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Abstract: 
As the network traffic increases, dialogue 
transmission delay becomes more and more 
significant recently. To optimize current MPLS 
networks and enhance their capability, a new 
analytical method based on trees is proposed here. 
From this view, network details are better traced in a 
discrete mathematics context. On identifying a 
network as a directed graph and dividing it into 
multiple trees, emphasis is placed on those 
component trees instead of the original graph to 
obtain a more trenchant understanding of it. Various 
types of those trees are defined, analyzed on their 
performance, and converted to and fro. The 
conversion between each other is bestowed a high 
practical value, since the entire network can be 
optimized in such an easier divide-and-conquer way. 
The viability of combining individual converted 
component trees to attain a whole converted network 
is proved at the end of this article. 

Keywords: 
Net application, MPLS-Net, Transmission delay, 
Bidirected share tree, Unidirected share tree 

 
ialogue application has been greatly increased in 
recent years. To enable audio and video 

communication via networks, an extremely high 
transmission capability is required. MPLS partially 
solved this problem. However, it turns out that poor 
design compromise the advantage of MPLS. Here, we 
propose a new method to analyze MPLS-Net structures. 
We view those structures as multiple trees. From this 
viewpoint, their composition can be better understood 
and special optimization can be done on them. 

1. Conceptual Description of Source Trees 
and Share Trees 
The implementation of a simplified network is 
presented in Fig. 1. The tree structure in this figure can 
be viewed as either two source trees or one share tree. 
Note that the ellipse area with a dotted edge represents 
a probable network. There are four sorts of routers in 
this illustration: merging points (those denoted by Mi, 

which enable two-way connections and provide 
functions to merge data streams from various sources 
so that they are forwarded concurrently), source nodes 
(those denoted by Si, at which there is no other routers 
in the tree can arrive in one or more steps), destination 
nodes (those denoted by Di, from which any other 
routers in the tree cannot be reached in one or more 
steps), and ordinary nodes (those denoted by Ni that do 
not fall in the above three categories). The last three 
sorts of routers are also known as non-merging points, 
which can only be connected in one predestined 
direction and have no merging function. 
In an abstraction, we view these structures as two-level 
trees, neglect those merging points and ordinary nodes, 
and only keep in mind the location and relationship of 
source nodes and destination nodes. We assume that all 
such tree structures are bipartite, that is to say, we can 
separate the nodes (essentially, routers) belonging to 
one such tree into two groups so that between each of 
the two nodes in the same group there are no edges. 
These negligence and assumption would not impede 
our thorough study, as the theorem in the latter part of 
this article implies. Source trees are those directed 
bipartite trees with a single source node and an 
unlimited number of destination nodes; share trees are 
those directed bipartite trees with multiple source 
nodes instead. At the first thought one may realize that 
several source trees with the same set of destination 
nodes can be combined to make a single share tree. 
True, in most of the practical cases, share trees are a 
more economical way to represent those tree structures 
than source trees. For instance, we convert the network 
in Fig. 1 into two source trees and into one share tree as 
shown in Fig. 2. 
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Fig. 1 Implementation of a simplified network 
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Employing share trees in FEC allocation makes it 
possible to assign multiple source nodes a single FEC 
so as to decreases the consumption of the limited label 
space. Unfortunately, source trees are widely used in 
reality because they are easier and more natural to 
establish at times when assigning FECs. Reorganizing 
source trees to obtain equivalent share trees of a 
smaller amount proves to be an arduous task. True, one 
can invariably achieve this goal by taking these steps: 
firstly, separate every source tree to obtain distinct 
source-destination pairs; and secondly, gather all such 
source-destination pairs, randomly combine them to 
form share trees, compare the amount of those share 
trees, and finally decide the best result after trying all 
the possibilities. This maneuver is demonstrated in the 
following procedures: 
procedure step1; 
 for every sourceTree st do 
  for every st.child do 
   add(st.parent, st.child); 
procedure step2; 
 combined : boolean = false; 
 if number of (parent, child) pairs > 1 then 
  for every (parent, child) pair pc1 do 
   for every (parent, child) pair pc2 do 
    if (pc1 <> pc2) and  
     canCombine(pc1, pc2) then 
    begin 
     pc3 := combine(pc1, pc2); 
     delete(pc1); 
     delete(pc2); 
     add(pc3); 
     combined := true; 
     step2; 
     delete(pc3); 
     add(pc2); 
     add(pc1); 
    end; 
 if (not combined) and  

