

Analyzing an Improvement of MPLS-Net Structures
for the Decrease of Dialogue Transmission Delay

Feng Huining, Chen Qimei
Department of Computer Science and Technology, Nanjing University

Telecommunication Technology Institute, Nanjing University
No.22 Hankou Road, Nanjing, Jiangsu, 210093, China

E-mail: mawn@nju.edu.cn

Abstract:
As the network traffic increases, dialogue
transmission delay becomes more and more
significant recently. To optimize current MPLS
networks and enhance their capability, a new
analytical method based on trees is proposed here.
From this view, network details are better traced in a
discrete mathematics context. On identifying a
network as a directed graph and dividing it into
multiple trees, emphasis is placed on those
component trees instead of the original graph to
obtain a more trenchant understanding of it. Various
types of those trees are defined, analyzed on their
performance, and converted to and fro. The
conversion between each other is bestowed a high
practical value, since the entire network can be
optimized in such an easier divide-and-conquer way.
The viability of combining individual converted
component trees to attain a whole converted network
is proved at the end of this article.

Keywords:
Net application, MPLS-Net, Transmission delay,
Bidirected share tree, Unidirected share tree

ialogue application has been greatly increased in
recent years. To enable audio and video

communication via networks, an extremely high
transmission capability is required. MPLS partially
solved this problem. However, it turns out that poor
design compromise the advantage of MPLS. Here, we
propose a new method to analyze MPLS-Net structures.
We view those structures as multiple trees. From this
viewpoint, their composition can be better understood
and special optimization can be done on them.

1. Conceptual Description of Source Trees
and Share Trees
The implementation of a simplified network is
presented in Fig. 1. The tree structure in this figure can
be viewed as either two source trees or one share tree.
Note that the ellipse area with a dotted edge represents
a probable network. There are four sorts of routers in
this illustration: merging points (those denoted by Mi,

which enable two-way connections and provide
functions to merge data streams from various sources
so that they are forwarded concurrently), source nodes
(those denoted by Si, at which there is no other routers
in the tree can arrive in one or more steps), destination
nodes (those denoted by Di, from which any other
routers in the tree cannot be reached in one or more
steps), and ordinary nodes (those denoted by Ni that do
not fall in the above three categories). The last three
sorts of routers are also known as non-merging points,
which can only be connected in one predestined
direction and have no merging function.
In an abstraction, we view these structures as two-level
trees, neglect those merging points and ordinary nodes,
and only keep in mind the location and relationship of
source nodes and destination nodes. We assume that all
such tree structures are bipartite, that is to say, we can
separate the nodes (essentially, routers) belonging to
one such tree into two groups so that between each of
the two nodes in the same group there are no edges.
These negligence and assumption would not impede
our thorough study, as the theorem in the latter part of
this article implies. Source trees are those directed
bipartite trees with a single source node and an
unlimited number of destination nodes; share trees are
those directed bipartite trees with multiple source
nodes instead. At the first thought one may realize that
several source trees with the same set of destination
nodes can be combined to make a single share tree.
True, in most of the practical cases, share trees are a
more economical way to represent those tree structures
than source trees. For instance, we convert the network
in Fig. 1 into two source trees and into one share tree as
shown in Fig. 2.

D

S1 S2

N1 M2 M3 M4 M5 N6

D1 D2 D3 D4 D5 D6

Fig. 1 Implementation of a simplified network

Analyzing an Improvement of MPLS-Net Structures for the Decrease of Dialogue Transmission Delay

Employing share trees in FEC allocation makes it
possible to assign multiple source nodes a single FEC
so as to decreases the consumption of the limited label
space. Unfortunately, source trees are widely used in
reality because they are easier and more natural to
establish at times when assigning FECs. Reorganizing
source trees to obtain equivalent share trees of a
smaller amount proves to be an arduous task. True, one
can invariably achieve this goal by taking these steps:
firstly, separate every source tree to obtain distinct
source-destination pairs; and secondly, gather all such
source-destination pairs, randomly combine them to
form share trees, compare the amount of those share
trees, and finally decide the best result after trying all
the possibilities. This maneuver is demonstrated in the
following procedures:
procedure step1;
 for every sourceTree st do
 for every st.child do
 add(st.parent, st.child);
procedure step2;
 combined : boolean = false;
 if number of (parent, child) pairs > 1 then
 for every (parent, child) pair pc1 do
 for every (parent, child) pair pc2 do
 if (pc1 <> pc2) and
 canCombine(pc1, pc2) then
 begin
 pc3 := combine(pc1, pc2);
 delete(pc1);
 delete(pc2);
 add(pc3);
 combined := true;
 step2;
 delete(pc3);
 add(pc2);
 add(pc1);
 end;
 if (not combined) and

