
A Virtual Machine Supporting Multiple Statechart Extensions

Thomas Huining Feng
Modelling, Simulation and Design Lab

McGill University, Canada
http://msdl.cs.mcgill.ca/

Keywords: Statechart Extensions, Virtual Machine, Model
Execution, Modularity, Model Reuse.

ABSTRACT

Because of its power in describing large systems, statechart
is widely used to model both software systems and physical
systems. As the distinction between the design phase and im-
plementation phase is becoming more and more insignificant,
it would be very nice if a model described in statechart can be
executed before it is finished. Moreover, early model analy-
sis, verification and code generation are also important.

Based on the implementation of the Statechart Virtual Ma-
chine, this article briefly describes the execution of statechart
models, and discusses three important extensions to the stat-
echart formalism in detail: submodel importation, tunable
transition priority to solve conflicts and parameterized model
templates.

INTRODUCTION
Statechart is a powerful tool to describe both software sys-
tems and physical systems. It is possible for an automatic
system to take in a (system-dependent) statechart model and
execute it, though the statechart semantics is not precisely de-
fined. Early model analysis, verification and code generation
are also desirable, because the boundary of design phase and
implementation phase in the development process is becom-
ing more and more obscure in the current trend. If a prototype
can be executed and tested before the model if finished, de-
sign errors can be discovered earlier, and the cost to fix them
is much less.

The SVM (Statechart Virtual Machine) is an attempt to the
execution of statechart models. It is also an experimental en-
vironment to test and analyze semantic elements in the state-
chart formalism. A statechart model is written in a text file,
which defines all its the states and transitions. The SVM ac-
cepts this self-contained (if it does not explicitly import other
models) textual model as input, and simulates its execution.

Since this article is not aimed at describing the general se-
mantics of statechart, the following sections will mostly fo-
cus on certain semantic extensions, which are found to be
very useful in specifying complex systems. For general def-
inition of the statechart semantics, the readers are referred to
these articles: [1], [2] and [3].

As mentioned, the dependence on system and programming

language still exists, though efforts are spent to minimize it.
More information about a rigorous system-independent se-
mantics for the UML statechart can be found in [4], [5] and
[6].

MODEL EXECUTION
The goal is to build a generalized simulator capable of exe-
cuting statechart models. There are two considerations: the
common properties of all the statechart models should be fig-
ured out and the simulator must support as many of them as
possible; enough flexibility is given to designers to build vir-
tually all kinds of models for the use in different fields. The
second consideration implies extensions must be made if the
original statechart formalism is not powerful enough.

� There must be some way to specify a statechart model,
either in a graphical form or in a textual form or both.
The simulator must be able to take in this description and
understand it. The language must be expressive enough
to support all well-defined semantic elements. Every
model written in this language must have a unique pre-
cise meaning. The simulator is in this sense a virtual
machine capable of interpreting this language and exe-
cuting the model (or the code generated from the model)
without ambiguity.

� A good virtual machine should be portable to various
systems itself. Otherwise, because currently there is no
standard on the statechart semantics or file format, there
is no hope for another virtual machine on another system
to fully support its language, so there is no hope for the
models designed in this language to be portable either.

� It is admitted that the statechart semantics exhibits its
weakness in some cases. I.e., when the state space grows
to an unlimited size (which is very natural in both phys-
ical systems and software systems), infinite number of
states must be created. If no extension is made to the
original statechart formalism, the use of the virtual ma-
chine is too restricted; if extensions are made, they must
not violate the basic rules like modularity, substitutabil-
ity, and in addition, reusability.

� The performance of the virtual machine is also impor-
tant, because the domains where it is used are unpre-
dictable. Some of them may have critical requirement
on performance.

� Other than merely simulating the execution of models,
the abilities of analyzing model performance, verifying

their correctness, testing (or debugging) them and gener-
ating code from them (if the virtual machine is not based
on an interpretive language) are also necessary.

SVM supports common semantic elements in statechart
including states and their properties (default, concur-
rent/orthogonal, final, enter actions and exit actions), tran-
sitions and their properties (events, sources, destinations,
guards and output), state hierarchy, history (H) and deep his-
tory (H*), and so on. Their semantics is described in other
articles (some of which are among the references) and will
not be repeated here.

There are still many cases where it is difficult to design a com-
plex and precise model with these basic semantic elements.
Extensions to them are discussed in detail in the following
sections.

