensity of the principal beam. We
resolve this problem by using the symmetry of the Compton relation about
θ = 0. We set an arbitrary 0 by eye; we then measure the channel number of
the Compton peak at 40o to the right, say; and then we try to find at which
angle to the left we obtain exactly the same peak. It appeared that the setting
by eye was pretty good, so that the symmetric peak was found to be around
41o to the left; the angle 0 is then simply in the middle of those two angles.
The data gathering itself was influenced by a marked presence of the back-

ground. When any spectral measure was achieved, a systematic spectrum with-
out scatterer was taken at the same angle. Such treatment is imposed by the
peculiarities of the background like its asymmetry. Typical series of measure-
ments contain couples Compton peak-background: a fixed period of 300 seconds
for each and angles increasing by steps of 40o , ranging from 20o to 120o. In
addition to the lead shielding (see figure 3) which stops the photons scattered
from the mouth of the collimator, the detector is placed relatively far from the
principal beam in order to minimize the proportion of background radiation.
Although this choice sacrifices a good part of the intensity, it provides advan-
tages like more precise definitions of the angle of scattering and the solid angle
with respect to the scintillator’s dimensions. Also, it avoids the danger of the
piling effect which consists in a superimposition of simultaneous pulses and an
increased energy for the signal.

4Note that this peak for Na wasn’t found in [3], but was given by Professor Buchinger.
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4 Data and Analysis

4.1 Mass of Electron

Using the spectra of the γ-ray radiation scattered at different angle by the
aluminum rod, we can find the angular dependence of their energy peaks, and
thus verify the Compton scattering equation (6) (by computing the mass of the
electron with a fit of the Compton equation). Because of the lack of resolution
of our detector, the presence of background noise and the varying efficiency of
the detector, the systematic determination of the energy peaks of the spectra
appeared to be a very challenging task. For ease of analysis, we have saved
in ASCII format all the spectra recorded with the Nucleus PCA-II software
and we have imported them in a (huge) Excel spreadsheet. This was useful
for comparing the different spectra and to compare different methods of peak
analysis.

4.1.1 Calibration

Our first approach for the peak analysis was to read directly by eye the channel
numbers of the energy peaks on the PCA-II software for each spectrum. Using
the known energies for the peaks of Ba, Co, Cs and Na, we could obtain a
relation channel/energy. This was found to be pretty linear, (as expected by
the manufacturer specifications of the card) and was similar to the one presented
in figure 4. In fact, the data presented in figure 4 was not determined by eye
but using systematic Gaussian fit, as we will explain in section 4.1.4. But the
point here is that there wasn’t much difference (to the eye) between the two.

4.1.2 Background

Typical untreated spectra are shown in figure 5. These two spectra were taken
at 30o, and the lower one is the background which was recorded after taking
out the aluminum rod (for the same amount of time). We can see the presence
of a significant background in the range of channels 1250-1500 (which corre-
spond to around 500 KeV with our calibration). This causes a slight shift of
the peak to the left, so we needed to subtract the background to the original
spectrum5 to obtain the correct peak (and correct cross-section for the analysis
in section 4.2). We have taken a background spectrum at each different angle
since it was changing. To get more insight in what causes some parts of the
background, we have depicted its evolution in comparison with the Compton
spectra in figure 6. From this plot, we can see that the background was more
important at small angles and at big angles. We also see6 that a ‘ghost’ back-

5Strictly speaking, we are combining two events which have little in common, but we
assume that the background contribution in one spectrum can be statistically cancelled by
subtracting the background alone. For better results, we should really make an average over
a long period of time (or lots of trials). Due to time constraint, we couldn’t do that...

6Well, it is not really obvious from this plot; but with the magic of computers, we can
zoom in and browse different spectra to arrive to this conclusion...
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Figure 4: Calibration relationship between channels and energy. The
energy peaks were found from the calibration spectra after background and
efficiency corrections. The error bars are pretty small because of the accuracy
of the Gaussian fits used to determine the Compton peaks.
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Figure 5: Compton scattering spectrum with its corresponding back-
ground spectrum. They were each taken over a period 30 seconds, at 30o to
the right.
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Figure 6: Substracted Compton spectra vs. background for all our
measurements. The Compton spectra are light colored; the background ones
are dark colored. All spectra were taken over periods of 300s.

