
Case Study: Consistency Problems in a UML Model of a Chat Room

Thomas Huining Feng and Hans Vangheluwe
Modelling, Simulation and Design Lab

McGill University
http://msdl.cs.mcgill.ca/

Abstract

This article describes a case study, where a model of
a chat room application is built from initial requirements.
UML class diagrams, sequence diagrams and statecharts
are used in different stages of the development process.
Consistency problems are identified and methods, most no-
tably simulation, are proposed, to ensure consistency be-
tween some aspects of the models. We focus on intra-
consistency, the consistency among artifacts within a given
model.

1 Introduction

The development process of a software system is usu-
ally divided into steps, in which different UML diagrams
are involved. As modelled systems becomes more and
more complex, consistency problems become more promi-
nent. Two types or problems are apparent. The first,
intra-consistency problems, are concerned with consis-
tency among artifacts within a given model. The second,
inter-consistency problems, are concerned with consis-
tency between different models evolved during the course
of the software development process. In the sequel, we fo-
cus mostly on intra-consistency.

Various formal methods have been explored in the lit-
erature to automatically check consistency and discover
design problems. In the following sections, steps of
the development process of a chat room model are stud-
ied. The case is inspired by a project report on “Exe-
cutable UML” by Geir Melby at Agder University College
(http://fag.grm.hia.no/ikt2340/year2002/). Po-
tential consistency problems in the model are shown. For
some of them, automatic consistency checking methods are
proposed.

In this case study, a model of a chat room applica-
tion is developed from requirements. A protocol speci-
fying communication between clients, a manager object,
and chat rooms is given in section 2, and treated as initial
requirements. Section 3 studies a possible class design.

It defines interfaces conforming to the protocol. The se-
quence diagrams in section 4 further refine and illustrate
the inter-ccomponent communication, consistent with the
class design. Section 5 uses statecharts to further specify
the application’s behaviour. This specification can be ei-
ther simulated or executed in real-time in our SVM (State-
chart Virtual Machine) environment. In section 6, consis-
tency of simulation traces with the protocol specification is
discussed. Section 7 concludes this case study.

2 The Communication Protocol

The chat room application to be built features a client-
server configuration. Clients try to connect to random chat
rooms. After a client is accepted by a chat room, it sends
messages to its chat room. The chat room broadcasts each
message so that every client connected to it, except the
sender, receives a copy.

A specific, simplified use case is described below:

� There are 5 clients and 2 chat rooms in the system.
Initially, the clients are not connected. They try to
connect to a random chat room every 1 to 3 seconds
(uniformly distributed). The requested chat room in-
stantaneously receives the request (no network delay,
and reliable communication are assumed).

� A chat room accepts at most 3 clients. It accepts a
connection request if and only if its capacity is not
exceeded.

� The requesting client receives an acceptance or rejec-
tion notice immediately.

� A client must be accepted by a chat room before it
may send chat messages.

� When connected, a client sends random messages to
the chat room it is connected to every 1 to 5 seconds
(uniformly distributed). The chat room immediately
receives the messages. It takes 1 second to process a

Manager
-connections: set
+mrequest(clientID:integer,roomID:integer)
+maccept(clientID:integer,roomID:string)
+mreject(clientID:integer,roomID:integer)
+msend(cliendID:integer,msg:string)
+mbroadcast(clientID:integer,roomID:integer,msg:string)

Client
-clientID: integer
+accept(clientID:integer)
+reject(clientID:integer)
+broadcast(clients:set,msg:string)

ChatRoom
-roomID: integer
-messages: list
-clientNum: integer
+request(clientID:integer,roomID:integer)
+send(clientID:integer,roomID:integer,msg:string)

delegate 1

5

1

2

10..3

delegate

Figure 1: Class design

message and broadcast it to all the clients connected
to it, except the sender.

� The clients instantaneously receive the broadcast.

For simplicity, disconnection is not discussed.

3 The Class Design

According to the above specification, two classes are
obviously required: Client and ChatRoom. At this early
stage in the development process, so that no user interven-
tion is needed for a simulation, we explicitly model client
behaviour (connection requests and chat messages) as a
random process. Later, this model of the client will be re-
placed by real human clients interacting with the software.
When the simulation is started, 5 instances of Client and
2 instances of ChatRoom are initialized.

A singleton class Manager is added. The Manager acts
as a mediator and relays all the communication between
components. This central control facility helps to intercept
all the messages passed in the system, with which correct-
ness of the model can be checked.