 (number of (parent, child) pairs < min)
 then begin
 min := number of (parent, child) pairs;
 minSourceTree := (parent, child) pairs;
 end;
However, this algorithm is in fact impracticable.
Consider that procedure step2 is a recursive one, doing
o(n2) operations on each call. In the worst case where
each node is to be combined in a resulting share tree,
the levels of the recursion sum up to n; so, the
operations done in one such successful search amount
to o[(n2)n] = o(n2n). Suppose this algorithm is
implemented on a computer that operates 107 times in a
second, for an original source tree with only 10 nodes,
it would take over 300,000 years!
The above ponderous algorithm has been improved in
several ways, but the result is still far from satisfactory.
Currently, none of the attempts has successfully limited
the number of operations to o(n) or o(n2). Those
attempts include reducing the recursion to
non-recursive iterations and omitting those tries that
are obviously infeasible.
To be more conclusive, we alternatively state this
problem in a decision way, “suppose we have an
unlimited number of bins and n objects, some of which
can be placed together in a bin according to some rules
(specified explicitly in the subroutine canCombine),
and given an input k, do these n objects fit in k bins?”[2]
Once we solve this problem, our subsequent task is to
find the smallest k. Yet, we realize that the famous
NP-complete problem of bin packing [3] is reducible to
this problem, so we are assured that this one is so
intractable that it is also NP-complete and probably
cannot be solved in polynomial time. [4] As a result, the
use of share tree, though attractive, is still limited.
However, hope still exists. Similar to the idea presented
in Reference [5], an approximation algorithm may be a
reasonable roundabout solution. An innovatory strategy
to reorganize an enormous amount of source trees will
definitely incur a revolution in this field.

2. Two Kinds of Share Trees -- Bidirected
and Unidirected Ones
In our study, share trees are divided into two kinds:
bidirected ones and unidirected ones, both of which
manifest distinct features. As an example of bidirected
share tree, consider the network implementation in Fig.
1. In the structure, four merging points (M2~M5) are
depicted. Suppose that two data streams depart from S1
and S2, respectively, and are both directed to the same
destination D3. The route of the stream from S1 is S1 →
M2 → M3 → D3; and the route of the other stream, S2
→ M5 → M4 → M3 → D3. If time is appropriate, the
two streams are merged on M3 and forwarded to D3
together. In a similar vein, those data streams to D1 and
D2 are merged on M2; those to D4 are merged on M4;
and those to D5 and D6, on M5. It is thus easy to

D6

D5

D4

D3

D2

D1

S1

D6

D5

D4

D3

D2

D1

S2

D6

D5

D4

D3

D2

D1S1

S2

a. Two source trees b. One share tree
Fig. 2 Tree representations of Fig. 1

Analyzing an Improvement of MPLS-Net Structures for the Decrease of Dialogue Transmission Delay

understand that in this example, implementing a
bidirected share tree (whose concept is loosely defined
as those share trees with several two-way connections
between various merging points by a straightforward
means) necessitates four merging points to be
employed.
As an alternative, a unidirected share tree contains far
fewer merging points while at the same time enables
the same connections. The share tree in Fig. 3 is the
unidirected counterpart of that in Fig. 1. After
converting the bidirected share tree in the latter figure
into a unidirected one as we have done, only one
merging point is necessary. As a result, the network is
simplified, though an extra node is added. [1]

We then proceed to calculate the advantages of this
change. Let the average delay time of a data package
be t1 on a merging point and t2 on a non-merging point.
Since merging points employ a more sophisticated
algorithm and provide more flexible functions, t1 is
considerably greater than t2. Also, we let the time of
merging two such packages be tm. In the source tree in
Fig. 1, it takes time 2t1 for a package sent from S1 to
arrive at M3, and 3t1 for a package from S2 to arrive at
M3. After merging, they are sent together to D3. This
latter part of the process takes time tm+t2. So, the total
time spent on the two packages, from their being sent
till their arrival, is 3t1+tm+t2. As to the unidirected
implementation depicted in Fig. 3, it takes only
t1+tm+3t2 to accomplish the same goal. Obviously, the
latter approach performs much better, though it is at the
cost of building up extra connections and increasing
the burden of a single merging point. Generally
speaking, this drawback, if taken into account at the
very beginning of establishing a network, appears to be
insignificant. Furthermore, with an elegant network
arrangement, a merging point empowered by the
current hardware technology is able to take up some
(but not many) of its peers’ work without appreciable
overload. The savings of decrease in the number of
merging points and the performance enhancement in
the long run are both attractive.