SVM enables testing models in an early execution, and de-
bugging them in the run-time debugger. Testers are allowed
to look inside the model and execution environment. If they
know the Python script language, they can modify variables
or states.

IMPORTATION AND MODEL REUSE
The complexity of a statechart model exhibits itself even in
solving small problems. For larger systems the state dimen-
sion grows to such an extent that the model cannot be written
in a single file (or component). Furthermore, as the model be-
comes larger and larger, it is more and more difficult to keep
it modular and reusable.

Adding hierarchy to state diagram partly solves this problem.
Hierarchy itself has no definition on model reuse, i.e., how to
specify the reusing model, the reused model, and the behavior
of this reuse.

To design a good reuse scheme, the following two points must
be considered:

� Key behavior is guaranteed to remain intact in the reused
model for modularity.

� At the same time the reusing model is given enough flex-
ibility to adjust the behavior of the reused model.

SVM presents a general idea of model importation. An im-
ported model is a full-function model in its own right. This
means, instead of being imported only, it can also be executed
and tested as a separate component. When imported, all its
states and transitions are preserved. These states are certainly
not scattered about the importing model. Otherwise there is
no means to guarantee the well-formedness of both the two
models. So these imported states must be substates contained
in a single state of the importing model.

In SVM, for a model to import another, one of its states must
have the IMPORTATION property specifying (by name) which
model is to be imported. Then, it can be imagine that all the
states and transitions of the imported model are included in
this state. For example, because SVM uses a dot-notation
to denote the paths of states, we may have a state in model
M1 like A.B[import M2]. Also suppose there is a model M2

M1

A

B

IMPO RT M2

M2

C D

Figure 1: An example of model importation

with states C and D (they may have substates). Then after
the importation is actually done at run-time, C and D are sub-
states of A.B in the context of M1 (A.B.C and A.B.D). Prop-
erties of C and D are preserved, like Default, Concurrent
(or Orthogonal) and even their IMPORTATION properties if
any. All the transitions in M2 are also copied with the name
of source states and destination states accordingly changed.
However, after the importation is done, the run-time system
no longer has any knowledge about model M2. Its name is
completely forgotten.

Importing a model, though specified statically in the model
description file, is done only when necessary. In the example
where A.B imports model M2, only when a transition requires
a substate of A.B is the submodel loaded and its states are
combined with those of M1. This, though decreases the run-
time performance, makes it possible for a model to directly
or indirectly import itself. This recursive state hierarchy with
infinite number of levels usually simplifies complex systems.
A concrete example is given in the latter part.

When designing importation, there are two rules to follow:

� For the importing model, the submodel is a black box
with its own behavior. It is possible to specify param-
eters for it (described later), but the importing model is
not allowed to modify the behavior in the black box in
other ways.

� The imported model is not allowed to modify the behav-
ior of the importing model either. It only adds function-
ality to the importing model, or in another word, special-
izes one of its states.

The statechart simulator must conform to these rules to keep
modularity and substitutability.

Additionally, if a state specified to import also has its own
substates, i.e., state A.B in M1 imports M2 and it also has a
substate E, then a warning is given at load-time. This is be-
cause if states C and D defined in M2 are orthogonal states,
while A.B.E in M1 is not, then the three substates of A.B are
incompatible.

There is no limit on how many times a model is allowed
to import or be imported. Any of its states can be associ-
ated with an IMPORTATION property, and some or all of them
may import the same submodel. As long as the above well-

formedness rules are satisfied, the decision is left to the de-
signer.

UNTANGLING TRANSITION CONFLICTS
Whenever two or more transitions are enabled by the same
event there is a run-time conflict. All those transitions are ca-
pable of handling the event, and their guards are all satisfied.
To randomly pick one of them and fire it is not a bad idea.
However most of the simulators choose the transition in an
implementation-dependent way, so the model may run very
well in a system while misbehaves in another.

Two possible kinds of transition conflicts are described in [2].

� At least two transitions are enabled by the same event,
one of them is from a state at a lower level; the other is
from a higher level in the hierarchy.

� At least two transitions are enabled by the same event,
they have the same source state.

Solutions to the first kind of conflicts are found in both the
STATEMATE semantics [2] and the UML [7]. Unfortunately,
the solutions from the two sources are contrary: in UML, if
the source state of a transition is a substate of the source state
of the other, it gets higher priority; however, in the STATEM-
ATE semantics, it gets lower priority.

