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Abstract

A square aluminum plate with clamped edges is driven with sound

waves and its lateral deformations are detected with a photodiode. Natu-

ral frequencies and mode shapes are evaluated and compared to theoret-

ical predictions for a thin plate having these boundary conditions. Our

results validate the predicted spectrum and showed the presence of degen-

erate modes. Further analysis of the Q-factor and the hysteresis increase

understanding of plates’ behaviour.
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1 Introduction

Anybody curious about natural phenomena can witness oscillations almost any-
where, from the realm of atoms to pulsars. As expected, a great part of physics
has been dedicated to the study of this common behaviour. For example, under-
standing this property can be a precious skill in order to explain the acoustics of
a guitar, populations’ cycles in biology, emissions of radiations from an antenna,
fluctuations in stock market, etc. Often, we search the response of a system to
stimuli. This becomes crucial in industry where structures like planes’ wings or
bridges must resist to vibrations. Motivated by these applications, our exper-
iment treats with a more tractable case: lateral deformations of a thin square
aluminum plate with clamped edges.

The purpose of this experiment is to study experimentally the properties of
vibration of a aluminum plate with clamped edges and driven by sound waves,
and compare it with the theory.

What information can be extracted from this simple object? The first ob-
servation is dictated by the existence of a spectrum: the plate responds more to
specific discrete frequencies when driven by a sound wave. Large amplitudes are
observed at resonance and an attempt is made in order to have there a picture
of the surface. Mode shapes and natural frequencies will then be compared to
the theory which predicts them simultaneously under certain conditions. But
nothing stays limpid as soon as we take a closer look. Many measurements
exhibit actually a superposition of degenerate modes as in quantum mechanics.
After, the effects of friction are taken into account and the evaluation of the
Q-factor gives an idea of their importance. Pushing further our investigations,
we remove the assumption of the linearity in the response of the material by
overdriving the plate. A complicated behaviour called hysteresis governs now
the dynamics.

2 Theory

2.1 Vibrating modes

Throughout this experiment, we are interested about the lateral displacements
z(x,y) of a thin plate. Its bending rigidity due to its thickness and the elasticity
of the material distinguish it from a membrane. A careful consideration of
stresses and strains involved (see [6]) leads to this fundamental equation of
motion:

D∇4z(x, y, t) + ρ
∂2

∂t2
z(x, y, t) = 0 (1)

where ρ is the mass density per unit area of the plate and D, called the flexural
rigidity, is defined as:

D ≡
Eh3

12(1− ν2)
(2)
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where E, h and ν are the Young’s modulus, the thickness of the plate and the
Poisson’s ratio respectively. The simplicity of this result suggests that many
assumptions were made during the derivation:

• the plate has a non-varying thickness

• the material of the plate has simple properties: homogeneity, linear elas-
ticity and isotropy

• we neglect rotary inertia; shear deformations are small relative to the
thickness of the plate deformations

• there is no in-plane load in the plate

• the thickness to lateral plate dimension ratio is small

The 4th order of equation (1) imposes the determination of eight boundary
conditions:

z(±
a

2
, y) = z(x,±

a

2
) =

[

∂z(x, y)

∂x

]

x=± a
2

=

[

∂z(x, y)

∂y

]

y=± a
2

= 0 (3)

This corresponds to the fact that our square plate of length a has its four edges
clamped. For free vibrations at frequency w, we could expect a solution of the
form:

z(x, y, t) ∝ z(x, y)sin(ωt+ φ) (4)

Substituting in (1), we obtain

(∇4z −
ρω2

D
)z(x, y) = (∇2 − k2)(∇2 + k2)z(x, y) = 0 (5)

where k2 =
√

ρω2

D
. It is shown in [4] that equation (1) yields two eigenvalue

equations of second order for k. As with the usual Sturm-Liouville formalism,
the trivial boundary conditions given allow a complete countable infinite family
of orthogonal solutions zij depending on two integer parameters i and j. Each
of those zij(x, y) is what we calledmode of vibration, and their orthogonality
arises from our clamped boundary conditions, as demonstrated in [1]. For our
clamped boundary conditions, it appears that the zij(x, y)’s are product of sine
and cosines with modulating hyperbolic functions. Graphs of those specific so-
lutions for the first modes were provided to us by Mark Orchard-Webb (see [7]),
and are given in annex B. Also, the index i can be seen to represent the number
+ 1 of node lines parallel to the y-axis. And similarly for j with the y-axis
replaced by the x-axis.

Using the principle of superposition, we can obtain the general solution:

Z(x, y, t) =

∞
∑

i=1

∞
∑

j=1

Aijzij(x, y)sin(ωijt+ φij) (6)
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where the phases φij and the constants Aij are determined by the initial and
boundary conditions. From that, we deduce a qualitative property for the mod-
ular distribution: the presence of symmetric and antisymmetric mode shapes
relative to each axis. Now the orthogonality of this basis implies that if we
drive the system at one of the eigenfrequencies ωij , all the terms vanish except
those with the same eigenfrequencies (degeneracy happens when i 6= j). We
can thus excite specific modes of the system. An analogy can be made with
a measurement in quantum mechanics which projects the system into one of
its eigenstates. Finally, the eigenvalues k2 give an expression for the natural
frequencies in terms of i and j:

fij =
ωij
2π

=
λij

2

2πa2

√

D

ρ
(7)

where λij
2’s are dimensionless parameters, function of the mode, and which are

given in [6].