3. Algorithm on Converting Bidirected Share
Trees to Unidirected Share Trees
We have successfully converted a bidirected share tree
to its unidirected counterpart. Yet, one cannot be
satisfied by this instinctive conversion. Can we find an
algorithm to finish this process in a universally
practicable way? The answer is positive. In the coming
discussion, basic knowledge of graph theory is
required.
1) Establish a matrix representing the original
bidirected share tree.
Here a binary matrix is employed with each of its
elements assuming the value of either 0 or 1. The
matrix is n x n large, depending on the total number of
nodes in the tree. One of its elements, for example the
one at position [i, j], denotes the fact that an edge
leading directly from node i to node j exists if it has a
value of 1, or otherwise there is no such edge. To
illustrate this, the matrix representation of the share
tree shown in Fig. 1 is given in Tab. 1.

Tab. 1 Matrix representation of the share tree in Fig. 1

 S1 S2 M2 M3 M4 M5 N1 N6 D1 D2 D3 D4 D5 D6

S1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
S2 0 1 0 0 0 1 0 0 0 0 0 0 0 0
M2 0 0 1 1 0 0 1 0 0 1 0 0 0 0
M3 0 0 1 1 1 0 0 0 0 0 1 0 0 0
M4 0 0 0 1 1 1 0 0 0 0 0 1 0 0
M5 0 0 0 0 1 1 0 1 0 0 0 0 1 0
N1 0 0 0 0 0 0 1 0 1 0 0 0 0 0
N6 0 0 0 0 0 0 0 1 0 0 0 0 0 1
D1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
D2 0 0 0 0 0 0 0 0 0 1 0 0 0 0
D3 0 0 0 0 0 0 0 0 0 0 1 0 0 0
D4 0 0 0 0 0 0 0 0 0 0 0 1 0 0
D5 0 0 0 0 0 0 0 0 0 0 0 0 1 0
D6 0 0 0 0 0 0 0 0 0 0 0 0 0 1

From this matrix, we can discern useful facts. We
assume that from each node there is a circular edge
from it to itself, so the elements on the diagonal of the
matrix always assume the value 1. If a certain column
of the matrix contains only one 1-element, the node
named on the top of it must be a source node; if a
certain row of the matrix contains only one 1-element,
the node named to the left of it must be a destination
node; and if a certain column of the matrix contains
more than three 1-elements, the node named on the top
of it must be a merging point. We will not consider
those nodes that are both sources and destinations,
since they are actually solitary.

2) Find the transitive closure of the matrix.
The transitive closure of a matrix reveals the
relationship between pairs of nodes, according to
which it can be decided whether it is possible for a
package from the first node to reach the second in one
or more steps. An element at [i, j] valued 1 in the
closure means that a directed path exists from node i to
node j, and vice versa.
To determine the transitive closure of a graph, we will

Fig. 3 Implementation of a simplified network

S1 S2

N1 N2 N3 N4 N5 N6

D1 D2 D3 D4 D5 D6

M

Analyzing an Improvement of MPLS-Net Structures for the Decrease of Dialogue Transmission Delay

introduce the Warshall algorithm here: [2]

void transitiveClosure(boolean[][] A, int n, boolean[][]
R)
 int i, j, k;
 Copy A into R.
 Set all main diagonal entries, rij, to true.
 for (k = 1; k ≤ n; k ++)
 for (i = 1; i ≤ n; i ++)
 for (j = 1; j ≤ n; j ++)
 rij = rij ∨ (rik ∧ rkj)
The time complexity of this algorithm is o(n3), and
with an improvement of maintaining each row of the
original matrix bitwise in one or more computer words,
the complexity can be reduced to o(n2). [2]
As to the previous example, the transitive closure of
the matrix we have given is in Tab. 2.