It is possible to customize the priority of transitions by setting
a global option in an SVM model: InnerTransitionFirst.
If it is true, the transition from an inner state always has
higher priority than the one from an outer state; and vice
versa.

This does not solve the problem completely, taking into ac-
count model importation. What if an inner-transition-first
model is imported into an outer-transition-first one (or the
contrary)? The rules of importation must be conformed to, so
neither the option of the submodel nor that of the supermodel
can be changed. In another word, a single global option is
not enough. The option must be allowed to vary in the state
hierarchy.

In SVM, there are two ways to modify this option:

� The first way to change transition priority is by im-
porting a submodel. The submodel has its own
global setting, either it is Inner Transition First=1
or Inner Transition First=0 (Default). This setting
is preserved when it is imported, and thus the priority of
its transitions is preserved.

� The idea is carried on by identifying the fact that a sub-
model is just a set of substates and transitions within a
state of the supermodel. Importing a model (ignoring
possible parameters) is identical with writing all its con-
tents in the appropriate places, with the paths of all its
states accordingly modified. In this view, it is also rea-
sonable to customize the priority of transitions within
the scope of any state.
This extension to the statechart is introduced in SVM.
Any state can have one of the following properties: ITF,
OTF and RTO. The ITF property means within the scope

of this state, inner transitions get higher priority than
outer ones. OTF takes up the contrary meaning. RTO (Re-
verse Transition Ordering) means the priority of transi-
tions within the state is different from its outer context.
A substate can override this setting of its parent within
its scope (constituted by itself and all its substates). If it
does not override this setting, it is subject to the setting
of its parent.

The term transition ordering is used in SVM because in its
implementation, transitions are sorted in a list in the decreas-
ing order of their priority. This is from the consideration of
run-time performance. Whenever a conflict occurs in the exe-
cution, the simulator blindly takes the first enabled transition
from the list, and this must be the one with highest priority. So
the sorting, though very complex due to the tunable transition
priority and importation, is carried out only when a model is
loaded by the simulator or imported.

Since a substate can have its setting which overrides its par-
ent’s, one may ask whether the substitution of a substate
affects the behavior of its parent, hence breaking modular-
ity. Obviously, this cannot happen, because the change of its
property is restricted in its scope.

S1

S2

S3

ITF

O TF

e

e

e

t1

t2

t3

Figure 2: Customizing the priority of transitions

Suppose there are three transitions t1, t2 and t3 as illus-
trated in Figure 2. When event e occurs, they are all enabled,
so there is a conflict of the first kind. To understand the prior-
ity of these transitions, one must first consider the outermost
state and then step inward. Because S1 is specified to be ITF,
the priority of t1 must be lower than both t2 and t3. Since
S2 is OTF, t2 has a higher priority than t3. So the ordering
by priority is t2, t3, t1.

Now suppose state S1 is OTF and S2 is ITF. Also consider the
outermost state S1 first. Because S1 is OTF, t1 has a higher
priority than t2 and t3; on the other hand, S2 is ITF, meaning
t3 has a higher priority than t2. So the order becomes t1, t3,
t2.

The consideration always starts from the outer states. It is
obvious that transitions in the inner states get higher priority
only when the outer states grant the priority to them by an
ITF. Conversely, OTF gives the transitions from outer states
higher priority regardless of the settings of their substates.
When the outer states are themselves substates, they are also
subject to the setting of their parents. This maintains the well-
formed behavior of the importing model.

On the other hand, because submodels always have their
global option InnerTransitionFirst, the priority inside
it is deterministic. The importing model is not capable of
changing the priority inside the black box either.

The use of these properties to customize transition ordering
gives extra power to statechart: the designer is able to explic-
itly specify which transition within a hierarchy gets the high-
est or lowest priority. Such a transition always has a turning
point as its source state. The transition ordering in the outer
context of the turning point is different from the context in-
side it; namely, this state has a property that changes the tran-
sition ordering, like S2 in the example. Of course, the highest
or lowest priority is a relative concept only applicable in a
certain scope.

To solve the second kind of conflicts, it is desirable to guar-
antee mutual exclusiveness of the transitions with the same
source state. But this is usually difficult, because transitions
have boolean expressions as guards, which only have their
value at run-time.

In SVM, each transition is associated with an integer priority
number. Whenever there is a conflict which cannot be solved
by the above scheme, the transition with the smallest priority
number is fired. By default, each transition has a priority of�

.