2.2 Q-factor and decay

The quality factor Q characterizes the degree of damping of an oscillating system
and can be defined as the ratio of the energy stored in the oscillator to energy
lost per radian of oscillation. Hence, from this definition, it can be deduced
that lightly damped oscillators have large Q’s in comparison to those heavily
damped. Toward this notion, we consider a small area dA of the plate and
approximate its equation of motion to a forced damped harmonic oscillator:

F = (ρz̈)dA = Fspring + Fdamping + Fdriving = (−kz − bż + F0 cosωt)dA (8)

where F0 is the amplitude per unit area of the driving force at angular frequency
ω due to the speaker. Similarly, k represents locally the spring constant related
to the rigidity of the material and b, a damping factor. We obtain

z̈ + γż + ω0
2z =

F0

ρ
cosωt (9)

in which γ = b
ρ
and ω0

2 = k
ρ
. The γ factor is directly observed by an analysis of

the transient behavior. Without forcing, we remark a decrease in the frequency

z(t) = A(t)cos [ω1t+ φ] = Ae−
γt
2 cos [ω1t+ φ] (10)

since ω1 =
√

ω0
2 − γ2

4
. Also, notice that the amplitude is exponentially decay-

ing. The average energy 〈E(ω)〉 being proportional to A(t)
2
, it can be shown

(see [3]) for small damping (γ ¿ ω1) that the average energy follows an expo-
nential decay

E(t) = E0e
−γt (11)
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Figure 1: Lorentzian and FWHM ∆ω ω0 is the resonant frequency.

and that Q is given by the simple formula

Q =
E

4E per radian
=
ω0

γ
(12)

In a second step, we come back to equation (9) and find this time the steady-
state behavior for the lateral displacement. The solution takes the form z =
A cos(ωt+ φ) with amplitudes A and phase φ given by

A =
F0

ρ [(ω0
2 − ω2)2 − (γω)2]

1
2

(13)

φ = arctan

[

γω

ω2 − ω0
2

]

(14)

An exact expression for 〈E(ω)〉 can be derived (see [3]). Assuming again light
damping, it exhibits a Lorentzian shape as in figure 1 with maximum amplitude
when ω = ω0, at resonance. Sketched on the picture, the bandwidth 4ω is
calculated at half this maximum and actually equals γ. We use equation (12)
and arrive to this relationship:

〈E(ω)〉 ∝
1

(

ω
ω0
− 1

)2

+ 1
4Q2

(15)

The analysis of these resonance peaks provides an alternative way of eval-
uating the Q of the system. Finally, the fact that at resonance we observe a
phase shift in equation (14) and on picture 2 facilitates the determination of the
natural frequencies during the experiment (see section 3.3.2).
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Figure 2: Lorentzian and phase shift. This picture was taken in [3], p.
425. φ represents the phase between the driving force and the response of the
oscillating system.
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2.3 Lock-In system

In our lab, the Lock-In component achieved the same task that we describe
in this section. The mathematical problem consists of extracting information
about the the amplitude A and phase φ from a signal Vs(t) = A sin(ωt + φ) of
known frequency. A reference square wave Vref0 in phase with Vs and having
the same frequency ω is generated. Superposing these functions, we calculate
the mean value over a period T of this resulting signal and find:

〈V0〉 = 〈Vs(t)Vref0(t)〉 =
1

T

T
∫

0

Vs(t)Vref0(t)dt ∝ A cosφ (16)

The same procedure can be completed using another reference signal Vref90

with the same shape but now out of phase with Vs. A similar integration leads
to 〈V90〉 = 〈Vs(t)Vref90(t)〉 ∝ A sinφ with the same proportionality constant.
Combining these relations, we obtain expressions for A and φ.

A ∝
[

〈V0〉
2
+ 〈V90〉

2
]

1
2

(17)

tan(φ) = −
〈V90〉

〈V0〉
(18)

Note that these results are sufficient for our purposes since only the general
shape of the amplitude is needed rather than its precise value in this experiment.

2.4 Non-linear oscillations

A brief discussion here shows the main results that are derived in [5] and [2].
When anharmonic terms are added in the equation of motion, a perturbation
expansion reveals an amplitude dependence of the eigenfrequencies. The non-
linearity removes the symmetry of the resonance curves (see parts a) and b)
of figure 3). Near resonance, the amplitude of oscillation can possess three
solutions contained in a cubic equation.

Physically, we remark a peculiar behaviour called hysteresis: two amplitudes
of oscillation are possible for the same driving frequency and depend on the path
used. If we gradually increase the frequency, the amplitude increases along ABC
(see figure 3, part c) and falls discontinuously to E. On the other hand, a decrease
in frequencies will exhibit an abrupt gain occurring at the lower value D.
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Figure 3: Non-linearity effects in the amplitude shape. Note the hys-
teresis of amplitude in part c) of the picture. This picture was taken on p. 89
of [5]
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3 Experimental Procedure

3.1 Overview

Considerable amount of time in this laboratory was spent doing experimental
manipulations. The experimental setup was not overly complex, but needed
some time to become acquainted with, and needed many fine tuning. Section 3.2
will describe in details this intricate setup.

