
10:42pm April 18, 2003

Action Semantics for an Executable UML

COMP601 Reading Project

Thomas Feng ∗

April 18, 2003

Abstract

UML currently lacks a rigorously defined semantics for its models, which makes formally ana-
lyzing a model, verifying its properties, testing it and generating code from it extremely difficult.
Action semantics is a newly developed language aimed at precisely describing the behavior of
programs and models. It is a desirable extension to UML.

The history of action semantics, including the pros and cons of its predecessor, denotational
semantics, is briefly introduced. Comparison is made on different attempts to achieve an executable
UML. The basics of action semantics, including all the defined action types, is discussed in detail.
From this discussion, the conclusion is drawn that, though flaws still exist, action semantics is a
powerful tool to describe behavior in the level of both modelling and meta-modelling.

1 Introduction to Action Semantics

Action semantics is a newly developed language aimed at precisely describing the behavior of programs
and models. It starts from modifying denotational semantics, but finally ends up with a completely
new semantics, which is much more modular and extensible than its predecessor.

1.1 Denotational semantics

As a starting point of action semantics, denotational semantics is studied very thoroughly and has
lots of applications. Its base, λ-calculus, is accurate and rigorously defined. Because of this, models
described in denotational semantics can be easily analyzed.

However, in the contemporary view of a modeler, the deficiency of denotational semantics outweighs
its merits. Its major drawback is the lack of modularity. In a description, semantic definitions are
globally visible. Part of the description intertwines with another. When change has to be made, even
if it is only a minor change, it cannot be confined to a small area. People have to propagate the change
throughout the whole description. This process, of course, is boring, time-consuming and error-prone.

This only addresses part of the problem. λ-notation is usually complex and hardly read. For
example, a simple statement “A1 then A2” in action semantics corresponds to the λ-notation

λε1.λρ.λκ.A1ε1ρ(λε2.A2ε2ρκ)

[Mos96]. This is good for computer processing, but not good for humans. When reading this descrip-
tion, the programmer has to decipher the meaning of the λ-notation, and reconstruct the underlying
semantics. It turns out that this reverse approach is extremely difficult; and any modification of the
description, which is based on this reverse process, is thus formidable.

∗Email: thomas@email.com.cn
Homepage: http://moncs.cs.mcgill.ca/people/tfeng/

1

mailto:thomas@email.com.cn�
http://moncs.cs.mcgill.ca/people/tfeng/�

10:42pm April 18, 2003

1.2 Basics of action semantics

Because denotational semantics is inextensible and obscure to humans, people have come up with
several alternatives over the years, among which are abstract semantic algebras and structural op-
erational semantics. They are important and interesting improvements of denotational semantics.
A combination and mixture of denotational semantics and operational semantics is action semantics
[Mos96].

When Peter D. Mosses introduced action semantics in the 1990’s, it was considered as a formalism
to describe programming languages. From the description written in action semantics, not only was
the syntax of the programming language rigorously defined, but also its semantics. Because it is well-
defined, analysis, verification, test and code-generation can be done directly from the descriptions.
The results of the code-generation, of course, are compilers for specific programming languages.

An action semantics description, contrary to the one written in denotational semantics, has an
informal appearance, which looks like the natural English language. It is this appearance that raises a
lot of arguments and criticism. However, it is fact that this appearance does not sacrifice any formality
in its semantics, because it is rigorously defined.

There are three kinds of semantic entities in action semantics: actions, data and yielders. Actions,
the most important part, define the operations that can be performed on data and yielders. An
execution of actions usually results in the evaluation of yielders and the manipulation/modification
of data. Data are cells which store primitive data entities (i.e. byte, int, float, char) and objects
(defined by classes). They can be located in the main memory, hard disk or any other type of storage.
Yielders are a kind of expression whose evaluation yield data. Note that yielders only yield data but
never change them. Data can only be changed by execution of actions, whose semantics, as discussed
above, is well-defined.

Now comes the question: what an action semantics description of programming language looks like.
In his early proposal, Peter D. Mosses separates the description into three modules: abstract syntax,
semantic functions and semantic entities. Each module may comprise several files. There is no general
rule on the division of a module into files, as long as the description is clear and the modularity is
kept.

1.2.1 Abstract syntax

Abstract syntax defines the grammar of the language. It uses a variant of BNF. An example is given
below [Mos96]:

module: Abstract Syntax. grammar:

(*) Stmt [[Id ":=" Expr]]
| [["if" Expr "then" Stmts "else" Stmts]]
| [["while" Expr "do" Stmts]].

(*) Stmts = <Stmt <";" Stmt>*>.

(*) Expr = Num | Id | [[Expr Op Expr]].

(*) Op = "+" | "/=".

(*) Num = [[digit+]].

(*) Id = [[letter (letter|digit)*]].

endgrammar. closed. endmodule: Abstract Syntax.

Table 1: An example of abstract syntax

The grammar is easy to read and understand. However, notice that this description is very language
specific. I.e., in Pascal, this specification may be correct; but in C, the conditional control has another

1.2 Basics of action semantics 2

10:42pm April 18, 2003

appearance “if (...) {...} else {...}”. This means even though the syntax and semantics of some
statements are alike in another language, it is unlikely that it can reuse the existing specification. This
is why people have to rewrite the whole module in order to change all these lexical symbols.

To get out of this difficulty, a recent suggestion raises the issue of separating the description into
two layers. This will be discussed in the latter part of this paper.

1.2.2 Semantic functions

Semantic functions, as the most important module of a language specification, reveals one of action
semantics’ innovative characteristics: informal English appearance. However, semantics is rigorously
defined under this appearance. Part of this merit attributes to the use of action combinators. Combi-
nators are primitively defined in action semantics, and have their primitive semantics. For instance,
combinator “and then” means the sequential execution of two statements; so, if we define A1 and A2

to be two statements, “A1 and then A2” gives the meaning of executing A1 before A2. The result of
the execution is independent of the architecture.

execute [["if" E "then" S1 "else" S2]] =
evaluate E then
((check the given truth-value and then execute S1) or

(check not the given truth-value and then execute S2)).

Table 2: An equation from the semantic function module

The format of semantic function module is very similar to the abstract syntax module. Table 2
shows an equation extracted from this module.

Even in this simple equation, several combinators are found including execute, evaluate, then,
check [not] the given truth-value, and then and or. Not necessary to explain their semantics,
every one knows it because they are English verbs or phrases. The design of these combinators, though
it seems to be simple and casual, is nontrivial, because they are universal, not limited to a certain kind
of statements or data. They are in a higher level of abstraction than the language specification, and
described in another (internal) module. This contributes to the modularity of action semantics. To cite
a conclusion in [Mos96], “since the above features ensure that ASDs (Action Semantics Descriptions
— by the author) have an inherent modularity, the use of explicit modules is almost redundant.”

1.2.3 Semantic entities

Data types are specified in the semantic entity module. The syntax is quite like type definition in
ordinary programming languages. Examples are “value = number | truth-value” and “number =<
integer”. Here, truth-value is a primitive data type. =< denotes a sort inclusion, which means sort
number is included in sort integer with open bound.