  (number of (parent, child) pairs < min)  
 then begin 
  min := number of (parent, child) pairs; 
  minSourceTree := (parent, child) pairs; 
 end; 
However, this algorithm is in fact impracticable. 
Consider that procedure step2 is a recursive one, doing 
o(n2) operations on each call. In the worst case where 
each node is to be combined in a resulting share tree, 
the levels of the recursion sum up to n; so, the 
operations done in one such successful search amount 
to o[(n2)n] = o(n2n). Suppose this algorithm is 
implemented on a computer that operates 107 times in a 
second, for an original source tree with only 10 nodes, 
it would take over 300,000 years! 
The above ponderous algorithm has been improved in 
several ways, but the result is still far from satisfactory. 
Currently, none of the attempts has successfully limited 
the number of operations to o(n) or o(n2). Those 
attempts include reducing the recursion to 
non-recursive iterations and omitting those tries that 
are obviously infeasible. 
To be more conclusive, we alternatively state this 
problem in a decision way, “suppose we have an 
unlimited number of bins and n objects, some of which 
can be placed together in a bin according to some rules 
(specified explicitly in the subroutine canCombine), 
and given an input k, do these n objects fit in k bins?”[2] 
Once we solve this problem, our subsequent task is to 
find the smallest k. Yet, we realize that the famous 
NP-complete problem of bin packing [3] is reducible to 
this problem, so we are assured that this one is so 
intractable that it is also NP-complete and probably 
cannot be solved in polynomial time. [4] As a result, the 
use of share tree, though attractive, is still limited. 
However, hope still exists. Similar to the idea presented 
in Reference [5], an approximation algorithm may be a 
reasonable roundabout solution. An innovatory strategy 
to reorganize an enormous amount of source trees will 
definitely incur a revolution in this field. 

2. Two Kinds of Share Trees -- Bidirected 
and Unidirected Ones 
In our study, share trees are divided into two kinds: 
bidirected ones and unidirected ones, both of which 
manifest distinct features. As an example of bidirected 
share tree, consider the network implementation in Fig. 
1. In the structure, four merging points (M2~M5) are 
depicted. Suppose that two data streams depart from S1 
and S2, respectively, and are both directed to the same 
destination D3. The route of the stream from S1 is S1 → 
M2 → M3 → D3; and the route of the other stream, S2 
→ M5 → M4 → M3 → D3. If time is appropriate, the 
two streams are merged on M3 and forwarded to D3 
together. In a similar vein, those data streams to D1 and 
D2 are merged on M2; those to D4 are merged on M4; 
and those to D5 and D6, on M5. It is thus easy to 
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Fig. 2 Tree representations of Fig. 1 
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understand that in this example, implementing a 
bidirected share tree (whose concept is loosely defined 
as those share trees with several two-way connections 
between various merging points by a straightforward 
means) necessitates four merging points to be 
employed. 
As an alternative, a unidirected share tree contains far 
fewer merging points while at the same time enables 
the same connections. The share tree in Fig. 3 is the 
unidirected counterpart of that in Fig. 1. After 
converting the bidirected share tree in the latter figure 
into a unidirected one as we have done, only one 
merging point is necessary. As a result, the network is 
simplified, though an extra node is added. [1] 