We can organize the experimental manipulations for this lab in three parts:
the preparation (section 3.3), the main experiment (section 3.4) and finally some
complementary measures (section 3.5). During the preparation, we first assem-
bled the setup which consisted mainly of an audio system which could excite
the modes of vibration of an aluminum plate clamped in a metallic frame; a
mechanical system which held a sensor just above the plate to detect its vi-
brations and which could be controlled remotely (by hand or with a computer);
and an analysis and control system which consisted of an oscilloscope and
a computer, connected to the other components through a Lab Master inter-
face. After this assembly, the sensor was calibrated (see section 3.3.1) and the
frequencies of resonance of the vibrating plate were found (roughly) using an
oscilloscope to analyze the sensor output.

For the main experiment, we first did a complete mapping of the amplitude of
vibration in function of the position on the plate, for different frequency ranges,
using a software which could control the mechanical arm and the frequency of
our audio system (see section 3.4.1). We then studied the damping behaviour of
the vibration of the plate by measuring the amplitude of oscillation in function
of time, at one point on the plate, just after turning off the audio system, using
the computer and the Lab master.

Finally, as complementary measures, we drove the plate in the non-linear
region using a higher volume, and measured the amplitude of vibration in func-
tion of frequency for different paths in the frequency space. This permitted us
to study hysteresis. Also, we tried to break the degeneracy of the 1-2 mode by
changing the orientation of the speaker with respect to the plate.

3.2 Setup and Apparatus

A block diagram describing the setup is shown in figure 4. The numbers written
in parenthesis in the present section make reference to the corresponding parts
in the block diagram. A picture of the mechanical region of interest for this
experiment is shown in figure 5.

3.2.1 Drum assembly

A thin square aluminum plate (1) (15 cm of side) was suspended directly above a
loudspeaker (2) which served as the time varying driving force for the vibrating
plate. The plate was held solidly with clamped boundary conditions, parallel
with the table, in a metallic frame. A mechanical arm held a sensor (3) (a
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Figure 4: Block diagram of experimental setup. The mechanical system
is shown in blue, the audio system is red and the control and analysis system is
green. 10



Figure 5: Picture of mechanical region of interest. This picture, repre-
senting the region around the vibrating plate, was taken from [7].
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component consisting of an infra-red LED and a photo transistor in one package)
at a fixed distance above the plate. A picture of this part, taken from [7], is
shown in figure 5. The sensor was powered by a DC power supply (4) which
was set at 24 Volts during the whole experiment (see the section 3.3.1 about
calibration for more information about this). The level of the plate could be
arranged with the level adjustment screws (see figure 5).

3.2.2 Motor system

Two stepper motors could control the movement of the sensor above the plate,
one in the radial direction (5), and one in the angular direction (6), the axis of
rotation being directly above the center of the plate. Each motor was steered
by a driver ((7) and (8) for the radial and angular motor respectively) which
could be either controlled manually, or remotely by the computer using the Lab
Master. The angular motor had its own power supply (9), whereas the radial
motor used the sensor power supply (4).

3.2.3 Audio system

A Wavetek signal generator (10) sent a sine wave to a conventional audio ampli-
fier (11) which was in turn connected to a 5” loudspeaker (2), located just under
the aluminum plate. The speaker was put on a foam box in order to attenuate
its vibrations and to obtain a stable sound direction. The output of the signal
generator was also feeded into the channel 1 of a Tektronix oscilloscope (13), in
order to be compared with the signal from the sensor output, connected to the
channel 2.

3.2.4 Lock-in amplifier

As described in the theory in section 2.3, a Lock-In system can be used to extract
phase and amplitude information from a signal. The reference frequency was
received from a digital output channel from the signal generator (10). The signal
to analyze was given from the sensor output. The Lock-In amplified this latter
signal and outputted the < V0 > and < V90 > DC voltages which permitted us
to compute the phase and the amplitude of vibration of the plate according to
equations (17) and (18).

3.2.5 Computer, Lab Master and Softwares

We made heavy use of the computer in this experiment. The Lab Master permit-
ted us to convert digital to analog signal and vice versa, in a format analyzable
for the computer. The ports (13) in the Lab Master were used to send a contin-
uous voltage to the motor control drivers which would determine their direction.
The clocks (14) were used to send digital pulses to the motor drivers to make
them run by steps. In addition, the digital output of the signal generator (10)
was also connected to a clock, so that we could measure the frequency of our
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driving force. A DAC (digital to analog converter) (15) was used to send a volt-
age to the signal generator in order to control, with the computer, the frequency
of the sine wave produced. Finally, the output of the Lock-In amplifier (16) was
transformed into a digital signal with the ADC channels (17) so that we could
record the phase and amplitude information with the computer (18).

3.2.6 Computer and Softwares

Here is a list of the softwares that we used exclusively for this experiment.
These were programmed in C by Mark Orchard-Webb (see [7] for the docu-
mentation). Each one will be described more in details with their use in their
relevant sections.

• motor Used to control the motor.

• freq con Used to control the frequency and study the output signal of
the sensor.

• drumscan Used to scan the whole plate to find the amplitude of vibration
in function of position.