Figure 1 shows the UML class diagram featuring the
three classes.

� A ChatRoom provides two methods to handle incom-
ing events. request handles incoming requests, each
of which has parameters clientID and roomID. The
ChatRoom sends back an acceptance or rejection no-
tice to the sender with a global ID clientID. It also
uses the roomID parameter to decide whether the re-
quest is sent to itself or to another chat room1. The
send method receives a msg sent by client clientID.
This msg will be broadcast 1 second later.

1As UML statecharts (pre UML 2.0) are used in later steps, which do
not allow one to specify the receiver of an event, all the chat rooms receive
the same request even if only one of them will handle it.

� Methods accept and reject of Client handle in-
coming acceptance and rejection notices. Parameter
clientID is used to identify the target client. When a
Client receives a broadcast event, it checks if itself
is in the set of clients. If so, message msg is printed
to the output.

� The Manager relays connection requests, acceptance
and rejection notices, messages sent from clients and
broadcasts from chat rooms. For example, when it re-
ceives broadcasts from chat rooms, the three parame-
ters tell it the original sender (client) of the message,
the broadcaster (chat room) and the message string.
It then sends the message to all the clients connected
to this chat room, with the exception of the original
sender.

Though this API definition is not functional, the behav-
ior behind the interface is easily understood. Checking its
consistency with the protocol is however difficult or even
impossible because of the following reasons:

� Behavior is hidden behind the interface, which can
only be interpreted by human understanding.

� The protocol is specified in natural language, which a
program cannot easily process.

� For a well-defined system there can be a number of
interface designs. They may differ substantially. For
example, in this design a Manager class is used to
intercept communication. Another design may use
RequestManager to intercept requests, acceptances
and rejections, and use MessageManager to intercept
messages and broadcasts. Yet another design may not
use any manager at all.

4 Sequence Diagrams

The sequence diagrams discussed in this section bring
the design to a lower level of abstraction (higher level of

: ChatRoom: Manager

mrequest

request

: Client

alt
accept

alt
reject

maccept
accept

mreject
reject

(0s, 0)

(0s, 1)

(0s, 2)

(0s, 3)

(0s, 2)

(0s, 3)

Figure 2: Sequence diagram of the request pattern

c3 : Clientc2 : Client: ChatRoom: Managerc1 : Client

msend

send

mbroadcast

broadcast

broadcast

(0s, 0)

(0s, 1)

(1s, 0)

(1s, 1)

(1s, 2)

1sec

Figure 3: Sequence diagram of the message pattern

detail) than the class diagram. The sequence diagrams
must clearly reflect the interaction between components.

4.1 Timing

Timing issues make conversion of the protocol into se-
quence diagrams and later statecharts difficult. In the pro-
tocol description, more than one action can happen at the
same time, though they may be causally related. For exam-
ple, a chat room should not send an acceptance or rejection
before it receives a request, though time is not advanced.
Hence, “request at time 1; accept at time 1” in
the output trace is correct, while “accept at time 1;
request at time 1” is not.

One possible solution is to use a tuple
���������

to represent
time, where

�
is float-point time in seconds and

�
is an in-

teger sequence number. In this way, the correct output can
be written as “request at time (1.0s, 0); accept
at time (1.0s, 1)”. The sequence “accept at time
(1.0s, 0); request at time (1.0s, 1)” is incor-
rect.

4.2 The Request and Message Patterns

The request pattern is shown in Figure 2. A Client
first invokes the mrequest method of the Manager. The
Manager then relays the request by calling request of a
ChatRoom. The ChatRoom immediately responds and calls
back the maccept or mreject method of the Manager. The
requesting Client then receives the relayed reply from the
Manager.

Figure 3 shows the message pattern where a random
message is generated and passed in the system. Note that
the ChatRoom deliberately delays 1 second after it receives
a request. No other time delay is shown in the two se-
quence diagrams.

4.3 Consistency with the Class Diagram and the
Protocol

Consistency with the class diagram can be easily
checked by collecting all the method calls that a component
receives. For example, in the request pattern, the Manager

receives mrequest, maccept and mreject. In the mes-
sage pattern it receives msend and mbroadcast. These
five methods are defined in the class diagram, and no other
public methods are defined. As parameters are not shown
in the sequence diagram, there is no need to check their
parameters. This checking process can be automated.