If conflicts are still found even if these two mechanisms are
used, the result is implementation-dependent.

PARAMETERIZED MODEL TEMPLATES
When reusing a model by importation, it is possible to specify
one or more parameters. In SVM, the parameterized model is
called a template, and a parameter is called a macro redefini-
tion.

Macros are defined in the MACRO part of the statechart text file.
Occurrence of the macro left-hand side is literally substituted
by the right-hand side before any processing of the model.
When a macro has parameters in parentheses following it, it
is much like a single-line function definition.

It is recommended that macros be widely used in the model,
because they reduces language-dependence (e.g., in the
guards and in the output part). As an extreme case, all these
parts are specified with macros, and then there would be no
programming language dependency in the model. Chang-
ing programming language only results in the change of the
whole macro set. If the macros are defined in the OCL or ac-
tion semantic syntax, then the model is universally executable
(in theory). It is possible to reach this point, because only
boolean expressions are accepted as guards, and only sequen-
tial commands are allowed for output.1

Macros can be redefined at load-time. When a model is first
loaded in the SVM environment, the redefined macros are
specified as command line parameters. When a model is
imported, the importing model may specify parameters for

1This is to say, it is not allowed to control the execution sequence with if
... then ... else ... clauses and for, while loops and so on. This
does not give a limit to the expressiveness, because the statechart structure
itself is always able to model these structures.

it. These parameters (redefined macros) override the origi-
nal macro definitions in it. For example, the DUMP macro is
defined as DUMP(msg)=print ’[msg]’ to print out debug-
ging messages in a reusable model. When it is imported as
a black box, the dump message is not important for the im-
porting model. The importing model thus gives a parameter
DUMP(msg)= to disable all debugging output from the sub-
model.

The outside world is able to modify the behavior of a model
only by parameters, which is defined in the model with its
consent. There is no way to modify its hard-coded parts.

A CONCRETE EXAMPLE

As a concrete example to show the expressiveness of SVM,
a model representing a queue with a capacity of 9 is given
here. When the model is executed, it accepts ��� events at
any time. Event arrive means an object arrives. The queue
length is increased by 1. Event depart means an object de-
parts and the queue length decreases. Events 0 to 9 change the
queue length accordingly (useful for initializing or resetting
the queue). Event get retrieves the current queue length.

If it is modelled in a straightforward manner, at least � � states
must be explicitly created and also ������� �	��
 ��� �� transi-
tions. Of course these similar states and transitions can be
created with a script running in the modelling environment,
but this means the statechart meta-model must be extended
to accept a scripting language, and this makes models less
portable.

Queue
Options :

In n e rT ra n s it io n F irs t=1
Macros :

M IN = 0
 M A X = 9
 IN IT = [MIN]
 F IRST = 1

Stable

Le ft

Importation: Queue
Parameters :

M IN = [MIN]+1
 M A X = [MAX]
 IN IT = [IN IT]
 F IRST = [FIRS T]

Right

Importation: Queue
Parameters :

M IN = [MIN]+1
 M A X = [MAX]
 IN IT = [IN IT]
 F IRST = 0

A fte r(0)
[[MIN] <= [MAX]] Temp

A fte r(0)
[[MIN] > [MAX] a n d [FIRST] == 1]

/ [INIT]

[MIN]

[MIN]

a rriv e /
[MIN]+1

d ep a rt /
[MIN]-1

g e t / o u tp u t [MIN]

Figure 3: A statechart example: a queue with a capacity of 9

With parameterized importation, only � states and � transi-
tions must be explicitly created, no matter it is a queue with
a capacity of 9, or a character cell representing a to z, or
even an integer cell representing 1 to 1000. The idea is to
structure all the possibilities in a bi-tree. Valid states in a
model execution include LEFT.LEFT.RIGHT...STABLE and
RIGHT.LEFT.LEFT.RIGHT.LEFT.RIGHT...STABLE. (There
are 11 levels in total, with the last one named STABLE.) The
rightmost RIGHT represents the current queue length. Sup-
pose the names in “...” are all LEFT, then the first snapshot
represents a queue length of 2, and the second represents 5.

0

1

2

3 11 levels

ST ABLE

ar r ive depar t

ar r ive depar t

ar r ive depar t

Figure 4: 27 nested levels are created by recursion (for sim-
plicity, LEFT states and RIGHT states are not distinguished)

The design is shown in Figure 3. Macros are shown in bold
font so that they can be easily distinguished from the guards.