12



Figure 7: Efficiency of the detector in function of incident radiation.
The error bars (and the data) were taken from the lab manual.

ground peak is always preceding the Compton peak to the left (smaller energy),
and with an observable intensity at small and big angles. Since the energy of
this ‘ghost’ peak is changing with the angle of the detector, it should be due
to some kind of scattering phenomenon very similar to the one we were study-
ing. Our hypothesis is that it was caused by some Compton scattering in the
metallic screw that was fixing the rotating basis... Indeed, the vertical difference
between the detector and the screw increases slightly the angle of scattering,
which could explain why the ‘ghost’ peak is a bit less energetic than our Comp-
ton peak. Unfortunately, we thought about this too late to be able to test it
experimentally (by hiding the screw, for example).

4.1.3 Detector efficiency

Apart the background, we needed to take the efficiency of the detector in consid-
eration, that is, the percentage of incident photons per unit time it could detect
in function of their energy. The data for the detector efficiency was taken from
the lab manual; and for ease of analysis, we have fitted (using least squares)
a 6th degree polynomial through 9 points in the range 50-800 KeV using Ex-
cel. This fit is shown together with the polynomial in figure 7. An analyzed
spectrum (for comparison of different effects) is shown in figure 8. This shows
the most extreme effect of the efficiency correction amongst all angles since the
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Figure 8: Spectrum at 20o and its corrections.

variation of efficiency is more pronounced for high energies. This asymmetry
in efficiency correction caused a shift to the right of all energy peaks from 10
channels for small angles to 5 channels for big angles. On the other hand, we
had estimated our eye precision to determine the Compton peak on the screen of
the PCA-II software to be roughly 20 channels, so we couldn’t really notice this
effect on the screen. So how then can we say that the energy peaks were shifted
by 10? Well, this will be explained in the next section... Just before we skip to
this important point, note that the efficiency was crucial to have a meaningful
graph of the cross-section (table 2 in appendix A shows the difference in the
total number of counts under the peaks with and without considering efficiency
correction).

4.1.4 Systematic measure of peaks using Gaussians

We wanted to find a systematic way to localize the Compton peaks in the
recorded spectra for two reasons. First, since we did measurements over short
periods of time (due to time constraints), the peak shape wasn’t really well-
defined and we had a lot of freedom to ‘choose’ the channel number of the peak
(and also because of the significant size of the FWHM7 of the peak due to lack of
resolution of the NaI detector). Second, the peak was polluted with background

7Full Width at Half Maximum

14



noise (even after substraction of the background spectrum) so we were puzzled
about how we could evaluate the total number of counts for the Compton peak
alone (for section 4.2). Following a ‘Central-Limit’ intuition, we assumed that
the real Compton peak should be shaped as a Gaussian. We thus decided to fit
the upper portion of each peak with a Gaussian. We used nonlinear least-squares
data fitting by the Gauss-Newton method with the nlinfit function of Matlab.
A spectacular fit of the 356 KeV peak of the Ba spectrum (which received the
efficiency correction) is shown in figure 11 in appendix A. It succeeds to avoid
the very close 303 KeV peak by fitting data only on an interval where most
of the points are higher than 70% of the maximum number of counts. Except
for this exception (Barium), all the other fits were done in the 30% and higher
region. The choice of the interval over where we fit the Gaussian was a bit
arbitrary, but the effect is small compared to the error made on the fit. This
is discussed in appendix A together with the Matlab code we used to make our
Gaussian fits. The Compton peak channel number is found using the average
of the Gaussian (which is one of its parameter) and its error is estimated using
the 95% confidence interval on the parameters of the Gaussian (given by the
function nparci in Matlab).
Now, a subtle point needs to be mentioned. Because the calibration was

very important for our experiment, we have done a kind of perturbation theory
to evaluate it more precisely. Indeed, the efficiency correction could modify for
about 10 channels the position of the calibrating peaks, so we wanted to take
it into consideration. But to properly modify the counts per channel of the
calibrating spectrum, we first need the relationship channel/energy since the
efficiency relation is given in function of energy. So we found a first approxima-
tion to the calibration by finding the peaks with Gaussian fits of the calibrating
spectra without efficiency correction (but with the background correction); then
we used this ‘first order’ calibration to do the efficiency correction on the cali-
brating spectra and find a better evaluation of the energy peaks position. The
statistical error on the slope was indeed reduced by half with this second order
operation (and this is the data which was shown in figure 4).