Consistency with the protocol can be partially checked.
One can easily see that according to the request sequence
diagram, if a chat room receives a request at time 0, it ac-
cepts or rejects the client at time 0. The absolute values
of the two times are not important. Important is that the
reply is sent back at exactly the same time. In this way
the designer can check “what should happen at a certain
time” manually. If the rule-based approach discussed later
is used, limited automatic checking is also possible.

Note how basic sequence diagrams are unable to ex-
press what should not happen at a certain time or in a cer-
tain period. For example, it is implied in the protocol that
a chat room does not accept or reject a client without a
request. This information is missing in the sequence dia-
grams. This may introduce design errors into the model,
and affect the correctness of later development steps.

Another possibility for an erroneous design is due to
the semantics of sequence diagrams. For example, in
the request pattern, the sequence diagram describes: if
a client sends an mrequest, then the manager sends a
request without time advance, then the chat room sends
an maccept or mreject without time advance, then the
manager sends accept or reject accordingly. Unfortu-
nately, an inert client that does not send any request, which
is obviously a problem in the system, can not be detected
by checking the sequence diagram. In the worst case, no
client tries to connect, and thus the system halts forever.

To compensate for the loss of information, designs in
other UML formalisms are needed which do not com-
pletely depend on sequence diagrams, or the sequence di-
agram formalism must be extended. An excellent example
of the extension and use of sequence diagrams are Live Se-
quence Charts, as desiscribed by Harel [1].

5 Statechart Design

Statecharts are used to implement the behavior behind
the class definitions. They can be executed in our SVM
(Statechart Virtual Machine) [2] [3], an interpreter for an
extended statechart formalism written in Python.

5.1 SVM Conventions

Before the statechart designs can be easily understood,
some SVM conventions must be introduced beforehand.

SVM interprets models in the extended statechart for-
malism. New features are added. Though expressiveness
is not enhanced2, ease of use is greatly improved.

Component-based design is possible in SVM, though
original statecharts are not modular. This is necessary for
the chat model, where components such as clients and chat
rooms are designed separately, but work together in the
final system. Components are reused by importation. A
larger component imports (an instance of) a smaller one
into one of its states. The result is as if all the (hierarchi-
cal) states and transitions of the imported component were
directly written inside that state.

SVM models are written in text files. Macros are a con-
cept introduced in SVM. Macros are defined in the MACRO
section of an SVM source file. Once defined, they can be
used in brackets throughout the text file. For example, with
PREFIX=state defined, [PREFIX] can be used to literally
substitute string “state”, and thus [PREFIX]1 is equivalent
to state1.

Some of the predefined macros are used later on.
[EVENT(event, param)] raises an event. It carries a
string event and an optional list param as the parameters
that travels along with it. [PARAM] is used to retrieve pa-
rameters of the event being handled. It is usually used in
the guard or output of a transition. [DUMP(msg)] prints
debugging messages to the screen or records them in a text
file.

Macros also serve as parameters when a component is
imported. The importing component may redefine some or
all of the macros originally defined in the imported com-
ponent, including predefined macros. As a continuation of
the previous example, if the importing component specifies
PREFIX=mystate as an importation parameter, [PREFIX]1
within the imported component is interpreted as mystate1
instead.

It is easy to show that these extensions do not increase
the expressive power of statecharts.

5.2 The Chat Room Model in the Extended Stat-
echart Formalism

Components Client, ChatRoom and Manager are de-
signed in separate statecharts. As Figure 4 shows, model
Chat imports five instances of Client, two instances of
ChatRoom and one Manager. Each instance of the same
type has a unique ID parameter. Instances of different types
can have the same ID since their sets of acceptable events
are disjoint. This model can be simulated or executed in
the SVM environment.

The Client component is shown in Figure 5. Initially,
it is in the nochat state. It repeatedly tries to connect to the

2More extensions can be made to enhance expressiveness, but check-
ing the correctness of a model becomes much more difficult.

chatroom via the manager by raising an mrequest event
every 1 to 3 seconds (uniformly distributed), until the re-
quest is accepted (the accept event is received. uniform
is a Python function which returns a random real number
in a range, and randint returns a random integer. The
event’s first parameter gives the client’s unique ID. The
event’s second parameter gives the destination chatroom
(randomly chosen from 1 or 2). Then, the client moves to
state connected and starts sending messages and receiv-
ing broadcasts. Since parameters of events are sent as a
list, [PARAMS][0] gives access to the first parameter, and
so on. Note that when the content between square brack-
ets is not a macro name or a Python index, it is a guard as
defined in the original statechart formalism [4].