We then proceed to calculate the advantages of this 
change. Let the average delay time of a data package 
be t1 on a merging point and t2 on a non-merging point. 
Since merging points employ a more sophisticated 
algorithm and provide more flexible functions, t1 is 
considerably greater than t2. Also, we let the time of 
merging two such packages be tm. In the source tree in 
Fig. 1, it takes time 2t1 for a package sent from S1 to 
arrive at M3, and 3t1 for a package from S2 to arrive at 
M3. After merging, they are sent together to D3. This 
latter part of the process takes time tm+t2. So, the total 
time spent on the two packages, from their being sent 
till their arrival, is 3t1+tm+t2. As to the unidirected 
implementation depicted in Fig. 3, it takes only 
t1+tm+3t2 to accomplish the same goal. Obviously, the 
latter approach performs much better, though it is at the 
cost of building up extra connections and increasing 
the burden of a single merging point. Generally 
speaking, this drawback, if taken into account at the 
very beginning of establishing a network, appears to be 
insignificant. Furthermore, with an elegant network 
arrangement, a merging point empowered by the 
current hardware technology is able to take up some 
(but not many) of its peers’ work without appreciable 
overload. The savings of decrease in the number of 
merging points and the performance enhancement in 
the long run are both attractive. 

3. Algorithm on Converting Bidirected Share 
Trees to Unidirected Share Trees 
We have successfully converted a bidirected share tree 
to its unidirected counterpart. Yet, one cannot be 
satisfied by this instinctive conversion. Can we find an 
algorithm to finish this process in a universally 
practicable way? The answer is positive. In the coming 
discussion, basic knowledge of graph theory is 
required. 
1) Establish a matrix representing the original 
bidirected share tree. 
Here a binary matrix is employed with each of its 
elements assuming the value of either 0 or 1. The 
matrix is n x n large, depending on the total number of 
nodes in the tree. One of its elements, for example the 
one at position [i, j], denotes the fact that an edge 
leading directly from node i to node j exists if it has a 
value of 1, or otherwise there is no such edge. To 
illustrate this, the matrix representation of the share 
tree shown in Fig. 1 is given in Tab. 1. 

Tab. 1 Matrix representation of the share tree in Fig. 1 

 S1 S2 M2 M3 M4 M5 N1 N6 D1 D2 D3 D4 D5 D6

S1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
S2 0 1 0 0 0 1 0 0 0 0 0 0 0 0
M2 0 0 1 1 0 0 1 0 0 1 0 0 0 0
M3 0 0 1 1 1 0 0 0 0 0 1 0 0 0
M4 0 0 0 1 1 1 0 0 0 0 0 1 0 0
M5 0 0 0 0 1 1 0 1 0 0 0 0 1 0
N1 0 0 0 0 0 0 1 0 1 0 0 0 0 0
N6 0 0 0 0 0 0 0 1 0 0 0 0 0 1
D1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
D2 0 0 0 0 0 0 0 0 0 1 0 0 0 0
D3 0 0 0 0 0 0 0 0 0 0 1 0 0 0
D4 0 0 0 0 0 0 0 0 0 0 0 1 0 0
D5 0 0 0 0 0 0 0 0 0 0 0 0 1 0
D6 0 0 0 0 0 0 0 0 0 0 0 0 0 1

From this matrix, we can discern useful facts. We 
assume that from each node there is a circular edge 
from it to itself, so the elements on the diagonal of the 
matrix always assume the value 1. If a certain column 
of the matrix contains only one 1-element, the node 
named on the top of it must be a source node; if a 
certain row of the matrix contains only one 1-element, 
the node named to the left of it must be a destination 
node; and if a certain column of the matrix contains 
more than three 1-elements, the node named on the top 
of it must be a merging point. We will not consider 
those nodes that are both sources and destinations, 
since they are actually solitary. 

2) Find the transitive closure of the matrix. 
The transitive closure of a matrix reveals the 
relationship between pairs of nodes, according to 
which it can be decided whether it is possible for a 
package from the first node to reach the second in one 
or more steps. An element at [i, j] valued 1 in the 
closure means that a directed path exists from node i to 
node j, and vice versa. 
To determine the transitive closure of a graph, we will 

Fig. 3 Implementation of a simplified network 
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introduce the Warshall algorithm here: [2] 

void transitiveClosure(boolean[][] A, int n, boolean[][] 
R) 
 int i, j, k; 
 Copy A into R. 
 Set all main diagonal entries, rij, to true. 
 for (k = 1; k ≤ n; k ++) 
  for (i = 1; i ≤ n; i ++) 
   for (j = 1; j ≤ n; j ++) 
    rij = rij ∨ (rik ∧ rkj) 
The time complexity of this algorithm is o(n3), and 
with an improvement of maintaining each row of the 
original matrix bitwise in one or more computer words, 
the complexity can be reduced to o(n2). [2] 
As to the previous example, the transitive closure of 
the matrix we have given is in Tab. 2. 