4.1.5 Compton scattering equation verification

After having determined the Compton peaks, we could plot 1/Ef vs. (1−cos θ)
to verify equation (6) (the inverse of the slope should give the mass of the
electron and the inverse of the y-intercept should give the initial energy of the
incoming photons). Two sets of data are presented in figure 9: one found from
our quick evaluation by eye; the other derived with the Gaussian fit analysis
(but both used the Gaussian fit calibration with efficiency correction). Both
gave pretty good linear results (shown in table 1), truly confirming the Compton
scattering equation.
Note that we didn’t take in consideration the energy peak at 20o and at 120o

in our least square fit. We can easily see that they fall quite far from the fit for
the data determined at eye, at least (see figure 9). We can justify this choice by
looking back at the subtracted spectrum vs. background evolution in figure 6.
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Figure 9: Verification of Compton scattering equation. The red fit was
for data determined by eye; the black one from Gaussian fits; the data at 20o

and 120o were excluded in the fit because of their questionable accuracy.

16



‘Eye’ Data value % error with accepted value

electron mass 513± 3 0.4%
energy of γi 656± 4 0.9%

Gaussian Data value % error with accepted value

electron mass 529± 2 3.5%
energy of γi 659± 2 0.4%

Table 1: Experimental results to verify Compton scattering equation
The accepted value of the electron mass is 511 KeV and the γi incident energy
is 662 KeV. Gaussian Data is the results derived from Gaussian fits of Compton
peaks (with the background spectrum subtracted and the efficiency correction)
whereas ‘Eye’ Data was derived from our first direct location of the peaks with
the PCA-II software.

We see that at 20o and at 120o, the background and the subtracted spectrum are
overlapping (and they are only significantly overlapping at those angles). This
means that the background influence in the position of the peak was very strong
at those angles, and that the simple substraction of the background to the raw
spectrum couldn’t be enough to get truly rid of the background contribution
there, since we didn’t do long averages. We can thus expect to have less worthy
results there, and are justified to get rid of them if they don’t fit well compared
to the others.
The errors given in table 1 are only statistical errors derived from the slope.

They are pretty small, since our linear relationship was well satisfied. Un-
fortunately, the accepted value for the electron mass doesn’t fall into the error
interval around our result derived from the Gaussian data. Interestingly enough,
figure 9 shows that the Gaussian data falls into the error interval around the
data that was determined by eye (the errors were derived from the ±20 chan-
nels indetermination estimate and the statistical error on the calibration). So,
by considering generous errors bars, we can reach the accepted value. On the
other hand, various ways to analyze the data with Gaussian (as is shown in
appendix A) yield all results close to 526 KeV, with very small statistical error,
so we could conclude that our first result of 513 KeV was a lucky one... Also,
the smaller error on the γ-ray energy for Gaussian analysis indicates that we
should thrust more these results. Finally, even if we do a χ2 analysis to con-
sider the errors made on the data in the error on the slope of the fit, we get
still farther away (532 ± 6 KeV). So, to summarize, our electron mass is far
from the accepted value considering its very small statistical error, and we can
hardly make it better... So this points towards a hidden systematic error on our
results.
We tried to find a source of systematic error which could explain a higher
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mass of electron, but we haven’t succeeded to find a convincing one. We have
thought about background radiation, efficiency shift, misplacement of angle 0,
nonzero energy of the electron; but none could really explain the difference. We
were forced to admit that we were clueless in face of this result: we had the
weird combination of a very precise statistical result which makes the (small)
absolute difference with the accepted value look very big!

4.2 Cross-section analysis

Our other goal was to discriminate between the Thomson cross-section model
[eq. (10)] and the Klein-Nishina one [eq. (11)] for the Compton scattering ex-
periment. Our results were a lot more encouraging here!
We now refer back to equation (12) on page 5 which can be used to com-

pute the differential cross-section from experimental data. The yield can be
calculated as follows

yield =
1

∆t

∑

i

ci
Eff(ci)