• makegrid and cart2rad Used to build a grid of the plate in a format
understandable by drumscan.

• drumsamp Used to study the decay of the oscillation.

• drumscan process Used to analyze the output of drumscan.

3.3 Preparation

3.3.1 Calibration

The first thing we did was to find the output DC voltage of the sensor in function
of its distance with the reflective surface. It was done with a vernier having a
reflective surface glued on it; and the voltage was measured using a digital
voltmeter1. The plot we found is shown in annex A, figure 18. Even if we can
see on this graph that the sensor was saturated (according to the specifications
for a TRW sensor, the curve should be smooth, not cut-off like ours), we decided
to keep this calibration (with the power source for the sensor operated at 24 V)
in order to have the maximum sensibility in the linear region. The slope of 21
V/mm means that we could measure oscillation of at most 8 V (to be safe), i.e.
of about 0.3 mm, without getting out of the linear region. Later, it was checked
on the oscilloscope that indeed the oscillations of the plate yielded a maximum
variation of the voltage output of the sensor of the order of 1 or 2 Volt (so
oscillations of about 0.1 mm maximum) (this was for non-linear oscillations of
the plate). We have then positioned the plate at a distance of about 2 mm from

1We could witness the sensibility of the sensor during this part: putting scissors on the
table where the vernier stood gave rise to variation of about 0.03 V!
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the sensor (corresponding to a DC voltage of about 12 V), in order to be in the
middle of the linear region, using the level adjustment screws. We then tried to
make sure the distance between the plate and the sensor was kept constant as
we move the sensor around the plate, by fiddling with the 4 adjustment screws.
But we didn’t succeed to reduce the variations under about 4 volts, because
of the great sensibility of the sensor. Since only variation of voltage at a point
would be measured, this didn’t really matter. But it could mean that the plate
wasn’t totally parallel with the sensor surface, and this increases the error we
make on the amplitude of oscillation we measure.

The other part of the preparation was to calibrate the motors. By controlling
them with the program motor which could make them move by a specific number
of steps given as argument, we could measure that the angular motor did a whole
turn in 720 steps (hence 0.5 degrees per step) and that the radial motor made
the sensor to travel for 55± 1 mm in 6000 steps, or 9.1± 0.2µm per step.

3.3.2 Finding resonant frequencies

Using an oscilloscope in X-Y mode, we could compare the amplitude and phase
of oscillation of vibration of the plate vs. the signal sent to the speaker. As
explained in the section 2.2 of the theory, there should be a 180o shift of the
phase between the oscillating medium and the driving medium when passing the
resonant frequency. On the screen of the oscilloscope in X-Y mode, we could
observe a diagonal line transforming into an ellipse when we were approaching
a resonant frequency. So by sweeping through frequencies between 50 Hz and
800 Hz and watching for ellipses on the oscilloscope, we could find roughly the
first 6 resonant frequencies of the plate.

3.4 Main Experiment

3.4.1 Mapping Mode

After having identified roughly the resonant frequencies, we could start to study
the amplitude of the vibration of the plate in function of position, close to these
frequencies, using the scanning program.

By using the program freq con, we could control (interactively) the fre-
quency of the signal generator by integer steps (which corresponded roughly to
0.06 Hz per step for the 200 Hz scale of the generator) with the DAC output of
the Lab Master (as shown in the block diagram in figure 4). The program also
displayed in real time the phase and amplitude2 information about the sensor
signal, as computed from the V0 and V90 outputs from the Lock-In amplifier
with equations (17) and (18), connected to ADC channels in the Lab Master.
The frequency of the signal generator was measured using its digital output
connected to the Lab Master, and also displayed on screen. The ADC channels

2Of course, in the remaining of this lab, when we say that we measure the amplitude of
oscillation, we mean simply that we are measuring something proportional to the amplitude.
To measure its precise value, we would need a couple of proportionality constants which are
not important in this qualitative laboratory...
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of the Lab Master could accept only input voltages between -10 V and 10 V
(and measured them with a precision of 5 mV). The Lock-In amplifier had a
gain knob which permitted us to adjust its output voltage to be in this range.

So first, we tried to find the position on the plate of the maximum amplitude
of oscillation at resonance using the freq con program and the oscilloscope.
Then, we lowered the level of the audio amplifier until we felt that if we would
lower it more, we would obtain only noise signal and not a clean oscillation
behavior (this was checked with the oscilloscope in X-Y mode). Finally we
adjusted the gain of the Lock-In amplifier so that the maximum amplitude was
about 5 V. This was done in order to be sure that we wouldn’t saturate the
ADC channel while scanning the whole plate, but that we would minimize the
discreteness error by having a sufficiently high signal. Also, the reason why we
tried to use very low volume of the audio amplifier for the mode mapping was
to keep the oscillating system as much as possible in the linear region. On the
other hand, we had to keep the volume high enough not to measure only noise.
We needed a compromise between the two and this was done by fiddling around.
Also, we noticed that the apparatus was very sensitive to outside disturbance
(as voice, impacts, etc.). We have thus ran our mapping of the modes during the
night (especially since there was construction being done very close by during
the day!).