The parameter [MIN] is the queue length for a certain level.
The [MIN] value of the next level is [MIN]+1, and then
[MIN]+2, until [MAX]. [INIT] is a constant for a model exe-
cution. It is the initial queue length, which is 0 by default.

When initiated, the model must nest deep enough so that the
transitions in the first level are duplicated (with only the event
names changed) 10 times (Figure 4). When the innermost
STABLE state is reached, events in all these states are accepted.
For the get event to return the queue length from the deepest
RIGHT state, the transitions in this model must be inner-first
ordered.

As illustrated in Figure 3, both the LEFT and RIGHT states
import the Queue model itself, whose default state is
STABLE. However, if the level is not deep enough (namely,
[MIN]<=[MAX]), the imported model changes to its LEFT state
immediately, which in its turn imports Queue and nests down
to the next lower level. So when the model is stable, the depth
of this nesting always equals to [MAX]+1.

Having nested deep enough ([MIN]>[MAX]) and the model
is being initialized ([FIRST]=1), the state changes to TEMP
— a dummy state, and at the same time an event [INIT] is
raised. Then the queue immediately changes to the initial
length. Whenever the first RIGHT state is entered, the model
is no longer being initialized and is able to accept events from
the user (possibly input from the SVM graphical interface).
The [FIRST] is set to 0 from then on.

When event 0 to 9 (the [MIN] value) is raised, the state in the
appropriate level changes to RIGHT. If it is already in RIGHT,
a self-transition back to this RIGHT state is fired. This tran-
sition, though seems to be superfluous, is actually important.
It is to eliminate the RIGHT states in all the lower levels, so it
becomes the deepest RIGHT state.

When the arrive event is raised, the transition from the
deepest RIGHT state is triggered. This transition does not
change the state but raises another event [MIN]+1. The lower
state (if any) receives this event and changes the state of the

model. It is similar for the depart event.

MACRO:
MIN = 0
MAX = 9
INIT = [MIN]
FIRST = 1

IMPORTATION:
myself = Queue.des

OPTIONS:
InnerTransitionFirst = 1

STATECHART:
STABLE [DS]
TEMP
LEFT [myself] [MIN = [EVAL([MIN]+1)]] [INIT = [INIT]]

[FIRST = [FIRST]] [MAX = [MAX]]
RIGHT [myself] [MIN = [EVAL([MIN]+1)]] [INIT = [INIT]]

[FIRST = 0] [MAX = [MAX]]
TRANSITION:

S:STABLE
T:0
C:[MIN] <= [MAX]
N:LEFT

TRANSITION:
S:STABLE
T:0
C:[MIN] > [MAX] and [FIRST]==1
N:TEMP
O:[EVENT(’[INIT]’)]

TRANSITION:
S:LEFT
E:[MIN]
N:RIGHT
O:[DUMP(’Current length is [MIN].’)]

TRANSITION:
S:RIGHT
E:[MIN]
N:RIGHT
O:[DUMP(’Current length is [MIN].’)]

TRANSITION:
S:RIGHT
E:get
N:RIGHT
O:[EVENT(’[MIN]’)]

TRANSITION:
S:RIGHT
E:arrive
N:RIGHT
O:[EVENT(str([MIN]+1))]

TRANSITION:
S:RIGHT
E:depart
N:RIGHT
O:[EVENT(str([MIN]-1))]

Table 1: Source text for the Queue model (Queue.des)

Table 1 shows the source text in the model description file.
Predefined macro EVAL is to evaluate a string. DUMP is to
dump a message to the output. EVENT is to raise an event.
Model-specific macros (which also serve as parameters) are
defined in the MACRO part. Once defined, they can be cited
anywhere in brackets. In a transition definition, S stands
for source state, E stands for event, N stands for new state,
O stands for output, C stands for condition, and T stands for
timed transition (the transition to be triggered after a certain
time from when the state is entered).2

2E and T are conflicting for a single transition definition.

If the model is run in the SVM environment with the pa-
rameter [INIT] explicitly given, the initial queue length is
changed accordingly.

ASSESSMENT AND DISCUSSION

This example illustrates a way to divide complex problems
into relatively simpler ones by reusing a model template. In
this manner, a nice design is more easily achieved, and the
work is less error-prone.