(13)

where ∆t is the recording time of the computer, ci is the number of counts
recorded at channel i, Eff(ci) is the efficiency of the detector corresponding to
this channel (by using the calibration relation to find the corresponding energy)
and where we are summing over all the counts corresponding to the Compton

peak. This last requirement means that we don’t want to consider background
noise or other peaks in this sum. This is where our Gaussian fit appears the
most useful: we can simply integrate the Gaussian to obtain the total number
of counts corresponding to this Compton peak. This systematic treatment of
the spectra made the true relationship between the cross-section and the angle
really apparent (see figure 10). In practice, we have summed over the interval
of two standard deviations around the peak position. Since the percentage of
area in this region is constant for any Gaussian (roughly 95%), this amounts to
multiply the yield by a constant. The sum was quite sensitive on which fraction
of the peak we were using of the peak. We have estimated the error on the sum
using the standard deviation on the 5 sums obtained using 5 different fractions
of the peak for the fitting (see table 2 in appendix A).
For the purpose of the discrimination between Thomson and Klein-Nishina,

we didn’t need the true value of the differential cross-section. So since dΩ = A/r2

where A is the cross area of the detector and r is its distance to the scatterer, we
have that dΩ, N and I0 are constants in equation (12). This means that the we
can simply normalize the yield computed to compare it with the Klein-Nishina
formula. So we have plotted dσ

dΩ
1
r20
vs. angle in figure 10. The normalization

constant was found using least square fitting of our data by the Klein-Nishina
function. We have used again the nlinfit function in Matlab. The complete
agreement between the experimental behavior of cross-section and the quantum-
theoretical one is completly apparent on this figure.
We could use the normalization constant found to deduce the incident flux

intensity I0 and compare it with some direct measurement of it. Since the

18



0 20 40 60 80 100 120 140
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Differential Cross−Section models

θ (degrees)	

di
ff.

 c
ro

ss
−s

ec
tio

n 
/ r

 02

Klein−Nishima
Errors bars
Experimental Data
Thomson

Figure 10: Angular dependance of differential cross-section for different
models. The errors estimate we used were determined by first computing the
standard deviation on the summation under the peaks using different Gaussian
models (see table 2) and then using them as an estimate for our error for trial.
For more uniform error estimate, we average the found relative errors over all
angles and use it as our error estimate. The normalization constant was 88689
(i.e. we have divided our Gaussian integrals by 88689 to fit them with Klein-
Nishina relationship.)
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source was too strong, we had to put a small flat piece of lead in front of the
detector to be able to measure the incident spectrum at the angle 0. Using
the known attenuation relationship of the gamma rays through lead in function
of thickness8, we could in principle estimate the incident flux intensity. Some
geometrical arguments should also be used to compute N , the number of elec-
trons in the target crossed by the incident beam. Unfortunately, we haven’t
had the time to analyze this part of the experiment. So we just leave it here as
something that could be done in the future.

5 Conclusion

Our main objective was to discriminate between the classical model and the
relativistic-quantum-mechanical one for the Compton scattering phenomenon.
The truly linear relationship verifying the Compton scattering equation shown
in figure 9 and the very clear agreement between the experimental cross-section
and the Klein-Nishina equation (shown in figure 10) have accurately answered
this question. In order to analyze accurately the data, we needed to develop
some systematic way to evaluate the Compton peaks, and this was done using
Gaussian fits in Matlab. The background signal and the efficiency of the detector
were taken in consideration in our analysis. Some interesting patterns appeared
in the background signal, and we have suggested as hypothesis that it was caused
by Compton scattering in the metallic screw fixing the rotating basis. We will
surely try to test this when we will come back in the lab!
Unfortunately, the difference between the mass of the electron we computed

(529 ± 2 KeV) and its accepted value (511 KeV) was about ten times the size
of the statistical error. We have looked for some sources of systematic error,
but we haven’t found any which would explain the right shift in the slope.
This unfruitful search taught us the humility of the experimental physicist! We
can find consolation in the fact that we learned a lot about modern physics
experimental methods. And it could be that we still have to learn a lot about
error estimates!
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8See [6, p.68] for the theory and [3, D-2] for the values.
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A Analysis of Gaussian fit method

We discuss in this appendix the details of our Gaussian fitting implementation
to analyze the Compton peaks.

A.1 The Choices

First of all we needed to choose which parameter to put in our Gaussian. We

decided to use the model ae
−(x−c)2

2b2 (x is the variable) without any vertical
constant so that we would always obtain positive values for the modelled peak.
This way, c would give us directly the peak position (it’s x-average) and b would
give us its standard deviation which is useful for determining the region of
integration. It is worth to mention that we had first used the model ae−b(x−c)