Only data types are defined in this module, without any notation about how to evaluate or manip-
ulate them. Actions and yielders on data are defined as semantic functions.

1.2.4 Cross reference among modules

Whenever a module uses the definition in other modules, it must explicitly import those modules.
The keyword for importation is either “includes” or “needs”. On the other hand, to enable another
module to import itself and make part of the definition visible to it, the module must explicitly export
with the keyword “introduces”.

The scheme is similar to packages in Java, where a unit uses other units, and defines whatever is
visible to the outside in its interface. This explicit declaration ensures modularity.

1.2.5 Conclusion on merits

From the above discussion, it is clear that action semantics improves semantic notation in many
aspects:

1.2 Basics of action semantics 3

10:42pm April 18, 2003

• Readability.
The readability of action semantics description comes from its informal appearance. When
a reader goes through a description, he/she can easily understand what is going on without
reconstructing semantic concepts from obscure formulas.

• Modularity and extensibility.
In action semantics, semantic functions and entities are not so entangled with each other than
in denotational semantics. A module imports another one only when it requires its functionality.
An action is dependent only on the data entities that it performs operations on, without noticing
the existence of the others. Universal combinators are primitively defined and thus can be viewed
as in another separate module. In such an organization, change on the described programming
language only requires proportional change on its description.

• Reusability.
Because the description is divided into several relatively self-contained modules and the definition
of each module is usually divided into multiple files, part of the existing description can be
reused in another language, just to be imported by a new one. This is extremely desirable, since
contemporary programming languages share a lot of popular ideas and concepts.

1.3 Action semantics and Syntax Definition Formalism (SDF)

As mentioned above, the descriptions in original action semantics are still too language-specific, because
lexical symbols are directly embedded. When the language is changed, all these symbols, scattered in
the description, have to be changed accordingly. Even worse, sometimes it is the overall appearance
of those structures that differs. Even if the semantics is the same, migrating from one language to
another results in the change of the whole description.

The way to make action semantics even more modular and reusable is to separate the definition
of semantics from that of language-specific constructs. This issue is recently proposed, and nicely
introduced in [Mos02].

1.3.1 The scheme of adding SDF to action semantics

The approach to the separation is by using the Syntax Definition Formalism (SDF) and view the
language descriptions at a higher level. This higher level is relative to the view-point of programmers
or language description authors, not to that of action semantics researchers. This is because the
researchers are already at a higher level, where the language description is a concrete model of the
action semantics formalism.

Language

a
Program a

Syntax

Definition

aLanguage a

Action

Semantics
Syntax

Definition

a

Action

Semantics
Language a

Language

a
Program a

Figure 1: Adding one level to original syntax definition of action semantics

1.3 Action semantics and Syntax Definition Formalism (SDF) 4

10:42pm April 18, 2003

Figure 1 shows the possible three levels in the improved action semantics. The two levels which
are labelled “Language” and “Action Semantics” on the upper part of the figure belong to the original
action semantics. According to a certain language description (so-called “Language a” in the figure), a
programmer can write a concrete program, i.e. “Program a”. Because both the syntax and semantics
of the language specification are rigorously defined, the programmer can test it in the implementation
phase. 100% code generation from the implementation is also possible.

“Language a” itself, however, is specified in the formalism of action semantics, where it is nothing
but a concrete model or an example. It is written in an action-semantics-specific format; and since
action semantics is rigorously defined (both syntactically and semantically), the language description
is rigorously defined, from which a compiler can be automatically generated.

As discussed above, this scheme has a drawback: language-specific symbols are embedded in the
language description, limiting aspect1 reusability among different languages. The solution is found by
adding a level between language description and action semantics – syntax definition.

In the new proposal [Mos02], a program is described according to a specific language, the language is
described according to the syntax definition formalism (combined with action semantics2), and syntax
definition is described in underlying semantics. The border between levels is unimportant and obscure
in nature, but the concept is clear and powerful. This scheme is shown in the lower part of Figure 1.

1.3.2 Examples of SDF description

To give as concrete examples on the look and feel of SDF description, the following pieces of description
are excerpted from [Mos02].

An example of action notation in SDF:

Action ActionInfix Action → Action {left}
"moreover" → ActionInfix

{left} denotes the left associative precedence.
According to this action notation, A1 moreover A2 is a valid action composed from subactions

A1 and A2. A1 moreover A2 = (A1 and A2) then give overriding is a valid statement in the
language description, where give overriding is a kernel data operation and is predefined.

An example of data notation in SDF:

Data DataOpInfix Data → Data {left}
"+"|"-"|"*" → DataOpInfix

According to this data notation, we expect a1 + a2 - a3 to be a data expression in the language
specification (if we define a1, a2 and a3 to be data previously).

An example of condition notation in SDF:

conditional(Cond, Stmt, Stmt) → Stmt {cons}
{cons} specifies it is a condition statement.

An example of semantics notation:

execute Stmt → Action

The semantics definition of this syntactically defined execute statement would be found in another
separate module. It may look like:

execute sequence(S1, S2) = execute S1 and then execute S2

There can be multiple such semantics definitions in the module, each defining a single semantics
pattern. The combination of these definitions gives the full semantics of the execute statement in the
SDF description.

The last mentioned module is not part of the SDF description, because it defines semantics rather
than syntax. execute, sequence and and then are primitive notations and combinators in action
semantics.

1Though aspect is a term from another branch of software engineering, it very appropriately refers to a common
feature in different programming languages here.

2The role of syntax definition is quite like UML, which only defines the syntax without any notation about the actual
semantics. Action semantics helps to rigorously define the semantics.

1.3 Action semantics and Syntax Definition Formalism (SDF) 5

10:42pm April 18, 2003

1.3.3 Reusability enhancement

From time to time we want to migrate from an existing language to another and reuse as much
as possible. In case when the two languages share exactly the same semantic features but differ
syntactically, the only thing we have to do is modify the SDF description. This is because in all
the modules which defines the original language, only the SDF description depends on the concrete
syntax. Other modules, of course, must conform to a certain syntax, but that syntax is defined in
action semantics and is thus universal.

For instance, by changing the action notation example in the last section to:

ActionPrefix "(" Actions ")" → Action {left}
Action → Actions
Action "," Actions → Actions
"actlist" → ActionPrefix

we completely change the action syntax. actlist(A1), actlist(A1, A2, · · ·, An), actlist(A1,
actlist(A2, A3), A4, actlist(A5)) are now acceptable. (Supposing A1, A2, · · ·, An are actions.)

An other example is to change the data notation in the last section to the following:

Data Data DataOpPostfix → Data
"+"|"-"|"*" → DataOpPostfix

to let the language accept postfix expressions. Note that because a postfix expression has explicit
evaluation ordering and is never ambiguous, we can specify {left} for the first statement, or {right},
or just ignore this option.