After having done those settings, we could use the drumscan program which
did the plate scanning automatically. This program made the sensor follow a
predefined grid above the plate, sweeping through a fixed frequency range at
each point of the grid and recording the average and standard deviation from
the mean of Lock-In signals at each frequency of driving, and outputted these
to standard output (which could be redirected to a file for further analysis with
the drum scan program). It controlled the mechanical arm using the ports
and clocks of the Lab Master (as already mentioned in section 3.2.5), with the
calibration of the motors (see 3.3.1) given as a configuration file. The grid
datafile was built using the makegrid and cart2rad programs which yielded
an heuristically optimized path that the arm should follow (in polar angles) to
cover the whole grid. The frequency range was chosen so that we were sure that
the resonant frequency would be inside it (we have observed shifts of resonant
frequency of about 5 Hz for different runs). A typical run of the program
was with 2048 measures per frequency, a range of about 100 integer steps of
frequency, and a 13x13 grid covering a region of 14 cm x 14 cm of the plate; and
lasted around 3 hours. Using a batch file, we could program several runs during
the night, for the same frequency region (since we couldn’t hardly calibrate the
gain and volume setting for different frequency ranges, we could only use one
region in the frequency space at a time). We had to be careful, though, to
replace the sensor at the origin after each run, since it didn’t exactly go back
there.

15



3.4.2 Q-factor

Using the program drumsamp, we could record the amplitude of oscillation of
the plate in function of time (using the Lock-In signal for the amplitude, as
usual, and the computer clock to record the time). Immediately after having
started the program, we turned off the speaker, so that we could record the
damping behaviour of the plate. This will be used in the data analysis section
to compute the Q-factor.

3.5 Complementary Measures

3.5.1 Hysteresis

To study the non-linearity of vibrations of the plate, we drove the fundamental
mode with a loud enough volume so that we could start hearing the plate vibrat-
ing! We then measured the amplitude spectrum at the origin of the plate with
the drumscan program, with one run going from lower to higher frequencies,
and another run going from higher to lower frequencies (so that we could study
hysteresis).

3.5.2 Perturbation and degeneracy

We finally tried to excite the simple modes of the 1-2 degenerate mode found at
217 Hz, by changing the direction of the speaker. More on this in section 4.4.

4 Results and Data Analysis

4.1 Determination of resonant frequencies and Mode Map-

ping

As explained in section 3.4.1, the program drumscan permitted us to scan the
whole plate for an amplitude spectrum at each point. To analyze this data, we
used the program drumscan process, also programmed in C by Mark Orchard-
Webb. This program could mainly do two things for us: it could output the
amplitude spectrum at the point where the maximum amplitude of vibration
occurred in the grid (and also gave at which frequency this maximum was
recorded). It could also return a 3D surface plot with contour lines of the
maximum amplitude at each of the grid point (maximum over all frequencies
at each point). This latter option was used to identify which mode of vibra-
tion was excited, by comparing them with the theoretical modes which were
obtained from equation (6) in section 2.1. The former option will be useful in
the Q-factor part (see section 4.2). In the next section, we present a qualitative
analysis of the mode shapes obtained.
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Figure 6: Drumscan process 3D surface output representing the ampli-
tude scanning for the 210Hz to 226Hz range. This scan was taken using
a 13x13 grid on a 14 by 14 cm square of the plate centered at origin. The
maximum amplitude was recorded at the position (-1.2 cm, -2.3 cm) and at the
frequency of 217 Hz. The number of amplitude measures taken by the computer
for each specific frequency and grid point was 2048. The number of frequency
steps taken in the 210Hz to 226Hz was 240. The scanning took about 8 hours.

4.1.1 Mode Mapping

The 3D plotting option of the drumscan process program was useful to provide
a quick way to visualize the data. An example of the 3D plot it produced for
the amplitude scanning in the 210 Hz to 226 Hz region is shown in figure 6. 3D
plots depicting the theoretical shapes for the first modes of vibration (simple
and degenerate up to the 5-5 modes) of the plate were provided to us by Mark
Orchard-Webb. The 1-2 degenerate mode is shown in figure 7. We can easily see
that this theoretical mode is very similar to the one we obtained in the 210 Hz
to 226 Hz region.

We considered the resonant frequency to be the frequency at which we ob-
tained the maximum amplitude of vibration (this was outputted by the analysis
program). By looking at the shape of the amplitude spectrum at the point of
highest amplitude in the grid (also given by the analysis program), we could see
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degenerate 1-2 + 2-1

Figure 7: Theoretical shape of the 1-2 degenerate mode. This picture
was provided to us by Mark Orchard-Webb.
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Figure 8: Drumscan process max amplitude spectrum output for the
amplitude scanning in the 210Hz to 226Hz range. This data is associated
with the one used in figure 6. This graphs the average amplitude recorded at the
point (-1.2 cm, -2.3 cm) of the grid (where the global maximum of amplitude was
recorded) for each frequency (2048 measures per frequency). The error bars on
the graph come from the standard deviation computed by the drumscan program
while taking the 2048 measures.

it was justified. An example for the 210 Hz to 226 Hz range is shown in figure 8.
The maximum amplitude was recorded at 217 Hz. We could guess at first sight
of this graph that the main peak represents a Lorentzian (as is predicted by the
theory for harmonic oscillator in section 3.4.2 in equation (15) and figure 1).
And indeed the 217 Hz peak is in the middle of this Lorentzian. The Lorentzian
shape will be discussed more in section 4.2 about the Q-factor.