2

,
but since the standard deviation of our peaks was of the order of 200 channels,
b was taking very small values and it seems that the Matlab nlinfit function
had a hard time to converge to a pertinent value of b because of that.
Also, we needed to choose some systematic way to fit only the relevant

part of the Compton peak with the Gaussian. We decided to consider only a
certain region around the maximum. The compromise we need to do here is to
choose a region big enough so that the fitting is meaningful, but small enough
so that we don’t fit also into background noise. The way we implemented that
was by finding the maximum value of the number of counts (which is a good
approximation to the peak position), and then browsing to the right and left
by packets of 10 channels to check when the average of the counts in the packet
had dropped to a threshold value defined by frac ·max, where frac is a variable
parameter we can choose (see section A.3 for the code). After some trial and
error, we found that a value 0.30 for frac was giving the best results in terms
of a relevant shape for the Compton peaks. On the other hand, we needed a
bigger fraction to be able to analyze the Barium spectrum since many peaks
were close. The performance of the method is well demonstrated in figure 11,
where a value of 0.70 was used to be able to isolate only the peak to the right.

A.2 Estimation of the error

Something we needed to check was if our results were very sensitive about which
value of frac we were using. A comparison table is given in table 2. The peaks
values derived with different fractions for the Gaussian fit are given. We can
also mention that we have tried a quadratic fit (−a ∗ (x − c)2 + b) for another
comparison. The results were 514 ± 6 for the mass of electron and 664 ± 8 for
the γ-ray energy. The quadratic fit gives thus a better value of the mass of
electron, but the statistical errors have tripled so we could think that they give
less relevant results. On the other hand, the results for the Gaussian are all in
the small range of 527±2 KeV. So we see that the results don’t depend strongly
on which fraction of the peak we use to fit the data; but they do depend slightly
about which model (quadratic, Gaussian, etc.) we use. This means that we
truly found a stable and systematic method.
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Figure 11: Gaussian fit of the second peak of the Barium. This spectrum
had received the efficiency correction.
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Table 2: Comparison in peak determination using different fractions
in the Gaussian fitting. The mass is the mass of the electron in KeV. We
have left 2 digits for the errors so that we can compare it for different methods.
The peaks found on spectra without efficiency correction are also shown here
for comparison. Note that there is a shift of about 10 channels.
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A.3 Matlab Code

This is the main function we were using in the code to analyze systematically
the spectra.

function [param,r,j] = findPeak(X,Y, frac)

%[param r j] = findPeak(X,Y, frac) uses the data [X,Y] (each are

%vectors of same size) to find the maximum value in the Y vector

%and to isolate a region around it s.t. most of the y-values are

%above frac*maximum.

%It then runs nlinfit on this region with the Gaussian

%a*exp((x-c)^2 / (2*b^2)), ([a b c] are the parameters)

%and returns the same thing as nlinfit (param is the found

%parameters array, r & j gives information about the distribution

%of errors)

N = length(X);

%find max

imax = 1; %index of maximum

max = Y(1);

for i = 2:N

if Y(i) >= max

max = Y(i);

imax = i;

end

end

%find interval around max: look for a drop to frac of max;

%but consider packet of 10 and average them to have more stable results...

threshold = frac*max;

%browsing to the right

running = 1;

i = imax;

pack = 1:10; %hold the packets of 10 we’ll browse...

right = imax; %will hold right end of interval

while(running)

if i > N - 9

right = N;

break %exits while loop because reached end of array

end

pack = Y(i:(i+9)); %initialize packet

if mean(pack) < threshold

right = i + 4; %take ’middle’ of pack
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running = 0; %to exit loop

else

i = i+1;

end

end

%browsing to the left

running = 1;

i = imax;

pack = 1:10; %hold the packets of 10 we’ll browse...

left = imax; %will hold left end of interval

while(running)

if i < 10

left = 1;

break %exits while loop because reached end of array

end

pack = Y((i-9):i); %initialize packet

if mean(pack) < threshold

left = i - 4; %take ’middle’ of pack

running = 0; %to exit loop

else

i = i-1;

end

end

%guessing parameters for Gaussian:

a = max;

b = (X(right)-X(imax))*frac/0.3; %(approximation to standard deviation;

%30% should lie outside both intervals)

c = X(imax); %expected average

%fitting the Gaussian

[param r j] = nlinfit(X(left:right), Y(left:right), ’Gaussian’, [a b c]);

The following function was used in the above code.

function y = Gaussian(beta, x)

% Model a Gaussian exponential to be use with non-linear regression, for example.

% y = Gaussian(beta, x) where beta is a vector of parameters [a b c];

% returns a*exp(-(x-c)^2 / (2*b^2)); Note that x can be a vector if you want!

a = beta(1); b = beta(2); c = beta(3);

y = a*exp(-(x-c).^2 / (2*b^2));
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