Tab. 2 Transitive closure of the matrix in Tab. 1 
  S1 S2 M2 M3 M4 M5 N1 N6 D1 D2 D3 D4 D5 D6

S1  1 0 1 1 1 1 1 1 1 1 1 1 1 1
S2  0 1 1 1 1 1 1 1 1 1 1 1 1 1
M2  0 0 1 1 1 1 1 1 1 1 1 1 1 1
M3  0 0 1 1 1 1 1 1 1 1 1 1 1 1
M4  0 0 1 1 1 1 1 1 1 1 1 1 1 1
M5  0 0 1 1 1 1 1 1 1 1 1 1 1 1
N1  0 0 0 0 0 0 1 0 1 0 0 0 0 0
N6  0 0 0 0 0 0 0 1 0 0 0 0 0 1
D1  0 0 0 0 0 0 0 0 1 0 0 0 0 0
D2  0 0 0 0 0 0 0 0 0 1 0 0 0 0
D3  0 0 0 0 0 0 0 0 0 0 1 0 0 0
D4  0 0 0 0 0 0 0 0 0 0 0 1 0 0
D5  0 0 0 0 0 0 0 0 0 0 0 0 1 0
D6  0 0 0 0 0 0 0 0 0 0 0 0 0 1
 

3) Based on the above two matrices, arrange the 
resulting unidirected share tree. 
a. Among the columns of the transitive closure on the 
top of which appear the names of merging points, pick 
out those consisting exactly of the same group of 
elements. For instance, given the above-mentioned 
transitive closure, we would pickup the columns of 
M2~M5, because M2~M5 are all merging points and 
their corresponding columns have exactly the same 
elements (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)T. If such a 
group of at least two columns is found, merging 
functions of those points can be substituted by a 
newly-introduced merging point, and we will be 
proceeding to step b.; otherwise, we should leap to step 
e. and put the algorithm to an end. Attention should be 
paid to those selected merging points. They in fact 
constitute a strongly connected directed graph 
themselves: if not, suppose Ma cannot reach a certain 
Mb, since Mb can always reach itself according to our 
premise, then the column of Ma cannot be the same as 
that of Mb, and they must belong to two different 
selections. 
b. Create a new merging point M, and make it function 
as a combination of all those selected merging points. 
To do this, one needs simply to add a connection 
between the new merging point and one of the old ones 

(according to any of our wishes) and make the new one 
the end-point of every such edge: its start-point is not 
among the selected merging points while its end-point 
(previous to this change) is. Returning to our 
incomplete example, we add a merging point M, link it 
with M2 (or any one of M3~M5), and redirect the two 
edges from S1 and S2 to it instead of M2 and M5, 
respectively. Except for this change, we maintain all 
the existing connections. 
c. Rearrange the direction of all the connections 
between the merging points (new and old), and change 
each of the old merging points into a non-merging 
point. The direction of the connection between the new 
merging point and an old one is from the former to the 
latter. The direction of the connection between each 
pair of the old merging points is so arranged that from 
the new merging point all of the old ones are in reach. 
We assure that for each share tree there is always one 
and only one such solution, because all the old merging 
points compose of a strongly connected directed graph. 
After this, since the previous two-way connections 
have become one-way, and none of the nodes in the 
tree connects directly to the selected merging points 
except themselves, it is now safe to convert those 
merging points to non-merging points. In the previous 
example, we direct the connections M → M2, M2 → 
M3, M3 → M4, and M4 → M5 to make possible the 
transmission of packages from M to any of M2~M5; 
and finally we deprive M2~M5 of the superiority as 
merging points. 
d. Repeat steps a~c. 
e. End the algorithm. 

4. The Algorithm’s Topological Feature 
Firstly, we apply our algorithm to a share tree and 
convert it from a bidirected form to a unidirected one. 
Secondly, we restore the original form of the share tree, 
place it in a larger share tree environment in which it is 
but a subgraph, and apply our algorithm to this larger 
share tree. Will the two results on the inner share trees 
differ? Our answer is negative. 