In reality, when the language is modified, it is impossible to keep all the other modules untouched
and just modify the SDF description. Fortunately, our reason for introducing the SDF level is not to
avoid changes in the language description, but to minimize them.

Without this additional level, in practice people often find rewriting the whole language description
more reasonable than modifying the existing one, because it is too difficult to find out all the lexical
symbols scattering in the whole description and modify them correctly. Maintainability and readability
must also be considered.

2 Semantics in UML

2.1 A lack of semantics in UML

UML, in its original purpose, strives to provide all kinds of programmers with a unified language in
which they can share and exchange designs without loss or misunderstanding of information. However,
it soon turns out that this attempt fails due to a lack of semantics.

2.1.1 Semantic ambiguity

What UML does define is the syntax of a language, i.e., the exact syntax of statecharts, class diagrams,
sequence diagrams and so forth. As to the meaning of these diagrams, e.g., the meaning of a guard in
a statechart, the meaning of a protected member in a class, the meaning of a method call or message
sent from an object to another in the sequence diagram, and so forth, there is no formal definition.

2.1.2 System/platform dependency

It is impossible, for system/platform-independent language without any semantics notation, to be
system/platform-independently understood [MTAL98]. People with different backgrounds interpret
the same graph in different ways, making it entirely impossible to maintain a common understanding.

6

10:42pm April 18, 2003

2.1.3 Excess requirement of language-specific knowledge

This chaos deeply affects the application of UML modelling tools. Most of them require an understand-
ing of how the model is executed. In another word, suppose the tool is built in C++ and transforms
the statechart into C++ before executing it or generating code, more or less the user must know how
the statechart is transformed into C++ in order to write expressions in the guards or output correctly.

Even worse, these tools usually accept language-specific expressions, and place them unchanged in
the final code. In the last example, guards can be written as C++ boolean expressions and output
can be written as C++ method calls. The model is thus very modelling-tool-specific. There is hardly
any chance for such a model to run correctly in another tool, knowing that different modelling tools
often use different programming languages. Even if they use the same language, they place the above-
mentioned expressions in different position of the code, and interpret them in different ways.

2.1.4 Strict distinction between design and implementation

Another defect of this solution to modelling software is that because there is an intrinsic separation
of implementation from the prototype design [RFBLO01], modelers are not allowed to test the model
until the code is finally generated. Only after the design of the whole model is finished can those
statements written in C++ be executed correctly. Before that time, test on a specific region is difficult
(if not impossible) because it strongly relies on the other parts, which are still under construction.

To separate design and implementation to such a degree, of course, is not a good idea. Errors are
often found in the implementation phase. Correcting those errors, which could have been found if
people considered implementation and tested their prototypes in the design phase, requires far more
effort. Furthermore, maintaining such a piece of software, whose implementation obscures its original
design, possibly full of patches, is a nightmare!

2.2 Attempts to achieve executable UML

There are various ways to extend UML so that models become executable. Each of these approaches
has its pros and cons. In spite of all these alternative approaches, the current trend is to unify semantic
notations into a universally accepted language, such that various modelling tools can be based on it,
and models described in this language is system-independent and can be manipulated by any of these
tools.

2.2.1 Implementation based on a specific language

The most straightforward approach to executable UML models is to create a direct link (or dependency)
between the meta-model and a specific language. In the meta-model, users are allowed to write
statements and expressions in the language (called an “action language”). The libraries of the language
are also available for immediate use in the model. When the design of the model is finished, it can
be converted into source code (again, in the same language), and can be executed after compilation
(Figure 2).

The language chosen is arbitrary. It can be any of the contemporary programming languages such
as C++, Java, Python [Fen02] and so on.

This gives model designers much power to express software systems. In a sense, to design a model
is much like programming, because they have to write real code in appropriate places of the model 3.
The code has unlimited power to access and modify any object or variable in the run-time system.

Because almost all the modelling environments implemented in this scheme naively place the
language-specific expressions and statements unchanged in the source code generated from the model
4, the disadvantages are very obvious:

• No programming language contains all the useful software concepts. Though different program-
ming languages may be equivalent in power and are able to produce all kinds of software, they
differ in the difficulty or ease with which different problems are solved.

3Though this work is only done in the detailed design and implementation phases, it needs to be done at some point.
4The model itself is more like a code template in this sense.

2.2 Attempts to achieve executable UML 7

10:42pm April 18, 2003

Modeling

Environment

Drawing
Manual

Checking

After(time)

[!finished]

[finished][errorFound]

Code

Generation
Testing [codeReady]

StateRelease

[!errorFound]

Figure 2: Model design based on specific language and compilation

• UML concepts are not directly supported by any contemporary programming language [MTAL98].

• Using any of the programming languages in the models enforces modelers to focus on verbose
implementation details too early.

• The expressiveness of the code embedded in the model makes automatic model analysis and
verification difficult. This also makes the generated software error-prone. It is difficult to tell
whether the error is caused by the model structure or by the embedded code.

• The requirement for compilation delays the change to the system and increases time-to-market
[RFBLO01]. The system must be re-installed.

2.2.2 Declarative Specification

The Object Constraint Language (OCL), as a declarative specification language, is already included
in the UML standard. It is very useful in specifying guards in statecharts, pre- and post-conditions of
methods, and all kinds of boolean expressions in UML.

However, though the pre- and post-conditions define the input sets and output sets of a method,
OCL has no ability to specify algorithms, i.e., which input value matches to which output value
[MTAL98]. This task must be taken up by another more powerful and more expressive language.

2.2.3 Virtual machines

The idea of a virtual machine is to build an environment that can actually run the model [RFBLO01].
The environment provides modelers with a set of operations or functions, quite like the instruction set
of machine language.

In a virtual machine, like the Java Virtual Machine (JVM), every instruction has its exact meaning,
and in such a way the semantics of models is rigorously defined. The virtual machine also enables
early analysis and verification. Code generation becomes unnecessary.

Built up as an Integrated Development Environment (IDE), the modelling tool is thus a design
environment and a virtual machine at the same time. Models can be modified, and the modification is
immediately reflected in the execution. Furthermore, the modification can be done at run time. This
makes the model very flexible as shown in Figure 3.

Classes and associations, conventionally considered static, are now placed in a dynamic context
and represented as objects in the environment. So, in the environment, every part of the model can
be modified.

2.2 Attempts to achieve executable UML 8

10:42pm April 18, 2003

Modeling

Environment

StateRelease

[!errorFound]

Drawing
Manual

Checking

After(time)

[!periodFinished]

[errorFound]

Testing
Analysis

Verification

[periodFinished]
[!designFinished]

[designFinished]

Figure 3: Model design based on virtual machine

There still remains the question: Is the virtual machine universal? From the implementation point
of view, virtual machines increase productivity and shorten time-to-market. But this idea itself has
nothing to do with the semantics. Consider interpreted languages such as Visual Basic, Python and
Perl. Which should be chosen as the internal representation of a model? Or should we create a new
language? If none of these languages satisfies the requirement, is action semantics (AS) a good choice?
If so, the solution is more suitably regarded as an action-semantics-based solution.