An assessment is made based on the requirements in section
Model Execution.

� The textual format of a statechart model is easy to pro-
cess by an interpreter. The semantics is a superset of the
statechart formalism. It is also very readable, because
different parts are clearly separated. The format is also
intrinsically modular, since each model is written in a
separate but reusable file.

� SVM is implemented in the Python language. It is
system-independent.

� Extensions are made to the statechart formalism.
Importation and parametrization are supported in SVM
to facilitate model reuse. A good model maximizes its
reusability by taking in parameters. In the previous ex-
ample, by setting the [MIN] and [MAX] parameters from
the command line, the model can be changed to have a
different lower bound and a different capacity, without
the necessity of modifying the model design.
The transition priority is tunable, so engineering models
(usually use the outer-first scheme) and software mod-
els (usually use the inner-first scheme) are compatible.
They can even be written in a single statechart file.
These extensions provide designers with great flexibility,
and at the same time modularity and substitutability are
guaranteed.

� Because SVM is a statechart interpreter on top of the
Python interpreter, the performance is relatively low. An
alternative is to build the system on a compilation lan-
guage such as C++. However, flexibility is lost, which is
important for a simulation environment.

� Since SVM is a virtual machine capable of immedi-
ately interpreting a model, compilation is not necessary.
Model analysis will be the topic of future work.

Other than those discussed above, more extensions are intro-
duced in SVM including the initializer and finalizer of mod-
els, since a generalized statechart simulator is incapable of
performing model-specific initialization or finalization. The
user interface of the execution environment can be specifi-
cally provided in the model. Timed transitions are automat-
ically fired at a certain time after a state is entered; repeated
timed transitions are used to simulate pulling an object (re-
peatedly testing a boolean expression or invoking a method,
until a condition becomes true).

More statechart examples and the python source for SVM are
available at http://msdl.cs.mcgill.ca/people/tfeng
/?research=svm [8].

CONCLUSION
Extensions to the statechart formalism are presented in this
article, including submodel importation, tunable transition
priority to solve conflicts and parameterized model templates.
These extensions add expressive power to statechart. Tun-
able transition priority allows designers to explicitly specify
which transition is actually fired in case of a conflict; impor-
tation and parametrization together allow designers to build
up more complex models from simpler ones or use the re-
cursion idea to simplify problems. These features guarantee
modularity and substitutability. A concrete example is given
to illustrate their usefulness.

ACKNOWLEDGEMENT
Special thanks to Prof. Hans Vangheluwe for his excellent
supervision and advice!

REFERENCES

[1] David Harel. Statecharts: A visual formalism for
complex systems. Science of Computer Programming,
8(3):231–274, June 1987.

[2] David Harel and Amnon Naamad. The STATEMATE se-
mantics of statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4):293–333, 1996.

[3] Michael von der Beeck. Astructured operational seman-
tics foruml-statecharts. Software and Systems Modeling,
1(2), 2002.

[4] Alcatel, I-Logix, Kennedy-Carter, Inc. Kabira Technolo-
gies, Inc. Project Technology, Rational Software Corpo-
ration, and Telelogic AB. Action Semantics for the UML.
Document ad/2001-03-01. OMG, 2000.

[5] Gerson Sunyé, François Pennaneac’h, Wai-Ming Ho,
Alain Le Guennec, and Jean-Marc Jézéquel. Using
UML action semantics for executable modeling and be-
yond. In Advanced Information Systems Engineering.
13th International Conference, CAiSE 2001, Interlaken,
Switzerland, June 4-8, 2001, Proceedings, volume 2068
of LNCS, pages 433–447. Springer, 2001.

[6] Gerson Sunyé, Alain Le Guennec, and Jean-Marc
Jézéquel. Using UML action semantics for model exe-
cution and transformation. Information Systems, 27:445–
457, 2002.

[7] Dániel Varró. A formal semantics of UML Statecharts
by model transition systems. In Andrea Corradini, Hart-
mut Ehrig, Hans-Jörg Kreowski, and Grzegorz Rozen-
berg, editors, Proc. ICGT 2002: 1st International Confer-
ence on Graph Transformation, volume 2505 of LNCS,
pages 378–392, Barcelona, Spain, October 7–12 2002.
Springer-Verlag.

[8] Thomas Feng. Statechart virtual machine, 2003. MSDL,
McGill.