We have mapped the vibration modes for the first 4 resonant frequencies of
103, 217, 342 and 408 Hz, as well as for the 684 Hz frequency. Those frequencies
correspond to the frequency where the maximum amplitude was reached. The
mode shapes obtained are presented in appendix B, with the theoretical graphs
for comparison. The mode mapping is summarized in table 2, in next section.
As a whole, we can say that we have a very good correspondence between our
measured mode shapes and the theoretical ones. For comparison (and to witness
that there is no doubt about our matching), the other first theoretical modes

19



are also given in appendix B. Note that for each mode where there could be
degeneracy (the 1-2 and 1-3 modes in our case), we have obtained the degenerate
mode rather than a specific simple one. This makes sense since physically, if
our system is symmetric, there shouldn’t be any reason why one of the simple
modes should be more excited than the other. So we obtain an equal linear
combination of the two (the degenerate mode). This means that our system
was indeed approximatively symmetric.

It should be mentioned that the drumscan process program uses the max-
imum amplitude found at a specific point for all frequencies, to produce those
3D plots. But since the amplitude of vibration is so much greater at a resonant
frequency than at other frequencies, we can assume that the graph produced
by drumscan process represents well the shape of the vibration of the plate
at the resonant frequency. When we compare the result in figure 6 with the
theoretical mode in figure 7, we can conclude that this is a justified assumption.
On the other hand, an option in the drumscan process program permitted us
to isolate certain frequency ranges, so that if we had two resonant frequencies
in the same datafile, we could graph the amplitude plot of each one separately.
This gave us the occasion to study the difference between the simple 1-3 mode
and the degenerate 1-3 mode, as will be described now.

Figure 9 shows the amplitude spectrum for the 375 Hz to 427 Hz range.
This was used to study the mode shape of the 408 Hz resonant frequency. A
very noticeable second amplitude peak can be seen on this graph around 396
Hz. For this range of frequencies, the mode shape found was identified to
be the 1-3 degenerate mode. But guided by the strange peak at 396 Hz, we
decided to investigate (isolate) the mode shape for frequencies under 398 Hz
(where it was noticed on the graph that the amplitude peak at 396 Hz became
dominant). It appeared that this mode shape was the simple 1-3 mode! For a
better visualization tool, we used Matlab. The comparison between the 375 to
427 Hz range mode shape with the 1-3 degenerate theoretical mode is shown
in figure 10. The isolated mode shape for the 375 to 398 Hz range is shown in
figure 11, with the theoretical 1-3 simple mode.

This split could be due to small perturbations on the plate which would be
frequency dependant. Drawing a parallel to quantum mechanics and the pertur-
bation theory, the degenerate mode 1-3 can split in two different eigenfrequencies
when a small perturbation is included. The fact that we still obtained the 1-3
degenerate mode (instead of obtaining the 1-3 and 3-1 modes with different fre-
quencies) suggests us that this perturbation could depend on the frequency (so
that it doesn’t affect the plate at 408 Hz, for example). This kind of pertur-
bation could be induced by vibration modes of the drum assembly frame, for
example.
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Figure 9: Amplitude spectrum for the 375 Hz to 427 Hz range. The
resonant frequency was found to be at 408 Hz. Notice the second peak of
amplitude at 396 Hz.
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Figure 12: Example of saturation. This represents a mode shape taken in
the frequency region around 217 Hz when the ADC input was saturated.

Finally, we give an example of saturation of the ADC input. A mode shape
for the frequency region around 217 Hz when the Lock-In was badly calibrated is
shown in figure 12. We can see that it is not clear if this represents a 1-2 simple
or degenerate mode. This reminds us of the importance of good calibration; but
it was in fact very hard during this experiment to obtain the proper settings on
the first shot.

4.1.2 Resonant frequencies

We recall equation (7) which gives the eigenfrequencies of vibration of the plate:

fij =
λij

2

2πa2

√

D

ρ
≡ Aλ2

ij (19)

where A becomes a constant characteristic of the plate, and the λij ’s depend
on the mode of vibration and are given in [6]. This equation gives a linear rela-
tionship between the resonant frequencies fij and the dimensionless λ2

ij which
we can use to find the constant A using our measured frequencies. Table 1 gives
the values of the physical parameters characterizing the plate and which gives
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Length a (1.50± 0.01)× 10−1 m
Thickness h (3.1± 0.1)× 10−4 m

Density of aluminum 2.77× 103 kg/m3

Young’s Modulus E 7.24× 109 N/m2

Poisson’s Ratio ν 0.33
Mass/unit area of plate ρ 0.86± 0.06 kg/m2

Flexural Rigidity D 0.20± 0.02 N ·m
proportionality constant A 3.4± 0.2 Hz

Table 1: Parameters for our setting The second part of the table gives
computed values.

Mode λ2
ij measured freq theoretical freq

± 5 Hz Hz

1x1 36.13 103 123
1x2 73.75 217 251
2x2 108.80 342 370
1x3 132.50 408 450
2x3? 165.88 522 564
3x3 220.90 684 751

Table 2: Measured frequencies of resonance and mode mapping. We
note that we haven’t done the mode shape scanning at the 522 Hz frequency, so
that’s why we put an interrogation mark beside the 2x3 mode. The 5 Hz error
was estimated by the shift in resonant frequencies that we regularly observed
(due to temperature changes, for example).

a value for A. Note that the relatively big incertitude on A is caused mainly by
the big incertitude on the thickness of the plate.