2.3 Toward a common language to express semantics

To cope with the problem that UML lacks a rigorous semantics, the OMG (Object Management
Group) issued an RFP (request for proposal) for such a semantics for the UML. The Action Semantics
Consortium responded to this RFP and suggested new constructs to the UML.

Action semantics, as discussed above, is good at rigorously defining semantic concerns of program-
ming languages. It must be clarified that by combining action semantics with UML, we can get a
rigorously defined modelling language and also a rigorously defined meta-modelling language. Models
designed with such a rigorous semantics can then be simulated, analyzed and verified at an early time.

Based on the industrial practice such as SDL, Kennedy Carter and BridgePoint, the Action Se-
mantics proposal aims at providing modelers with a complete, software-independent specification for
actions in their models [SGJ02]. As a future OMG standard, action semantics goes one step further
than its predecessors.

3 Action semantics at the model level

Action semantics as a package for UML, helps to define the actions in models. Its goal is not to usurp
the responsibility of all the other packages such as OCL, but to cooperate with them in a harmonious
way. OCL, as a well established part of UML, is still used to specify logical expressions in the new UML
configuration. Those logical expressions give the pre- and post-conditions of methods and guards of
transitions. Action semantics, however, is used to specify the body of the methods, i.e. their behavior.

3.1 Primitive actions and flows

Action semantics defines a core package for UML, which serves as the basis of all kinds of actions. The
core consists of a set of fundamental actions and their semantics, as is illustrated in Figure 4 [BB01].

Two kinds of flows control the execution sequence of actions: control flow and data flow. All
actions are treated as executing concurrently except those sequenced by a data flow or a control flow

2.3 Toward a common language to express semantics 9

10:42pm April 18, 2003

ControlFlow

Action

0..*antecedent

0..*

consequent

predecessor

successor

1

1

OutputPin

action0..1

InputPin

action0..1

inputPin

0..*

outputPin

0..*

availableInput

availableOutput

0..*

0..*

0..*

0..*

DataFlow

source

destination

1

1

flow0..*

flow1

Pin

Classifier

0..*

0..1 type

Figure 4: The minimal core of the action semantics package

[AILKC+00].

• Control flow. An action is executed only after all its antecedents are completed. The termination
of an action may activate one or more of its consequents, provided that their other antecedents
are also finished executing. So, as the class diagram shows, an action is associated with a set of
antecedents and a set of consequents.

• Data flow. Every action has two sets of input pins and two sets of output pins associating with
it. One of the input pin sets (denoted by A)contains all the required input pins for the action.
They can be considered as the formal input parameters. The other input pin set (denoted by
B) contains available pin data at a certain point in time. Since this set is associated with the
action and only provides information which it interests in, it is a subset of B. An action can
be executed only after all the associating input pins are available, i.e. A = B. Similarly, only
when the action is completed does output pin set A′ equal to B′. As the data flow carries on,
data from the output pins of a preceding action become a source of the data flow, and then the
confluence reaches the input pins of another action.

3.2 Composite actions

Composite actions allow the composition of simpler actions into more complex ones. They are recursive
structures. This means composite actions themselves can be a component of a larger composite action.

There are three kinds of composite actions: group actions, conditional actions and loop actions.

3.2.1 Group actions

Actions may be grouped to represent a specific design concern. On the one hand the grouped entity
is conceptual. Its boundary does not hinder data flow or control flow. Data flow must be directly
connected to the input pins of the actions in the group, because a group action has no input pins.
Control flow may also cross the group boundary and be directly connected to subactions. In this view,
a group action is nothing but a logical view of its subactions.

On the other hand, when group actions are physically connected with control flows, they are placed
in an execution sequence with their predecessors and successors. In this case, they follow the rule of
sequential execution, i.e., they cannot be executed before all their predecessors are completed.

3.2.2 Conditional actions

A conditional action is a composition of clauses, each of which contains exactly one test action and
one body action. A test action accepts input data from the available input pins, and produces a truth

3.2 Composite actions 10

10:42pm April 18, 2003

Action

OutputPin

InputPin

TestActionGroupAction ConditionalAction10..*11

availableInput

0..*

0..*

0..*0..*

availableOutput

0..*

0..*

Pin

0..*

0..*
0..*

0..*

Figure 5: Conditional actions

value. Its associated body action is executed if and only if the test result is true. When executed,
the body action, which can be viewed as a group action as a whole, accepts available input data and
produce output for the available output pins at completion (Figure 5).

Different body actions, though they may require different input, must produce output to the same
set of output pins. So no matter which body action is executed, the output of the conditional action
is always complete.

One might notice from the figure that a conditional action is not explicitly associated with input
pins or output pins. It is only associated with available input pins and available output pins, since the
input and output is implicitly given by or given to the execution context of the conditional actions.

As another underlying rule, there should be no data flow between two clauses of a conditional
action.

Clauses can have noncyclic predecessor-successor relationships among them. In this way, a clause
may be defined as a successor of some others, meaning that its test action (and body action if possible)
is executed after the predecessors. Of course, according to the rule that exactly one clause gets executed
at a time, if any of its predecessors is executed, the successor clause could not be executed. Test actions
of unrelated clauses may be executed concurrently.

An application of the clause relationship is to define a default body action for the conditional
action: the default action is specified as the successor of all other clauses and its test action always
return true.

In this way, clauses form a hierarchy. Test cases in each level of the hierarchy must be mutually
exclusive, though they may not cover all possible conditions.

The above assertion assures the model to be deterministic under all conditions. This conforms to
the well-formedness rule in [AILKC+00].

3.2.3 Loop actions

A loop action contains a single clause of a test action and a body action. Its test action is executed
repeatedly. When the evaluation result is true, the body action is executed; otherwise, the loop action
finishes.

3.2 Composite actions 11

10:42pm April 18, 2003

Besides its input pins and output pins, a loop action also has loop variable pins. Before its execution,
all the required input must be available from the input pins. Data on the input pins are then copied
to the loop variable pins. The test action each time tests the condition based on these loop variables,
and the body action takes the loop variable pins as both input pins and output pins. Whenever the
test result becomes false, the loop stops and the loop variables are copied to the output pins as the
result.

3.3 Read and write actions

Read actions retrieve values from objects, attributes, links and variables, while write actions write
values to them. The read/write actions described here are primitive actions and only provide simple
functions. More complex read/write actions can be defined by composition.

3.3.1 Object actions

When considered as general targets of read and write actions, the only property of objects is their
classes. An object at run time has an identity (i.e., a unique identifier). Its only attribute, classifier,
gives the current class of the object. The classifier can be set at model time and also at run time. Read
action ReadIsClassifiedObject accepts a classifier from one input pin and an object from the other, and
returns the result whether the object belongs to the class specified by the classifier. Write action
CreateObjectAction produces an object and puts it on an output pin; DestroyObjectAction takes an
object from its input pin and destroys it. ReclassifyObjectAction changes the classifier to another one
(i.e., reclasses the object).