Tab. 2 Transitive closure of the matrix in Tab. 1
 S1 S2 M2 M3 M4 M5 N1 N6 D1 D2 D3 D4 D5 D6

S1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
S2 0 1 1 1 1 1 1 1 1 1 1 1 1 1
M2 0 0 1 1 1 1 1 1 1 1 1 1 1 1
M3 0 0 1 1 1 1 1 1 1 1 1 1 1 1
M4 0 0 1 1 1 1 1 1 1 1 1 1 1 1
M5 0 0 1 1 1 1 1 1 1 1 1 1 1 1
N1 0 0 0 0 0 0 1 0 1 0 0 0 0 0
N6 0 0 0 0 0 0 0 1 0 0 0 0 0 1
D1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
D2 0 0 0 0 0 0 0 0 0 1 0 0 0 0
D3 0 0 0 0 0 0 0 0 0 0 1 0 0 0
D4 0 0 0 0 0 0 0 0 0 0 0 1 0 0
D5 0 0 0 0 0 0 0 0 0 0 0 0 1 0
D6 0 0 0 0 0 0 0 0 0 0 0 0 0 1

3) Based on the above two matrices, arrange the
resulting unidirected share tree.
a. Among the columns of the transitive closure on the
top of which appear the names of merging points, pick
out those consisting exactly of the same group of
elements. For instance, given the above-mentioned
transitive closure, we would pickup the columns of
M2~M5, because M2~M5 are all merging points and
their corresponding columns have exactly the same
elements (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)T. If such a
group of at least two columns is found, merging
functions of those points can be substituted by a
newly-introduced merging point, and we will be
proceeding to step b.; otherwise, we should leap to step
e. and put the algorithm to an end. Attention should be
paid to those selected merging points. They in fact
constitute a strongly connected directed graph
themselves: if not, suppose Ma cannot reach a certain
Mb, since Mb can always reach itself according to our
premise, then the column of Ma cannot be the same as
that of Mb, and they must belong to two different
selections.
b. Create a new merging point M, and make it function
as a combination of all those selected merging points.
To do this, one needs simply to add a connection
between the new merging point and one of the old ones

(according to any of our wishes) and make the new one
the end-point of every such edge: its start-point is not
among the selected merging points while its end-point
(previous to this change) is. Returning to our
incomplete example, we add a merging point M, link it
with M2 (or any one of M3~M5), and redirect the two
edges from S1 and S2 to it instead of M2 and M5,
respectively. Except for this change, we maintain all
the existing connections.
c. Rearrange the direction of all the connections
between the merging points (new and old), and change
each of the old merging points into a non-merging
point. The direction of the connection between the new
merging point and an old one is from the former to the
latter. The direction of the connection between each
pair of the old merging points is so arranged that from
the new merging point all of the old ones are in reach.
We assure that for each share tree there is always one
and only one such solution, because all the old merging
points compose of a strongly connected directed graph.
After this, since the previous two-way connections
have become one-way, and none of the nodes in the
tree connects directly to the selected merging points
except themselves, it is now safe to convert those
merging points to non-merging points. In the previous
example, we direct the connections M → M2, M2 →
M3, M3 → M4, and M4 → M5 to make possible the
transmission of packages from M to any of M2~M5;
and finally we deprive M2~M5 of the superiority as
merging points.
d. Repeat steps a~c.
e. End the algorithm.

4. The Algorithm’s Topological Feature
Firstly, we apply our algorithm to a share tree and
convert it from a bidirected form to a unidirected one.
Secondly, we restore the original form of the share tree,
place it in a larger share tree environment in which it is
but a subgraph, and apply our algorithm to this larger
share tree. Will the two results on the inner share trees
differ? Our answer is negative.

Theorem Suppose a network environment in which
places a bidirected share tree. The environment itself is
viewed as a larger bidirected share tree containing the
former one. If there is no two-way connection between
two nodes one of which lies in the inner tree and the
other is out of it, then whether to apply the conversion
algorithm to the inner tree or to the outer network
environment as a whole, the modification done on the
inner tree is the same.

proof: We need only to prove that when we process
step a. of the algorithm, any merging point selection in
the two cases, if it is relevant to the inner tree, remains
the same. This is because after selecting the same
group of merging points whose merging functions we
are to substitute with a new merging point, the rest of