User-defined macro [ID] gives a unique ID to each
Client. Its definition ID=0 implies that the default value
is 0. It is changed by the importing component (the Chat
model in this case) to a unique number. ID of a component
is important. Since the whole system can be viewed as one
large statechart after importation, all broadcast events are
received by every orthogonal component. Thus, the only
way to send an event to a specific client is to give the re-
ceiver’s ID in the parameter list. Each client checks if its
ID matches before handling an event.

Compared to the Client component, ChatRoom is
much more complicated. It uses a list messages[ID]
to queue incoming messages. This means every chat
room with a unique ID has its own queue. (For ID=0,
messages[ID] is equivalent to messages0.) If a message
comes when it is busy processing a previous message (it
takes 1 second), the new one is added to the list. The time
when the message is received is also recorded so that even
if a message is queued, its processing time is still 1 second
since its arrival.

The Manager component simply relays messages.
Function rec comm(client, room) records a connec-
tion in a list when a chat room accepts a client.
get clients(room, client) looks up the list and re-
turns all the clients in chat room room, except client.
get room(client) returns the room ID for client.

The message queue of chat rooms and the connection
list of manager are examples of variables. They help to
record the state of the model. Strictly speaking this is also
an extension to original statecharts, where states must be
explicitly specified. The discussion of variables is outside
the scope of this case study.

5.3 Consistency with the Class Diagram

This component-based design should strictly conform
to the class design in Figure 1. Otherwise, a component
may send an event to a receiver, who cannot handle it. Or,

the sender may provide less parameters than required. The
result can be a fatal run-time error.

A program can be written which automatically checks
sender-receiver consistency of all the method calls. Not
how at the code-level this might be checked by a type-
checker and/or linker. For example, Manager accepts event
maccept. This means it provides method maccept in its
class definition. In the guard and output of the transition
that handles this event, [PARAMS][0] and [PARAMS][1]
are used, so it requires at least two parameters. The
checker then looks through the whole Chat model and
finds that this method is only called (asynchronously) by
the ChatRoom component. The call [EVENT("maccept",
[[PARAMS][0], [ID]])] provides exactly two parame-
ters ([PARAMS][0]3 and [ID]). The checking of this call
is successful.

Similarly, the consistency of all the method calls in the
model can be checked against the class diagram.

6 Consistency Checking by Model Execu-
tion

The Chat model is simulated or possibly executed in
real-time (needed in case of a human in the loop) by the
SVM interpreter. The output produced in the execution is
dumped to screen and a to text file. As mentioned above,
human intervention is not needed if all user interaction is
explicitly modelled. The output trace is the only means
by which we validate the execution. Consistency of the
trace with all the design artifacts discussed above must be
checked.

Consistency with the class diagram was studied in the
previous section. The checker formally checks the state-
chart design. Model execution is not needed.

Consistency with the sequence diagrams is checked by
validating the output trace of experiments. Although cor-
rectness can in many cases not be proved (as it would re-
quire the exploration of a large or possibly infinite state-
space of possible behaviours), confidence in the final prod-
uct is greatly increased.

Consistency with the statecharts is implied provided
that the SVM execution environment is correct.

Proving consistency with the original protocol is not
easy, because it contains much more information than the
sequence diagrams does. It is also hard to be processed by
a checker program.

3[PARAMS][0] here refers to the first parameter of event request,
which is handled by the ChatRoom component. This parameter is further
passed on in event maccept as the latter’s first parameter.

Chat

Import:
 Client
Parameters:
 ID = 1

Import:
 Client
Parameters:
 ID = 2

Import:
 Client
Parameters:
 ID = 3

Import:
 Client
Parameters:
 ID = 4

Import:
 Client
Parameters:
 ID = 5

Import:
 Manager

Import:
 ChatRoom
Parameters:
 ID = 1

Import:
 ChatRoom
Parameters:
 ID = 2

Figure 4: Chat model

connectednochat

after(uniform(1,3)) /
[EVENT("mrequest", [[ID], randint(1,2)])]

accept [[PARAMS][0]==[ID]]

reject
[[PARAMS][0]==[ID]]

after(uniform(1,5)) /
[EVENT("msend", [[ID], rand_msg()])]

broadcast [[ID] in [PARAMS][0]] /
[DUMP([PARAMS][1])]