3.3.2 Attribute actions

Attributes of objects can be read and written by attribute actions. The names of the attributes
referred to are statically bound to the actions. This means that their names and order of appearance
are specified in the model, and cannot be changed at run time. So for read actions, the only required
parameter from the input pins is the object instance (or object identity). These actions read the
specified attributes and put their values on the output pins. The order of the values is the same with
the order of the attribute names given at model time. For write actions, they take an object instance
and also new values as input, and modify the attributes accordingly. No output is produced.

Attributes may be sets or ordered sets; for example, a composition with a class whose multiplicity is
0..* in a class diagram. In both cases duplicated values in an attribute are not allowed. A read action
reads all the values of an attribute, regardless of how many there are. However, it is possible to insert
a value into an attribute with a write action. When the attribute is ordered, the insert action takes
one more input as (run-time) position parameter; if the new value already exists in the attribute, it is
moved to the new position. When the attribute is unordered, the position is omitted, and inserting a
duplicated value to the attribute has no effect.

A special object ownerScope is a first class object. Such an object represents a classifier instead
of an object instance. When a read/write action is carried out on it, the identity of the ownerScope
object is not required from the input pins, because the target of the action is statically bound to the
classifier.

3.3.3 Association actions

Associations are the classes of links. When instantiated, a link connects two or more objects5. There
can be multiplicity of more than 1 for each end of an association, but the multiplicity for a link end
can only be 1..1, because when instantiated, there should be exactly one object at a link end. (Link
ends with no object are not considered.)

Association actions actually perform read/write actions on links. A link cannot be passed to an
action from input pins. Instead, it is the objects on link ends that are passed to the action. So, each
association action is statically bound to a specific association, with exactly one input pin for each end

5A link of binary association class connects two objects; other kinds of links each connect more objects.

3.3 Read and write actions 12

10:42pm April 18, 2003

of the association. From those input pins, objects can be passed to the action as parameters specifying
a link instance.

For write actions, all the link objects are given at run time. The action can thus locate the link
and modify it. There are strict limitations for write actions: when a link is created, it can only be
destroyed or reordered; neither qualifiers nor link objects can be changed.

For read actions, n− 1 objects are given on input pins, where the link actually has n objects. The
read action is to find the omitted object, which becomes the result on an output pin when the action
is completed.

3.3.4 Variable actions

Each variable action is statically bound to a variable. A read action takes no input and produces
exactly one output, which is the value of the associated variable. A write action usually takes one
input as the new value of the variable and rewrites it, with a special case that an insert action may
take one more input as the insertion point where the new value is to be inserted into the variable (if
it is a set or a list).

3.4 Implementation-dependent Computation actions

Computation actions take in input values, perform pure functional computation on them, and then
return output values to the output pins. They are comparable to the constant functions in programming
languages, which are self-contained and make no change to the current state.

Computation actions are an implementation-dependent part of action semantics for the UML,
because there is no rigorous definition for primitive actions. Primitive actions can be written in a
specific programming language and is left entirely to the modelling environment. The only requirement
for the primitive actions is their signatures, including names, a list of input types and a list of output
types.

Researchers find it very hard to define primitive actions for computational purposes, given that
different application areas have different requirements [AILKC+00]. However, this lack of formal
definition for primitive actions forbids the porting of models from a modelling environment to another.
Even worse, in practice few models run without any computation action. Actually, the power of
computation actions usually tempts designers to abuse them. It is still necessary to define a primitive
action set or a primitive language to maximize portability, if it is not ensured.

3.5 Collection actions

A collection as a whole can be manipulated by a collection action. Elements in the collection are
ordered or unordered. The action applies a subaction on one element at each time. The collection is
given to the collection action from an input pin, and the result is produced and put on an output pin.

Some of the collection actions described below require the collection to be ordered, while others do
not.

A collection action may also take multiple collections as input. In this case, the parameter to the
subaction is a tuple with multiple elements, each of which is taken from a different collection. The
collections must be ordered and have the same cardinality to have their elements matched in a unique
way.

It is also possible that, apart from the collections, the action has more input pins which take single
values. Those values are passed to the subaction in each execution. They are considered as constants,
and will not be put on the output pins.

3.5.1 Filter actions

The subaction of a filter action is a boolean function mapping an element to a boolean value. The
result decides whether the element is included in the output collection. The filter action may perform
concurrent subactions on different elements, depending on the implementation. But, the subaction
must support concurrency and re-entrance.

The input collection is considered unordered in this case, and the output collection is also unordered.

3.4 Implementation-dependent Computation actions 13

10:42pm April 18, 2003

Elements:

subaction

subaction

subaction

subaction

a b c d

Figure 6: The process of reduce actions

3.5.2 Iterate actions

An iterate action applies its subaction on collection elements in sequence, until all the elements are
exhausted or the evaluation of loop variables becomes false.

Both the input collection and the output collection are ordered.

3.5.3 Map actions

A map action applies the subaction on each of the element in parallel, and returns the collection
containing the results of the subaction. This is like a functional mapping between the elements of two
unordered collections.

3.5.4 Reduce actions

The subaction of a reduce action takes two input values of the same type as the elements, and produces
an output also of the same type. The reduce action applies the subaction sequentially on pairs on
elements until the final result, which is the same type as the elements, is produced. The process is
illustrated in Figure 6.

The input collection is ordered. The output is not a collection but a single element.

3.6 Messaging Actions

Messaging actions provide a mechanism to facilitate invocations between objects. The invocation
through messages is so generally termed that it encompasses virtually all kinds of run-time interac-
tions among objects. The objects may be located on a single machine or distributed throughout the
network; the invocations may be procedure calls (as usually found in most programming languages),
or transitions triggered by events in a state machine.

At model time, messages are modelled as classes, with attributes as parameters or return values.
Each message class designates a specific request from the requestor. In this sense, the type of request is
statically bound to a class; a message at run-time is an instance of the class. As the type of a message is
a class, different types form generalization hierarchies [AILKC+00]. The run-time environment requires
a mechanism to dynamically look up the hierarchy to match a message with behavior, because the
behavior of the receiver is not statically bound to the class.

Parameters and return values of a request or a reply are stored in an instance of the message
class. Sometimes a request does not need any parameter or an invocation does not return any value
(asynchronous requests described below are an example), but the message instance must be sent or
received. As mentioned above, the classifier is an inherent property of an object, the receiver may use
the classifier as a parameter, even if the object contains no extra information. In this case, a dynamic
lookup in the class hierarchy is necessary.

3.6.1 Asynchronous invocation and synchronous invocation

There are two kinds of invocations: asynchronous and synchronous. Each kind has a set of actions.
Asynchronous actions and synchronous actions are disjoint sets.

3.6 Messaging Actions 14

10:42pm April 18, 2003

When an object executes an asynchronous action with a message as parameter, it starts an asyn-
chronous invocation. The action returns no value and the requesting object does not wait for a reply
from the requested object. When the requesting object and the requested object are on different
machines, the requesting one even does not wait until the other object actually receives the message.