Analyzing an Improvement of MPLS-Net Structures for the Decrease of Dialogue Transmission Delay

the algorithm definitely does the same thing.
∵ there is no two-way connection between a node
inside the inner tree and a node outside the inner tree,
∴ a merging point inside the inner tree is not
connected with any merging point outside it.
∵ we have proved that in each selection in step a., the
merging points belonging to the group forms a strongly
connected directed graph,
∴ when the algorithm is applied to the outer
environment, we will not pick out a group of merging
points some of which are in the inner tree while the
others are not;
∴ modifications relevant to the inner tree are in fact
done on a group of merging points all of which belong
to the inner tree.
∵ in the second case (lager tree), the nodes outside
the inner tree that can reach one of the inside merging
point can also reach its peers in a selected group,
∴ the differences of columns in the transitive closure
corresponding to distinct groups still lie in the inner
tree: the outside nodes have nothing to do with it;
∴ whether to take the outside nodes into account or
not, the selections of inside merging points to be
substituted remain the same;
∴ whether to apply the conversion algorithm to the
inner tree or to the outer network environment, the
modification done on the inner tree is the same. □
This theorem reveals an important feature of the
algorithm: it maintains the topological structure of the
previous network. This agreeable feature places two
advantages in front of the network practitioners:
1) It is possible to understand a large area of network
by a gradual improvement in the understanding of its
subnetworks, though small they may be. Either
combining several modified subnetworks that satisfy
the precondition of the theorem or enlarging a modified
subnetwork of this kind step by step, using the
algorithm at times when necessary, results in a large
modified network. The modification done in this way
on the large one is just the same as applying the
algorithm to it directly.
2) Since the algorithm maintains original topological
structures except that some new merging points are
added, the original efforts to optimize networks is
perfectly preserved after the application of the
algorithm. One can ameliorate a large network area by
respectively optimizing its component subnetworks.

5. Practical Use of the Algorithm
To conclude on our algorithm and its important feature,
a network designer can employ this effective strategy
to convert a bidirected network to lessen the two-way
connections in it freely. The work of minimizing this
kind of connections is sometimes strictly necessary to
lower the expense of establishing a large network.
Practicing the algorithm in a broad network context is
somewhat challenging, though it is much easier to

consider one of its subnetworks at each time rather than
taking into account the whole network initially. Fig. 4
below shows an imaginary network in practice.

To simplify our work, we separate the whole network
area into three parts. A careful division allows that the
border of each part satisfies our stated precondition.
After this, we apply the algorithm on the three
components and get the same result as if the algorithm
is applied to the entire area. As a result, three extra
merging points are added to distinct parts respectively
when the algorithm fulfills its task.

6. Remarks
The effort to analyze and optimize MPLS networks is
mainly aimed at improving the performance of
net-based dialogue application. To accommodate
increasing audio and video traffic and to enable
real-time dialogue communication via networks, a clear
view of the current implementation and its optimization
are indispensable.
Trees are a focused concept in networking. The two
kinds of tree structures, source trees and share trees,
reveal an essence of FEC allocation in MPLS. As an
advantageous network representation, share trees are
generally highlighted. Thus it is important to recognize
the two kinds of share trees: bidirected ones and
unidirected ones. An algorithm used in the conversion
between them is presented, whose feature opens a new
gate to network designers.

Fig. 4 An imaginary network in practice

Part 1 of the
Whole Network

Part 2 of the
Whole Network

Part 3 of the
Whole Network

Analyzing an Improvement of MPLS-Net Structures for the Decrease of Dialogue Transmission Delay

References
[1]. D Ooms, B Sales, Alcatel, W Livens, Colt Telecom, A

Acharya, IBM, F Griffoul, Ulticom, F Ansari, Bell Labs.
Framework for IP Multicast in MPLS [EB/OL].
http://community.roxen.com/developers/idocs/drafts/draft-
ietf-mpls-multicast-05.html.2001-1-23/2001-9-30.

[2]. Sara Baase, Allen Van Gelder. Computer Algorithms –
Introduction to Design and Analysis [M]. Higher
Education Press, Pearson Education Ltd. 2001-7

[3]. Y. Narahari. Data Structures and Algorithms [EB/OL],
http://lcm.csa.iisc.ernet.in/dsa/index.html. 2001-07-10

[4]. Himanshu Gupta. Result Verification Algorithms for
Optimization Problems [J]. Technical Report, UIUC.
1995-5-12

[5]. Giorgio Gambosi, Alberto Postiglione, Maurizio Talamo.
On-Line Maintenance of an Approximate Bin-Packing
Solution [J]. Nordic Journal of Computing. Summer 1997