Figure 5: Client component

root
H*

request [[PARAMS][1]==[ID] and clientNum<3] /
[EVENT("maccept", [[PARAMS][0], [ID]])], clientNum+=1

idle sending

request [[PARAMS][1]==[ID] and clientNum>=3] /
[EVENT("mreject", [[PARAMS][0], [ID]])]

send [[PARAMS][1]==[ID]] /
messages[ID].append([PARAMS]+[[TIME]])

send [[PARAMS][1]==[ID]] /
messages[ID].append([PARAMS]+[[TIME]])

after(messages[ID][0][3]+1-[TIME]) /
[EVENT("check")]

check [len(messages[ID]>1] /
[EVENT("mbroadcast", messages[ID][0][:3])],

delete messages[ID][0]

check [len(messages[ID]==1] /
[EVENT("mbroadcast", messages[ID][0][:3])],

delete messages[ID][0]

Figure 6: Chat room component

normal mrequest /
[EVENT("request", [PARAMS])]

maccept / rec_conn([PARAMS][0], [PARAMS][1]),
[EVENT("accept", [[PARAMS][0]])]

maccept /
[EVENT("accept", [[PARAMS][0]])]

msend / [EVENT("send", [[PARAMS][0],
get_room([PARAMS][0]), [PARAMS][1]])]

mbroadcast / [EVENT("broadcast",
[get_clients([PARAMS][1],

[PARAMS][0]), [PARAMS][2]])]

Figure 7: Manager component

6.1 Output Trace

[DUMP(msg)] macro is used to record messages msg in
a file, until the execution is finished (either automatically
or by manual control by the debugger). Each message
consists of three parts: the time written as a tuple

������� �
,

the sender or receiver with its unique ID, and the message
body. The following is taken from the output:

.
CLOCK: (10.5s,0)

Client 0

Says "Hello!" to ChatRoom 1

.
CLOCK: (11.5s,0)

ChatRoom 1

Broadcasts "Hello!" to all clients except

Client 0

.
CLOCK: (11.5s,2)

Client 1

Receives "Hello!" from Client 0

.

This output is produced by the manager, which has ac-
cess to all relevant information in the communication. At
time 10.5 a message is sent by the client with ID 0. Ac-
cording to the protocol, chat room 1 broadcasts this mes-
sage after 1 second. Another client (client 1), which is
also connected to chat room 1, receives the broadcast at
the same time. The original sender of the message from is
also shown.

6.2 Consistency with the Sequence Diagrams

Consistency with the sequence diagrams can be checked
in a rule-based approach. A set of rules are defined and
written in a text file. A checker reads the file and checks if
the output trace satisfies every rule.

Regular expression are extended to describe rules. A
rule consists of four parts: pre-condition, post-condition,
guard (optional) and counter-rule property (optional). Pre-
condition is a regular expression used to match a part of
the output trace. It, combined with the guard (a boolean
expression), defines when the rule is applicable. When it
is applicable and the counter-rule property is false, the
post-condition (another regular expression) must be found
in the output; if counter-rule is true, the post-condition
must not be found.

For example, the following rule expresses the fact that
the sender of a message does NOT receive the broadcast
after 1 second:

pre-condition CLOCK: \((\d+\.{0,1}\d*)s,(\d+\

.{0,1}\d*)\)\n\Client (\d+)\nSa

ys "(.*?)" to ChatRoom (\d+)\n

post-condition CLOCK: \([(\1+1)]s,(\d+\.{0,1}\

d*)\)\nClient [(\3)]\n Receives

"[(\4)]" from Client [(\3)]\n

guard [(\1+1)]<50

counter-rule true

In the pre-condition, five expression groups are de-
fined in parentheses. They are numbered 1 to 5. Group
1 matches the floating-point time. Group 2 matches the
sequence number. They constitute a time tuple. Group
3 matches the integer client ID of the sender. Group 4
matches the message, which is an arbitrary string. Group 5
matches the chat room which the sender is in.

In the post-condition, [(...)] contains an expression,
where values of groups can be cited with their index num-
bers behind “\”. Thus, [(\1+1)] is the value of the first
group plus 1. [(\3)] is equal to group 3. More about the
regular expressions used can be found in [5].