Table 2 gives the resonant frequencies that we have measured (using the
maximum amplitude during the mode scan; except for the 522 Hz frequency
which was simply measured using the oscilloscope), together with the theoretical
frequencies predicted using the measured A according to equation (19). Those
results are also depicted in a graph in figure 13, where a linear fit is done
through our measured frequencies of resonance in function of λ2

ij . The value of
A obtained is 3.2 ± 0.1 Hz; which is just inside the range of the the 3.4 ± 0.2
value predicted by the theory. But most importantly, we truly see on this
graph that the relationship between fij and λij is linear. We can also observe
on the graph that all our measured resonant frequencies are lower than the
theoretical predictions. This could be due because air resistance was neglected
when deriving the equations of motion of the plate in section 2.1. But air truly
plays an important role in this system since it is responsible for the driving of
the plate. Moreover, according to the theory of simple harmonic oscillators, we

25



Figure 13: Frequencies of resonance The pink line is the theoretical predic-
tion for frequencies of resonance according to the parameters of our plate. The
black line is a linear fit through our experimental data.
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frequency γ Q-factor (decay) Q-factor (width)
Hz Hz

103 17.2± 0.4 38± 1 88± 20
408 16.6± 0.4 154± 4 146± 20

Table 3: Q-Factor comparison between the decay method and the
width method. Both γ and Q-factor (width) were obtained using nonlin-
ear fitting. The error on γ was given by the nlparci function in Matlab. The
error on Q-factor (width) was estimated by changing the modelling equation
(using simple or double Lorentzian; with fixed or variable resonant frequency,
etc.) and observing the change in the resulting Q-factor.

know that the damping causes a shift of the resonant frequencies toward the
lower frequencies, explaining our observation.

4.2 Q-factor

Using the program drumsamp3, we obtained the sensor output in function of
time just after we had shut off the speaker in order to observe the damping
behaviour of the system. By subtracting the DC component of this signal and
the resulting AC voltage, we obtained a quantity proportional to the square of
the amplitude of vibration of the plate, and so proportional to its energy. We
have measured this transient behaviour at the origin of the plate at 103 Hz and
at 408 Hz (since they were the two only modes with a prominent maximum at
the origin). We measured the signal for 1 second at a frequency of 1000 Hz.
The resulting analyzed graph for the 408 Hz resonant frequency is shown in
figure 14. Very similar results were obtained for 103 Hz. From equation (11),
we see that we should obtain a decaying exponential. By fitting E0e

−γt with
E0 and γ as variable parameters, using the nonlinear fitting function nlinfit

of Matlab, we have obtained an estimation for γ, and thus Q since Q = w0/γ
according to equation (12) (with w0 in rad/sec). The results for both frequency
of resonance are given in table 3. We can see that the γ factor is the same (taking
in consideration its error) for both frequencies, meaning that the damping is not
dependent on frequency. This is what is usually assumed when considering a
simple harmonic oscillator.

The other mean by which we could evaluate the Q-factor was with the
FWHM of the energy peak in the frequency space. Figure 15 shows energy
spectra for the 103 Hz and 408 Hz scans (obtained by squaring the amplitude

3To use this program, we needed to connect directly the sensor output to the Lab Master
(without passing through the Lock-In amplifier). We thus needed to decrease the DC power
source of the sensor to 12 V in order to obtain a voltage acceptable to the Lab Master. A
quick calibration of the sensor showed that we stayed in the middle of the linear region of its
response.
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from an exponential fit using Matlab.
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spectrum). We present the double Lorentzian:

A
(

ω
ω0
− 1

)2

+ 1
4Q2

+
B

(

ω
ω1
− 1

)2

+ 1
4Q2

2

(20)

where all letters are variable parameters except w which is the independant
variable. w0 and Q are the relevant resonant frequency and Q-factor respec-
tively. We have fit this function in our energy spectra using Moosefit. The
Lorentzian shape was suggested according to equation (15), and the addition
of two Lorentzians was suggested by the dedoubling of the resonant frequency,
as already discussed in figure 9, in section 4.1.1. The result has been that the
energy curve does seem similar to a Lorentzian (as we can see in figure 15), but
it was really hard to make converging the fitting algorithm (we have proceeded
by steps; starting with the resonant frequencies constant and then letting them
vary) (explaining the big error estimate we gave on Q). Q was a parameter in
the fitting function, so the fitting program gave it directly. But it should be
equivalent to setting γ to be the FWHM of the peak.

We give the resulting values of Q using the Lorentzian model also in table 3.
We see in this table that the Q-factors for the two different means of computation
agree for 408 Hz but differ significantly for 103 Hz. This isn’t too much alarming,
since we noticed that the amplitude spectra were varying a lot from one run
to another, and sometimes had weird shape as in figure 8. We consider the
Q-value derived from the exponential decay method to be more trustful since
it yielded more coherent results from one run to another, and also because it
assumes less about the behaviour of the oscillating system (vs. considering the
energy spectrum to be a Lorentzian). But what is qualitatively important is
that they have the same order of magnitude, and that we can conclude that the
vibrating plate is lightly damped.