Theorem Suppose a network environment in which 
places a bidirected share tree. The environment itself is 
viewed as a larger bidirected share tree containing the 
former one. If there is no two-way connection between 
two nodes one of which lies in the inner tree and the 
other is out of it, then whether to apply the conversion 
algorithm to the inner tree or to the outer network 
environment as a whole, the modification done on the 
inner tree is the same. 

proof: We need only to prove that when we process 
step a. of the algorithm, any merging point selection in 
the two cases, if it is relevant to the inner tree, remains 
the same. This is because after selecting the same 
group of merging points whose merging functions we 
are to substitute with a new merging point, the rest of 
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the algorithm definitely does the same thing. 
∵ there is no two-way connection between a node 
inside the inner tree and a node outside the inner tree, 
∴  a merging point inside the inner tree is not 
connected with any merging point outside it. 
∵ we have proved that in each selection in step a., the 
merging points belonging to the group forms a strongly 
connected directed graph, 
∴  when the algorithm is applied to the outer 
environment, we will not pick out a group of merging 
points some of which are in the inner tree while the 
others are not; 
∴ modifications relevant to the inner tree are in fact 
done on a group of merging points all of which belong 
to the inner tree. 
∵ in the second case (lager tree), the nodes outside 
the inner tree that can reach one of the inside merging 
point can also reach its peers in a selected group, 
∴ the differences of columns in the transitive closure 
corresponding to distinct groups still lie in the inner 
tree: the outside nodes have nothing to do with it; 
∴ whether to take the outside nodes into account or 
not, the selections of inside merging points to be 
substituted remain the same; 
∴ whether to apply the conversion algorithm to the 
inner tree or to the outer network environment, the 
modification done on the inner tree is the same.   □ 
This theorem reveals an important feature of the 
algorithm: it maintains the topological structure of the 
previous network. This agreeable feature places two 
advantages in front of the network practitioners: 
1) It is possible to understand a large area of network 
by a gradual improvement in the understanding of its 
subnetworks, though small they may be. Either 
combining several modified subnetworks that satisfy 
the precondition of the theorem or enlarging a modified 
subnetwork of this kind step by step, using the 
algorithm at times when necessary, results in a large 
modified network. The modification done in this way 
on the large one is just the same as applying the 
algorithm to it directly. 
2) Since the algorithm maintains original topological 
structures except that some new merging points are 
added, the original efforts to optimize networks is 
perfectly preserved after the application of the 
algorithm. One can ameliorate a large network area by 
respectively optimizing its component subnetworks. 

5. Practical Use of the Algorithm 
To conclude on our algorithm and its important feature, 
a network designer can employ this effective strategy 
to convert a bidirected network to lessen the two-way 
connections in it freely. The work of minimizing this 
kind of connections is sometimes strictly necessary to 
lower the expense of establishing a large network. 
Practicing the algorithm in a broad network context is 
somewhat challenging, though it is much easier to 

consider one of its subnetworks at each time rather than 
taking into account the whole network initially. Fig. 4 
below shows an imaginary network in practice. 

To simplify our work, we separate the whole network 
area into three parts. A careful division allows that the 
border of each part satisfies our stated precondition. 
After this, we apply the algorithm on the three 
components and get the same result as if the algorithm 
is applied to the entire area. As a result, three extra 
merging points are added to distinct parts respectively 
when the algorithm fulfills its task. 

6. Remarks 
The effort to analyze and optimize MPLS networks is 
mainly aimed at improving the performance of 
net-based dialogue application. To accommodate 
increasing audio and video traffic and to enable 
real-time dialogue communication via networks, a clear 
view of the current implementation and its optimization 
are indispensable. 
Trees are a focused concept in networking. The two 
kinds of tree structures, source trees and share trees, 
reveal an essence of FEC allocation in MPLS. As an 
advantageous network representation, share trees are 
generally highlighted. Thus it is important to recognize 
the two kinds of share trees: bidirected ones and 
unidirected ones. An algorithm used in the conversion 
between them is presented, whose feature opens a new 
gate to network designers. 

Fig. 4 An imaginary network in practice 
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