Suppose the execution stops at simulated time 50. The
checking should not exceed time 50. Without additional
conditions, if a message is sent to a chat room at time
49.5, the checker would expect a corresponding broadcast
at time 50.5. To cope with this, a guard [(\1+1)]<50 is
added. This tells the checker that the rule is applicable
only when the value of group 1 (floating-point time) plus 1
is less than 50.

Since a client should not receive its own message, this
is a counter-rule.

6.3 Consistency with the Protocol

It is difficult, if not impossible, to prove the model is
completely consistent with the protocol. The protocol, also
regarded as a set of requirements, is described in natural
language. Its interpretation is the main obstacle for the de-
velopment of an automatic checker.

One may argue that the protocol can be transformed into
a set of rules. With the rule-based method described above,
consistency with the protocol can be checked. However, it
is hard to transform the complete meaning of the protocol
into a formal representation, which is easily processed by
a program. Obvious facts implied in the protocol and com-
mon knowledge are usually lost. As an interface between
human beings and computer programs, a natural language
processing technique is required.

In this case study, a series of steps are used to achieve
the final, executable design. Information is lost while
converting a design into another in a different formalism.
Checking between intermediate steps does not guarantee
the correctness of the final product.

On the one hand, checking intermediate steps is not
strong enough. On the other hand, it is extremely hard
to check the model directly against the original protocol.
“How to prove the correctness of a final design” is the last
and largest open question in this case study.

7 Conclusion

A concrete example is discussed in this case study. An
executable model is developed from initial requirements.
Steps are gone through and designs at different levels of ab-
straction are studied. A component-based approach is cho-
sen to make the model modular and manageable. A class
diagram defines the interface of components. Sequence di-
agrams formalize the communication and make automatic
checking possible, though they only partly illustrate the re-
quirements. The component-based model is modelled in
the extended statechart formalism. This model is directly
interpreted by the SVM execution environment.

Development of the chat room model gives rise to a se-
ries of consistency problems. For some of them, automatic
checking is successfully applied.

1. Consistency between the sequence diagrams and the
class diagram is checked. A checker verifies all the
required methods are correctly specified in the inter-
face.

2. Consistency between the statecharts and the class di-
agram is also checked in a similar way. The sender
of an event always provides enough parameters to the
receiver.

3. Consistency between the statecharts and the sequence
diagrams is checked with a rule-based checker. Regu-
lar expressions are extended to specify pre-conditions,
post-conditions, guards and counter-rule properties.

However, other consistency problems remain unsolved.

1. Consistency between the class diagram and the proto-
col (initial requirement) is not checked. Design flaws
may be discovered in later steps or be hidden in the
final product.

2. Consistency between the sequence diagrams and the
protocol is only checked manually. Though the se-
quence diagrams are just a formalization of the pro-
tocol, it is not easy to check their correctness with a
program.

3. It is even harder to check the consistency between the
final design in extended statecharts and the protocol.
This checking is necessary, as information is lost in
intermediate steps.

Attention must be paid to these open questions which
mostly pertain to inter-consistency. It is believed that con-
sistency checking should be an integral part of the devel-
opment process and of software development tools.

References

[1] D. Harel and R. Marelly. Specifying and executing be-
havioral requirements: The play-in/play-out approach.
Technical Report MSC01-15, The Weizmann Institute
of Science, 2001.

[2] Thomas Feng. An extended semantics for a State-
chart Virtual Machine. In A. Bruzzone and Mhamed
Itmi, editors, Summer Computer Simulation Confer-
ence. Student Workshop, pages S147 – S166. The So-
ciety for Computer Modelling and Simulation, July
2003. Montréal, Canada.

[3] Thomas Feng. Statechart Virtual Ma-
chine (SVM), 2003. MSDL, McGill Uni-
versity, http://moncs.cs.mcgill.ca/p-
eople/tfeng/?research=svm.

[4] David Harel and Amnon Naamad. The STATEMATE
semantics of statecharts. ACM Transactions on Soft-
ware Engineering and Methodology, 5(4):293–333,
1996.

[5] Python 2.2.3 documentation, May 2003.
http://www.python.org/doc/2.2.3/.

[6] David Harel. Statecharts: A visual formalism for com-
plex systems. Science of Computer Programming,
8(3):231–274, June 1987.

[7] Michael von der Beeck. A structured operational se-
mantics for UML statecharts. Software and Systems
Modeling, 1(2), 2002.

[8] Jim Rumbaugh, Ivar Jacobson, and Grady Booch.
The Unified Modeling Language Reference Manual.
Addison-Wesley, 1998.