Upon receiving the message, the requested object might queue it according to a specific strategy,
which is not in the scope of the basic action semantics. When it is free, the sequential object processes
the message6. Processing the message firstly means a decision on its type is made. The run-time
environment must be capable of dynamic class lookup. When the type is determined, the environment
can thus match the message with a specific behavior. The execution of this behavior usually results
in a procedure call.

The requested object may or may not return some values to the requesting one. If values are to be
returned, the requested object must execute another asynchronous or synchronous action.

In contrast, if the requesting object executes a synchronous action, it is blocked until a reply is
received from the requested object. Even if no return value is required for the invocation, the requested
object must send back a message indicating the processing is complete, and the requesting object is
allowed to proceed with its jobs.

3.6.2 Consideration for distributed systems

For distributed systems, references become meaningless. From this consideration, messages are uni-
formly transmitted by value. So the identifier of a message is unimportant. The message must be
duplicable, so that transmission does not cause a loss of information.

The transmission of messages via the network is time-consuming and the message may be lost on
the way. For instance, when an object issues a synchronous invocation to another object, but the
message is lost, the requesting object would be blocked forever. The basic action semantics does not
give a solution to this problem. It is elaborated in other real-time profiles.

3.6.3 Procedures

Procedures themselves are not actions, but rather combination of actions. A requested object receiving
a message usually implies a procedure is to be executed. Note that an invocation can not directly
execute an action, but only a procedure.

The concept of procedures in action semantics provides a certain level of modularity. Procedures
are self-contained. The execution of a procedure is not allowed to access any global variables or static
variables. Instead, all the variables are contained in an object in the form of attributes.

There is no means to explicitly execute part of a procedure from the requesting object. A procedure
is regarded as an entity, which accepts input and produces output (like actions). The input is taken
from the attributes of the request message. For synchronous invocation, the output serves as the return
value; for asynchronous invocation, the output is simply ignored.

3.6.4 Procedure lookup

At run-time, a request must be matched to a procedure on the receiver side. In the context of an
object, this mechanism is called operation lookup. It requires certain kinds of maps to look up the type
of a message, and locate the appropriate procedure of the request object.

A map may be global or associated with a class or an object. A global map records all the
procedures and their signature. The look-up in this map is very like a traditional procedure call. A
map associated with a class only records the methods of the class. If no method in the class matches
the request, another class is searched, which is linked to it with a pointer. A map associated with an
object records the methods of the object7. If no method is matched, another object linking with it is
then searched.

A matching from a request type to a procedure in the context of a state machine is called transition
triggering. In a state machine, each state is a state of the requested object. A map is associated with

6This does not mean the requested object is completely idle. It may process multiple messages at the same time,
provided that its implementation allows this.

7Be reminded that the classifier of the object may change at run-time.

3.6 Messaging Actions 15

10:42pm April 18, 2003

the object or the class of the object. Similarly, if no procedure is matched in the map, another object
or class which is pointed to is then searched.

3.7 Exception actions

When the execution of an action enters an abnormal state, another action takes the control flow and
the original action is aborted.

There are two kinds of exception actions: exceptions and interrupts. When an error occurs in an
action, an exception of a certain type is generated, and the run-time system looks for a handler to
handle it. If the action has an exception handler table, the system matches the exception in the table
to find an action to handle it; if no action matches, the exception is propagated to the outer context,
until it is handled.

Interrupts are signals that force the current action to stop and change the control flow to another
action. It is possible to base the choice of new control flow on the current state of the object. Interrupts
do not propagate.

3.8 Timing issue

Time is defined in action semantics to precisely express the behavior of models, which may be sequential
or concurrent.

For sequential models or parts of models, the ordering of action executions conforms to the timing
causality. A sequence of actions is executed one by one.

For concurrent models or parts of models, the ordering of action executions is unimportant, un-
less different actions are required to be synchronized to access shared variables. Without explicit
synchronization, actions may be executed concurrently or in a meta-model-dependent order.

3.8.1 Terminology

The behavior of a model contains a number of execution entities, each of which has its own life cycle
from the creation time till the destruction time. In its execution, each entity is only interested in its
own behavior and time, unless it must synchronize with other entities for some reason. An entity has
an identity, which is unique and does not change over time.

The dynamic behavior of an entity is a sequence of snapshots, each of which represents a stable
state of the entity. They are very like the frames in a movie. Note that a snapshot represents a stable
state of an entity at a certain point in time instead of the state of the model. A model may be mutable
during the execution of an action. Different entities in the model have their own snapshots over time,
and when entity E1 has a snapshot, it doesn’t mean another entity E2 is also in a stable state at that
time.

A change causes a transition between two states of an entity, so it is associated with two snapshots:
a predecessor and a successor. Both of the states are stable, but the change may take some time during
which the state is volatile. Other entities are not allowed to access the variables of this entity if it is
in a change. A number of changes are associated with a specific entity.

Time is an important property of a change, which specifies when a change occurs. It is usually a
nonnegative integer with 0 representing the creation time of the entity. Because of this, the time is
relative to the life of the entity. The execution environment may maintain a global time for internal
use, but entities in an execution of the model only have the knowledge of their local time.

A history is constituted by a sequence of changes of an entity over time, which starts from the
creation of the entity and ends with its destruction. Because the history is for a single entity, every
change in the history is associated with the same entity. History is a sequential chain of changes. The
successor snapshot of a change (except the last one) is the predecessor of the next change.

The execution of an entity can be viewed as an entity in its own right, which allows us to focus more
on the dynamic behavior of the entity. It has its own identity and history. A change in the history of
such an execution is a step in the execution. An execution snapshot is a stable stage between steps.
Step is the subclass of change, and execution snapshot is a subclass of snapshot. Steps can access
other snapshots, but the access must be synchronized; so each of them keeps a record of referents —

3.7 Exception actions 16

10:42pm April 18, 2003

the snapshots that are to be synchronized with it. And of course, the accessed snapshots also keep
records of these accessors in attributes.

3.8.2 Timing

As mentioned, the occurrence time of a change is treated as its attribute. The change is placed in
a history, which is a sequence of changes for an entity. The order of those changes conforms to the
incremental order of their time attributes. In this way, changes are carried out one after another, with
the invariant that the first change (always at time 0) is the creation of the entity, and the last change
is its destruction.

As time is an attribute of changes, one can imagine that even the time (or, the sequence) of
changes is mutable at run-time. The basic action semantics gives no narration on this issue. If this is
permitted, interesting features will exhibit themselves in various models, because the execution of a
model is capable of dynamically modifying the structure of the model itself, which affects the execution
in return. Modifying the time attribute of another change to a value larger than the current local time
is just like scheduling an event in the future; modifying it to be smaller makes no sense, because the
time has already elapsed and the past is cannot be altered.

3.9 Action description

This section gives the look and feel of the action description.

Associations
Describes the associations with this action, in particular, defines the

types and cardinalities of input and output.