4.3 Non-Linearity

Two graphs are shown on figure 16 comparing the amplitude spectrum obtained
when increasing the frequency vs. when lowering the frequency, for two different
volume levels. This amounts to follow different paths in frequency space. Both
graph were taken at the origin of the plate, for the fundamental mode; and
200 measures were taken per frequency steps. The top graph corresponds to a
loud driving, but not enough to make the plate emitting a distinctive vibrating
sound. We see on this graph that the response is non-linear (since the curve is
not symmetric), but we don’t see any hysteresis yet since both paths yield the
same response. On the other hand, the lower graph of figure 16 corresponds
to a sound level where we just started to hear the plate vibrating. We clearly
see on this graph that the amplitude spectrum depends whether we are going
from left to right or right to left in the frequency space, and thus undergoes
hysteresis. We can compare figure 16 with figure 3 in section 2.4 to clearly
see a correspondence with classical nonlinearity theory. Surprisingly, though,
there was a sharp transition between when there was hysteresis and when there
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was none. By putting the volume just below the level where we would hear the
plate vibrating, we see no hysteresis at all; and then, by putting it some epsilons
above, we could witness a clear effect of hysteresis, as if the phase transition
wasn’t continuous. Maybe some power-law could be associated with this phase
transition...

4.4 Perturbation of Degenerate Modes

On the last day of experimentation, we tried quickly to perturb the degenerate
1-2 mode obtained at a frequency of 217 Hz. Using a 7x7 grid and a 30 steps
frequency range, we could scan the 217 Hz mode in half an hour with the
speaker in different orientations and position. We did obtain simple modes of
vibration instead of the degenerate one (because we had broken the symmetry
of the system) (see figure 17), but the lack of resolution of the grid made the
analysis very hard. We didn’t succeed to obtain a precise correlation between
the direction of the speaker and the direction of the mode we obtained (parallel
to X or Y axis). But at least we have succeeded to break the degeneracy of the
mode (as expected by perturbation theory).

5 Conclusion

The purpose of this experiment was the experimental study of an oscillatory
system (a clamped vibrating plate) with the help of the computer. This sys-
tem was simple enough to be understandable, but complex enough to possess
interesting properties as degeneracy of modes or hysteresis. Lots of calibration
and settings were needed to accomplish this task, giving us a good experience
of experimental methods.

In a first step, we directly observed the natural frequencies of vibration,
which are function of the geometry of the plate. Obvious correlations were
exposed between the measured spectrum and the predicted values. On a qual-
itative basis, the mode shapes found gave an even stronger argument in favor
with the theory. The Q-factor evaluation allowed us to conclude that our plate
forms a lightly damped oscillator. It also explained the shift in the resonant
frequencies we had measured. Attempts to remove degeneracies showed that it
can be achieved by introducing an asymmetry in the system which advantages a
particular mode. Finally, our observations proved the existence of the hysteresis
in overdriven systems.

At once, we wonder if the setup used could allow further investigations in
this domain. In hysteresis, the non-equilibrium state during the transition (from
one amplitude to the other) lasts a few cycles and could be studied with the
same tool used for the transient behaviour.
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Figure 16: Comparison between amplitude spectrum when increasing
frequency vs. decreasing frequency. The four curves were obtained at the
origin of the plate. For the bottom graph, the plate was driven such that we
could hear it vibrating; this wasn’t the case for the top graph.
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Figure 17: Perturbation of the degenerate 1-2 mode (217 Hz). This
shape was obtained after having displaced the speaker to the left (of X axis).
We clearly obtain a simple 1-2 mode.
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A Calibration

Figure 18: Calibration curve for the sensor

B Modes of Vibration

All the mode shapes that we have taken are presented in this annex, together
with the corresponding theoretical modes, as provided by Mark Orchard-Webb.
We have also included the other first theoretical modes as a reference. Those
modes were obtained by using 13x13 grids, 15x15 grids or 20x20 grids, depending
of when we ran them; and on 12 x 12 cm region or 14 x 14 cm region.
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Figure 20: Comparison between our amplitude map around 217 Hz
and the degenerate 1-2 theoretical mode.

37



"S339Hz.dat"
     750
     500
     250
       0

    -250
    -500
    -750

  -1e+03

x = -6 cm

x = 6 cmy = -6 cm

y = 6 cm

0

500

1000

Amplitude

simple 2-2

Figure 21: Comparison between our amplitude map around 342 Hz
and the simple 2-2 theoretical mode.

38



"Sav408Hz2.dat"
   1e+03

     750
     500
     250
       0

    -250
    -500
    -750

-6
-4

-2
0

2
4

6
X (cm) -6

-4
-2

0
2

4
6

Y (cm)

0

500

1000

Amplitude

degenerate 1-3 + 3-1

Figure 22: Comparison between our amplitude map around 408 Hz
and the degenerate 1-3 theoretical mode.
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40



simple 1-2

simple 1-3

Figure 24: Theoretical modes: simple 1-2 (top graph) and simple 1-3
(bottom graph).
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Figure 25: Theoretical modes: simple 2-3 (top graph) and degenerate
2-3 (bottom graph).
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