Inputs
Defines the input pins and their multiplicity. Inherited pins are listed

and marked with the modifier <inherited>. If the value of an input

pin is obtained via more than one association, the OCL dot-notation is

used to specify the path to navigate (i.e. end1.end2.inputName : type

[multiplicity]).

Outputs
Defines the output pins and their multiplicity. The syntax is the

same as the input section.

Well-formedness rules
Like many of the other action semantics descriptions, action

description can be associated with a set of well-formedness rules.

Execution Semantics
Describes the semantics of the action. It can have one optional

Assertion section and one or more Production sections. The assertion

section uses OCL to define the global invariant of the execution.

A production section contains three parts: a precondition and a

postcondition use OCL description to specify the precondition and post

condition of the action, an optional assertion specifies the assertion

for this action. In both production and assertion sections, there can be

English descriptions for better understandability.

Table 3: Action description

An action description describes the semantics of an action. It reuses the OCL language, but is
not limited to specifying constraints. Its basic components are shown in Table 3, some of which are
optional, while the others must be provided, even if their body is just none.

An example of action description is given in Table 4 [AILKC+00]. It describes the CreateObjec-
tAction, which is statically associated with a class and creates an object at run-time. No input is
required. The only output is the new object on the output pin. No assertion section is needed. The
well-formedness rules assure the well-formedness of the execution.

3.9 Action description 17

10:42pm April 18, 2003

Associations
• class : Classifier [1..1] Classifier to be instantiated.
• <derived> result : OutputPin [1..1] Derived from Action:outputPin.

Gives the output pin on which
the result is put.

Inputs
None

Outputs
• result : ObjectIdentity [1..1] The created object. The type of

identity must be the classifier specified
for the action.

Well-formedness rules
[1] The classifier cannot be abstract.

not (self.classifier.isAbstract = true)
[2] The classifier cannot be an association class.

not self.classifier.oclIsKindOf(AssociationClass)
[3] The classifier of the result pin must be the same as the classifier of

the action.
self.result.type = self.classifier

[4] The multiplicity of the output pin is 1..1.
self.result.multiplicity.is(1,1)

Execution Semantics
context self: CreateObjectActionExecutionSnapshot

Production 1: The result has exactly one classifier in the successor snapshot, which

is the same as the classifier specified as a parameter of the action. The result

has no attribute values in the successor snapshot and does not participate in any

associations.

Precondition:

self.status = ready

Postcondition:

let newidentity : ObjectIdentity =

self.pinValue → select(pin = self.executionID.action.result).value in

self.status = completed and newidentity.new()

and newidentity.classifier → size() = 1

and newidentity.classifier → includes(self.executionID.action.classifier)

and newidentity.linkEndValue → size() = 0

and newidentity.attributeValue → size() = 0

Table 4: Action description for CreateObjectAction

4 Action semantics at the meta-model level

Instead of merely used to specify the dynamic behavior of the model execution, action semantics,
similar to a programming language in some sense, is also capable of restructuring the model design at
the meta-modelling level.

When action semantics descriptions are employed at design time, they are executed in the meta-
model instead of the model. The model may not be finished at that time, so it is impossible to execute
the model. The action semantics description running on the meta-model is to automatically restructure
the design and possibly make it conform to a certain design pattern or refactor it [SPH+01].

Using action semantics at this level enhances the functionality of the meta-model. However, it is
just introduced to facilitate the design work, without which designers are still able to make the same
modification manually.

4.1 Object-oriented refactoring

Refactoring was introduced in [Opd92] to make the source code more understandable and readable.
This is a behavior-preserving transformation, but it helps programmers to manipulate common lan-

18

10:42pm April 18, 2003

guage constructs, such as class, method and variable, of an existing application, without modifying
the way it works [SPH+01].

The same idea is used in the UML model design. A good example is to refactor a class diagram,
which happens to be ill-designed.

Ill designs are usually found in models, i.e. identifying a composition relationship with an inheri-
tance (or generalization) relationship and thus an invalid inheritance is formed. In this case, an action
defined in action semantics is used to discover all these design flaws and, if found, correct them. (Of
course this process is very limited and also requires a lot of human work.) As mentioned above, action
semantics uses the OCL dot-notation to navigate among all the objects in a model, it is able to look
into every detail of the model design.

Package::removeClass(class: Class)
pre:

self.allClasses → includes(class) and
class.classReferences → isEmpty and
(class.subclasses → isEmpty or class.features → isEmpty)

actions:
let aCollection := class.allSuperTypes
class.allSubTypes → forAll(sub:Class |

aCollection → forAll(sup:Class | sub.addSuperClass(sup)))
class.delete

post:
self.allClasses → excludes(class) and
class@pre.allSubTypes → forAll(each:Class |

each.allSuperTypes.includesAll(class@pre.allSuperTypes)) and
class@pre.features → forAll(feat:Feature | feat.owner = nil)

Table 5: An example of refactoring

Table 5 shows another example of removing all the useless classes. Such classes are not referenced by
any other class and they have no subclasses (or no features) [SPH+01]. Two functions, addSuperClass
and delete are not defined in action semantics. They are defined by the programmer to add a
generalization to a subclass and delete a class accordingly.

More examples on refactoring class diagrams and statecharts can be found in [SPTJ01].

4.2 Design patterns

Design patterns summarize and formalize good software design experiences, which can be reused in
different contexts to increase modularity, stability, reusability, an so on [GHJV95].

Applying design patterns to the model design is desirable, because they are proved (either theoret-
ically or practically) to be very good designs. The new model designs benefit from reusing these good
designs.

However, an initial design may not conform to a design pattern even if it could. This is not
always because of a simple-mindedness: the designer may choose to first design the model in a more
straightforward way and test it; if the test result is satisfactory, design patterns are considered to
improve the performance, modularity, and so forth.

Applying a design pattern to multiple models can be achieved in one step and automatically. The
designer first identifies a design pattern or a variant of a design pattern, which improves the current
model(s). Then a small program is written in action semantics to reconstruct parts of the model(s). For
class diagrams, this reconstruction results in adding or deleting classes or associations. The difference
between applying a design pattern and refactoring is the former approach also changes the model
behavior. For instance, when applying the proxy design pattern, proxy classes are added between
external access and the real objects. The proxy intercepts the access requests made to the real objects,
relays refined requests to the real objects, and then sends back the results. This pattern makes the
external design less dependent on the object’s internal implementation.

4.2 Design patterns 19

10:42pm April 18, 2003

For statecharts, new states may be automatically created, and the existing state hierarchy is also
subject to change. An example is, in an initial statechart design, many integer variables are used
to preserve states. However, to achieve a pure statechart design, only states preserve states and no
variables are allowed, since they make it difficult if not impossible to analyze the model. Then an
integer design pattern can be automatically applied to restructure the model by first discovering all
the integer variables in use and then removing these variables and inserting new states in appropriate
places to provide the same functionality. If the very large amount of additional states are written
manually, it is an extremely boring and error-prone process.

4.3 Aspect weaving

Different aspects of an application are separated at design time. They are only woven together when
necessary.

Separating different aspects at an early time is desirable, because it makes the design more modular
by limiting the dependence between aspects. The interface is thus very clear and changing one aspect
usually does not require any modification on other aspects.

When aspects are to be woven together for test or distribution purposes, an automatic process is
required. This is accomplished by an action semantics description representing the aspect weaving
rules. The description is run (or interpreted) by the modelling environment.

An example of aspect weaving is a computation system originally designed to run on a single
computer, while later requirements require to run it in a distributed system. If the information sharing
and passing aspect is separated from the others at an early design phase, the porting from a single
computer to the distributed system is just to redesign this aspect and run the same action semantics
description again to weave all the aspects together.

5 Conclusion

Action semantics is a very powerful tool to formally specify the behavior of UML models. When
it is standardized, it will form a new package for UML, which is capable of rigorously modelling
behavior and at the same time interacts with other components harmoniously. Model design at both
the modelling level and the meta-modelling level will then change dramatically.

As all kinds of actions defined in the basic action semantics are discussed above, it is obvious that
action semantics still has flaws, and disputes still exist on some critical subjects. This is natural for
such a new development thing in such an evolving field.

References

[ÁCES01] José M. Álvarez, Tony Clark, Andy Evans, and Paul Sammut. An action semantics
for MML. In Martin Gogolla and Cris Kobryn, editors, UML 2001 - The Unified Mod-
eling Language. Modeling Languages, Concepts, and Tools. 4th International Confer-
ence, Toronto, Canada, October 2001, Proceedings, volume 2185 of LNCS, pages 2–18.
Springer, 2001.

[AILKC+00] Alcatel, I-Logix, Kennedy-Carter, Inc. Kabira Technologies, Inc. Project Technology,
Rational Software Corporation, and Telelogic AB. Action Semantics for the UML.
Document ad/2001-03-01. OMG, 2000. Available from World Wide Web: http:
//cgi.omg.org/cgi-bin/doc?ad/01-03-01.

[BB01] Erwan Breton and Jean Bézivin. Towards an understanding of model executability.
In Proceedings of the international conference on Formal Ontology in Information Sys-
tems, pages 70–80. ACM Press, 2001. Available from World Wide Web: http://www.
sciences.univ-nantes.fr/info/lrsg/Pages_perso/Publications/fois.pdf.

[Fen02] Thomas Feng. Statechart virtual machine, 2002. Available from World Wide Web:
http://moncs.cs.mcgill.ca/people/tfeng/?research=svm. MSDL, McGill.

4.3 Aspect weaving 20

http://cgi.omg.org/cgi-bin/doc?ad/01-03-01�
http://cgi.omg.org/cgi-bin/doc?ad/01-03-01�
http://www.sciences.univ-nantes.fr/info/lrsg/Pages_perso/Publications/fois.pdf�
http://www.sciences.univ-nantes.fr/info/lrsg/Pages_perso/Publications/fois.pdf�
http://moncs.cs.mcgill.ca/people/tfeng/?research=svm�

10:42pm April 18, 2003

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Longman Publishing Co.,
Inc., 1995.

[Mos96] Peter D. Mosses. Theory and practice of action semantics. In MFCS ’96, Proc. 21st
Int. Symp. on Mathematical Foundations of Computer Science (Cracow, Poland, Sept.
1996), volume 1113, pages 37–61. Springer-Verlag, 1996. Available from World Wide
Web: http://www.brics.dk/RS/96/53/BRICS-RS-96-53.pdf.

[Mos02] Peter D. Mosses. Action semantics and ASF+SDF - system demonstration, 2002. Avail-
able from World Wide Web: http://www.cwi.nl/ftp/markvdb/entcs65.3/65.3.003.
pdf.

[MTAL98] Stephen J. Mellor, Steve Tockey, Rodolphe Arthaud, and Philippe LeBlanc. Software-
platform-independent, precise action specifications for UML. In Jean Bézivin and Pierre-
Alain Muller, editors, The Unified Modeling Language, UML’98 - Beyond the Notation.
First International Workshop, Mulhouse, France, June 1998, pages 281–286, 1998. Avail-
able from World Wide Web: http://www.kc.com/as_site/download/UML_AS_paper.
pdf.

[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD the-
sis, UIUC, Urbana-Champaign, IL, USA, 1992. Available from World Wide
Web: http://www.cs.uiuc.edu/Dienst/Repository/2.0/Body/ncstrl.uiuc_
cs/UIUCDCS-R-92-1759/postscript.

[RFBLO01] Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, and Nosa Omorogbe. The architecture
of a UML virtual machine. In Conference on Object-Oriented, pages 327–341, 2001.

[SGJ02] Gerson Sunyé, Alain Le Guennec, and Jean-Marc Jézéquel. Using UML action seman-
tics for model execution and transformation. Information Systems, 27:445–457, 2002.
Available from World Wide Web: http://www.sciencedirect.com/science/article/
B6V0G-45J8WV9-1/1/8622e2f14c9a518a5241431af02e27d8.

[SPH+01] Gerson Sunyé, François Pennaneac’h, Wai-Ming Ho, Alain Le Guennec, and Jean-Marc
Jézéquel. Using UML action semantics for executable modeling and beyond. In Advanced
Information Systems Engineering. 13th International Conference, CAiSE 2001, Inter-
laken, Switzerland, June 4-8, 2001, Proceedings, volume 2068 of LNCS, pages 433–447.
Springer, 2001. Available from World Wide Web: http://www.irisa.fr/triskell/
publis/2001/Sunye01a.pdf.

[SPTJ01] Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel. Refactoring UML
models. In Martin Gogolla and Cris Kobryn, editors, UML 2001 - The Unified Model-
ing Language. Modeling Languages, Concepts, and Tools. 4th International Conference,
Toronto, Canada, October 2001, Proceedings, volume 2185 of LNCS, pages 134–148.
Springer, 2001.

REFERENCES 21

http://www.brics.dk/RS/96/53/BRICS-RS-96-53.pdf�
http://www.cwi.nl/ftp/markvdb/entcs65.3/65.3.003.pdf�
http://www.cwi.nl/ftp/markvdb/entcs65.3/65.3.003.pdf�
http://www.kc.com/as_site/download/UML_AS_paper.pdf�
http://www.kc.com/as_site/download/UML_AS_paper.pdf�
http://www.cs.uiuc.edu/Dienst/Repository/2.0/Body/ncstrl.uiuc_cs/UIUCDCS-R-92-1759/postscript�
http://www.cs.uiuc.edu/Dienst/Repository/2.0/Body/ncstrl.uiuc_cs/UIUCDCS-R-92-1759/postscript�
http://www.sciencedirect.com/science/article/B6V0G-45J8WV9-1/1/8622e2f14c9a518a5241431af02e27d8�
http://www.sciencedirect.com/science/article/B6V0G-45J8WV9-1/1/8622e2f14c9a518a5241431af02e27d8�
http://www.irisa.fr/triskell/publis/2001/Sunye01a.pdf�
http://www.irisa.fr/triskell/publis/2001/Sunye01a.pdf�

