
The Current State of Agent-Based Modeling

Research Internship Report

Tim Leys
tim.leys@student.uantwerpen.be

Department of Mathematics and Computer Science
University of Antwerp

Belgium
August 21, 2019

Abstract

The field of agent-based modeling (ABM) has become a very popular
field of study. This relatively new paradigm allows modelers to model
individual behaviour of each entity in a system to create virtual ”micro-
worlds”. The idea for such an organizational structure strongly relates to
multi-agent systems. Multi-agent systems aim to solve complex problems
by dividing it into smaller problems and assigning them to agents.

The purpose of this study is twofold: (1) We want to analyze the rela-
tion between MAS and ABM by reviewing the current literature of these
topics. (2) We want to identify whether ABM tools implement the key
features of agents and ABM, as well as determine whether repeatability
can be achieved across platforms. We will do this by implementing an
example model in a selection of tools and analyze the tools’ features and
output traces. The selected tools are DEVS, NetLogo, Repast, and SARL.

Keywords: Agent-Based Modeling, Multi-Agent Systems, ABM Tools,
Agents.

1

1 Introduction

The field of agent-based modeling (ABM) has become a very popular field of
study [54]. This relatively new paradigm allows modelers to model individual
behaviour of each entity in a system, rather than abstracting away individual
entities and describing global system behaviour. Agent based models can be
considered as ”micro-worlds” that are a small versions of their real world coun-
terparts [59]. Because of this, agent-based modeling and simulation are very
suitable for modeling systems where living entities interact with each other.
Therefore, agent-based modeling and simulation has become a very popular
technique in the fields of sociology, anthropology, biology, and market analysis
[55].

An agent-based model comprises multiple autonomous agents that interact
with each other and their environment. The idea for such an organizational
structure comes from the field of multi-agent systems (MAS) [59]. Multi-agent
systems aim to solve complex problems by dividing it into smaller problems.
Each agent is then tasked to solve one of the sub-problems with a limited capa-
bilities and limited information. The agents then need to collaborate to achieve
their goal [37]. The MAS paradigm was originally proposed for distributed arti-
ficial intelligence, but quickly became a popular as an organizational structure
for distributed systems [46].

Though there is a clear link between ABM and MAS, the specifics of their
relation remain unclear. Some call ABM an application of MAS [32], while
others state that their is no clear distinction between the two concepts[54]. We,
however, believe that their relation is not so easily defined. Even though both
approaches use similar concepts, they are developed for different purposes.

We want to analyze the relation between MAS and ABM by reviewing the
current literature of these topics. We want to broaden our knowledge of the
paradigms by analyzing different definitions definitions and by identifying the
different concepts that they use. Then we will look into studies that mention
both paradigms and identify their relation.

With the advent of ABM, many tools have been developed to support this
modeling paradigm. However, a universally accepted formal semantics remains
absent. This situation results in a proliferation of tools that were developed
according to different interpretations of the paradigm [9]. Moreover, the lack
of formal semantics imply that the semantics of a model are determined by its
implementation in a specific tool, making them platform dependent. Platform
dependency, in turn, affects the reproducibility of simulation across platforms.
This is a very undesirable property for modeling and simulation platforms.

The second purpose of this study is to identify whether ABM tools implement
the key features of agents and ABM, as well as determine whether repeatability
can be achieved across platforms.

To determine this, we created a feature diagram that shows different features
that can be expected from an agent-based modeling tool. Next, an example
model will be implemented in each of the tools under study and instantiated

2

the diagram for each of the tools. To analyze their repeatability, a set of scenar-
ios will be determined and run on each of the implementations. Subsequently,
we can determine to which precision the scenarios are repeatable.

To evaluate our results, we established a set of research questions we want
to answer in this document:

1. Is there a universally agreed upon meaning for the concepts: agent, multi-
agent system, and agent-based modeling?

2. Do agent-based modeling and multi-agent systems agree on the meaning
of some concepts.

3. What is the relationship between multi-agent systems and agent-based
modeling?

4. How well do contemporary agent-based tools implement the paradigm?

This document is structured as follows. In Section 2, we will discuss the
results from our literature review. In Section 3, we will discuss our methodology
to review the tools and the results of the experiments. In Section ??, we will
discuss our results from both studies and address some of the problems we
identified. In Section 4, we will discuss related work to our study. We will
conclude this document in section 5.

3

2 Literature Review of ABM and MAS Con-
cepts

The first purpose of this document is to analyze the concepts of agents, multi-
agent systems, agent-based modeling. Currently, there are no universal agree-
ment on what each of the concepts means [55]. Also, many definitions are
proposed that are focused on specific research areas [89]. To give an overview,
we will provide a review of some definitions of each concept as well as describe
their history and associated background knowledge.

2.1 Methodology

To perform an objective literature study and increase the confidence of our
research, we applied a systematic approach based on the technique of Bárbara
Kitchenham [50].

The first step of the systematic approach is to identify keywords that can be
used for the search queries. The set of keywords was determined by inspecting
the research questions. Table 1 shows a list of the keywords that were retrieved
with their synonyms. To obtain the synonyms and antonyms, we used thesaurus
and looked at different denotations for concepts in the literature.

• (((Multi-agent system) OR MAS OR (self-organized system))
OR ((agent-based modeling) OR AMB OR (individual-based model)))
AND (definition OR explanation OR description)

• ((Multi-agent system) OR MAS OR (self-organized system))
AND ((agent-based modeling) OR AMB OR (individual-based model))
AND (similarity OR similar OR likeness OR Correspondence OR compar-
ison OR sameness OR relationship OR correlation)
OR (dissimilarity OR dissimilar OR contrast OR unlikeness OR distinc-
tion OR dissimilitude OR variation)

• (((Multi-agent system) OR MAS OR (self-organized system))
OR ((agent-based modeling) OR AMB OR (individual-based model)))
AND (semantics OR meaning)

In addition, we gathered a set of important researchers in the domain of
Multi-Agent Systems and Agent-Based Modeling, as well as important journals
and conferences. Figure 1 shows a diagram with all important authors. We also
asked colleagues who are more familiar in the field to recommend interesting
work on the topics.

We selected literature based on how well the title of the work relates to the
topic. This search resulted in a set of 86 papers. An overview of each paper can
be downloaded via this link.

In the next phase of the process, we read the abstracts of each of the papers
and ranked them into three categories: must reads, interesting work, least related

4

http://msdl.cs.mcgill.ca/people/tleys/uploads/all_papers

Table 1: Table of the used keywords and their synonyms

Keyword Synonyms

Multi Agent System MAS

self-organized system

Agent Based Modeling ABM

individual-based model

relation(ship) likeness

correspondence

comparison

sameness

similarity

correlation

dissimilarity contrast

difference

unlikeness

distinction

dissimilitude

variation

definition explanation

description

semantics meaning

5

Figure 1: Mind map of important authors

work. Due to the scope of the project, we selected the 30 most important papers
as starting point for the research.

During our research, we came across additional questions, which lead to the
inclusion of more papers.

2.2 Multi-Agent Systems

The first paradigm we discuss that introduced the concept of agents is multi-
agent systems [73]. Currently there are two big research fields interested in this
approach. The first one is artificial intelligence [73], which use communicating
agents to achieve distributed artificial intelligence. The other field is engineering
(especially robotics and control theory) [32, 73], who use software and hardware
agents to eliminate the need for a central control unit.

In this section, we will elaborate on the concept by briefly discussing its
history and reviewing some definitions found in literature.

2.2.1 History of Multi-Agent Systems

The first steps into multi-agent research began in 1980, when a group of AI
researchers organized the first workshop for distributed artificial intelligence at
MIT. This new field of study concerned itself with issues of how intelligent
problem solvers could coordinate effectively to solve problems [46]. Initially the
field was divided into two camps[19]: Distributed Problem Solving (dps) and

6

Multi-Agent Systems (mas). However, recently the term multi-agent systems
has become a more general term, encompassing all distributed problem solvers.

The first model for distributed problem solvers were actors [12, 10]. Ac-
tors are self-contained components in a distributed system that can make au-
tonomous decisions. The primitives of an actor are:

• Create an actor

• Send a message

• Change state

Actors are blind to their environment. They only received messages from each
other and decided how to respond to these messages. Though agents and actors
are two distinct concepts, they share technical and historical connection [48]
and actors have been defined as ”computational agents” in the past.

Actors were the first implementation format for multi-agent systems. Now
many architectures and methodologies have been defined that are specifically
developed for multi-agent systems. The PASSI methodology [30] provides a
requirements-to-code methodology for developing agent systems from both the
OOP perspective as well as the AI perspective. The ADELFE methodology
[16, 68] was specifically developed for designing adaptive multi-agent systems
[25]. In these systems agents learn there topology through cooperative and non-
cooperative states. Next to design-methodologies, specific architectures have
been developed for implementing distributed agents systems. Some examples
are the open agent architecture [27], and Cougaar [44]. Also, dedicated tools
were developed that allowed users to develop multi-agent systems more easily
by providing domain specific abstractions, such as JADE [15].

Some early applications of MAS include air traffic control [24], the dis-
tributed vehicle monitoring task [34], and blackboards [29]. Currently, MAS
has a wide variety of applications ranging from cloud computing to robotics
and even city and built environments [32].

2.3 Definition review

In this section we will review some of the definitions of multi-agent systems we
found in the literature.

The first definition comes from a survey by P. Stone. [77].

Definition 1 A multi-agent system is a loosely coupled network of problem-
solving entities (agents) that work together to find answers to problems that
are beyond the individual capabilities or knowledge of each entity (agent).

Stone focuses on the distributed and collaborative aspect of multi-agent sys-
tems. The global goal of the system is divided into smaller parts and given to
agents. To achieve the global goal agents need to collaborate.

The second definition we reviewed, we derived from An Introduction to Multi-
Agent Systems [37].

7

Definition 2 A Multi-Agent System (MAS) is an extension of the agent
technology where a group of loosely connected autonomous agents act in an
environment to achieve a common goal. This is done either by cooperating
or competing, sharing or not sharing knowledge with each other.

Ferber et al. note that agents in a multi-agent system are not necessarily col-
laborative. In some cases to achieve a certain goal it is necessary for agents to
compete against each other.

In the book Multi-agent systems: a modern approach to distributed artificial
intelligence [88] stated the major characteristics of a multi-agent system.

Definition 3 The major characteristics of a multi-agent system are:

• Each agent has just incomplete information and is restricted in its
capabilities.

• System control is distributed.

• Data is decentralized.

• Computation is asynchronous.

This definition again highlights the distributed nature of multi-agent systems.
It also discusses the more technical details of multi-agent systems.

In Table 2, we created a table with important keywords and their occurrence
in the reviewed definitions. We clearly see that all definitions are very similar.
We can conclude that essential features of a multi-agent system are:

• A MAS is a distributed system with agents as central entities

• Agents are limited in their knowledge and capabilities

• Agents need to collaborate to achieve their goals

2.3.1 Single-Agent Systems

In addition to distributed multi-agent systems, there are centralized single-agent
systems [77]. These systems, which were popularized by the book Logical foun-
dations of Artificial Intelligence [39], consist of a single agent in an environment.
These systems obviously omit the need for communication. In this contexts, the
term agent refers to a distinguishable entity that is able to sense and act on its
environment deliberately, Figure 2.

According to [77], a single agent system can consist out of multiple entities.
However, these entities act as actuators for a central agent (or central process)
and the agent will identify each of these separate components as part of itself.

In [77], another type of single-agent systems is described. In these sys-
tems, multiple agents are present. However, an agent has no representation

8

Table 2: Table of occurences of concepts in the reviewed definitions

P. Stone
[77]

Ferber et al.
[37]

G. Weiss
[88]

Agents X X X

Limited knowledge X X

Limited capabilities X X

Distributed system X X X

Common goal X

Collaboration X X

Competition X

Asynchronous computation X

Decentralized data X

of the other agents present. The other agents are considered to be part of
the environment and can not be contacted through specialized agent-to-agent
communication protocols.

2.4 Agent-Based Modeling

Agent-based modeling is a relative new paradigm for modeling and simulation
[55]. The paradigm advocates to model each entity in a system individually as
an autonomous agent. ABM exploits a bottom-up approach when modeling a
system, instead of a top-down approach used in for example system dynamics
[31] and causal block diagrams [42]. In this section, we will discuss the history
of this novel approach, as well as discuss definitions found in the literature. We
will also discuss the relation between ABM and MAS.

2.4.1 History of Agent-Based Modeling

In [59], Fabien Michel clearly describes the history of behind multi-agent sys-
tems. In this section we will give a summary and add some extra information
we found in literature.

”Modeling of complex systems has always been a motivation for researchers”
[59]. A historical example of such a model is the predator prey model, originally
proposed by Volterra [86]. This continuous deterministic model captured the
population dynamics of multiple species living in the same habitat with differ-
ential equations. This model produced intuitively sound results and therefor
became very popular. In a predator prey situation, it displayed a oscillation
in both populations. When the prey population is high, the predator popula-
tion would grow, resulting in a decrease in the prey population. Contrariwise,
when the the prey population is low, the predator population would decrease,
resulting in a growth of the prey population.

9

Figure 2: Typical work flow of an agent

Results from experiments on real test predator/prey habitats, however, showed
non-oscillating behaviour. This caused the need for more complex models.

”With the advent of computer science, the possibility of simulating stochas-
tic models efficiently presented itself” [59, 14]. Stochastic models allowed for
incorporating the inherent non-deterministic behaviour of real life interaction
situations. However, these models exhibit much more complex behaviour and a
high variability even used with the same parameters.

All of these approaches still face a set of problems [37]:

• Only a global perspective is possible

• Equation parameters hardly take into account the complexity of micro-
level interactions

• The modeling of individual agents is impossible

• Integrating qualitative aspects is hard

The first approach to deal with these problems is called micro-simulation and
is originally suggested by Orcutt [65]. The basic principle of micro-simulation is
to model the micro-level behaviour of a system under study with rules that apply
to attributes of micro-level entities, resulting in a change of state or behaviour
of those entities. The incorporation of the micro-level into the development of
models, allowed the generation of better and more informative results for social
system dynamics. ”Though this modeling paradigm originated in the field of
social sciences, it can be seen as a forerunner of individual based modeling.”
[59]

10

Agent-based modeling takes the integration of the micro-level a step further.
Apart from modeling entities and their behaviour, ABM suggests to model their
interactions with each other and actions on the environment explicitly. The
popularity of ABM can be credited to a number of factors. First, ABM is
very flexible. Models can easily be updated by adding new types of agents
or changing the populations of agents. ABMs also allow fine-grained control
over the simulation. In contrast to other modeling techniques, ABM does not
abstract individual behaviour and interactions. Being societies by themselves,
and being built on the same basis as any complex systems, MAS prove to be
”artificial micro-worlds”, of which it is possible to control all characteristics and
reproduce series of experiments as in a laboratory [59].

2.4.2 Definition Review

In the current literature, we found several definition for agent-based models.
We will now list the most prominent and discuss them.

Due to the wide variety of applications of ABM, it is not trivial to give a
uniform definition. Charles M. Macal therefor proposed a collection of four def-
initions for different types of agent based models [54]. The categories identified
by Macal are Individual Agent Based Models, Autonomous Agent Based Models,
Interactive Agent Based Models, and Adaptive Agent Based Models.

The first category are defined as follows:

Definition 4 An individual ABMS is one in which the agents in the model
are represented individually and have diverse characteristics.

In these models, agents are hardly autonomous. Each agent does not perceive
any information of its environment and thus can not take any decisions based
on those percepts. Their behaviour is described in a script and no individual
state is necessary. Note that the agents behaviour in these models is even more
simplistic than the simple reflex agent. Though the agents in these models do
not meet the requirements of most definitions in Section 2.5.2, these models do
fit in the paradigm of agent-based modeling. These models aim to reflect the
individual behaviour of each agent and the model is constructed in a ”bottom-
up” approach that is characteristic for agent based modeling.

The second category of agent-based models is defined as:

Definition 5 An autonomous ABMS is one in which the individual agents
have internal behaviors that allow them to be autonomous, able to sense
whatever condition occurs within the model at any time, and to act on the
appropriate behavior in response.

Autonomy is widely considered a fundamental property of agents. This defini-
tion also points out that agents are situated in an environment. This property
is strongly connected with autonomy, since an agent needs to perceive some
external data to decide which action to take. The environment provides this
data.

Interactive agent-based models are defined as:

11

Definition 6 An interactive ABMS is one in which autonomous agents
interact with other agents and with the environment.

This category introduces an important feature of multi-agent systems, namely
interaction between agents. Note that the interaction in these models is either
direct, indirect, or both. The agents in the previous category are only able
to perceive their environment, but are unable to act upon it. This prohibits
indirect communication.

The last category is defined as:

Definition 7 An adaptive ABMS is one in which the interacting, au-
tonomous agents change their behaviors during the simulation, as agents
learn, encounter novel situations, or as populations adjust their composi-
tion to include larger proportions of agents who have successfully adapted.

Here agents are able to change their behaviour during the simulation.

A completely different categorization is given by E. Bonabeau [18]. Bonabeau
does not categorize agent based models on the capabilities of the agents, but
rather the application of the models. He presents four categories: Flow Models,
Market Models, Organization Models, and Diffusion Models.

Flow models are characterized by featuring a large amount of mobile agents
in a particular situation. The interest of the modelers is how the agents move
through their environment and create certain movement flows. Flow models can
be further specialized into evacuation models and flow management models.
Evacuation models aim to analyze situations were agents are trying to exit
a room with limited exits, while the agents exhibit irrational herding behavior
and obsessive personal interests. Flow management models model environments
with mobile decisive agents.

Market models aim to model the dynamics of stock markets and auctions.
Agent-based models are preferred approach over spreadsheet models or system
dynamics, because they do not achieve the same deep insights. The behaviour
of the market emerges out of the interactions of the players, who change their
behaviour when the market changes.

Organization models are used to analyze emergent collective behaviour of an
organization. An example of this is operational risk. Operational risk factors are
often largely internal to the organization and clear mathematical or statistical
link and the size and frequency of operational loss does not exist.

Diffusion models are applied to cases where people are influenced by their
social contexts. Agents-based models improve on classic models in that they can
model locality. In these models, agents only communicate with their neighbours.

There is no universal agreement on the definition for ABM [55]. This is
apparent from the several definitions for different types of agent-based model
by C. Macal. He provides four definitions for agent-based models based on the
internal complexity of the agents of the model. There is big lack of unification

12

in the field, however, we take the view that it is possible to provide a clear all
encompassing definition for ABM. Therefor we did not focus on the complexity
of a model, but rather on what makes ABM stand out as a modeling paradigm.

Definition 8 An agent based model is a model in which:

• Each individual of a system and its behaviour is modeled (bottom-up),
rather than the global behaviour of the system (top-down).

• Each of the entities is modeled as an agent, where the interactions
between agents and actions on the environment are modeled explicitly.

• The environment in which the agents are situated is modeled explic-
itly.

2.4.3 Comparison with Other Modeling Paradigms

Agent-based modeling has become a very popular tool for modeling and sim-
ulation [54, 59]. In this section, we will discuss what sets this paradigm apart
from other modeling paradigms.

In agent-based models, individual entities are not abstracted away. Rather,
they are the key elements in the models. This is in stark contrast with equation-
based modeling (EBM), which abstracts away individual behaviour and aims to
capture global system behaviour with a set of differential equations. Examples
of EBM approaches are causal block diagrams [42], and system dynamics [31].

In essence, equation-based models provides an approach to ”numerically
characterize the evolution of a system from its parameters” [59], while ABM
allows the modeler to create a habitat of agents which can interact with each
other and their environment, and explicitly model their individual behaviour.
This creates some kind of ’virtual micro-world’, which can be analyzed as a
small version of the real system.

Though ABM is usually compared to EBM, it also serves as an alternative
to stochastic modeling [69]. In stochastic modeling, a system is described with
probability distributions and information about the system is inferred through
probabilistic reasoning. This modeling paradigm aims to model variability and
randomness that is often found in real-world systems.

In agent-based modeling, stochasticity is modeled in the behaviour. Instead
of inferring information through probabilistic reasoning, the system is simulated
and information can be retrieved by analyzing the agents interactions.

2.4.4 Simulation Time

In modeling and simulation, time is virtualized (simulation time) to allow for
simulating large time intervals in a very short time [41]. This sets ABM apart
from MAS, in which the agent systems are deployed in the real world and act

13

in real-time, as can be seen in the actors paradigm [12] or in the tool SARL [71].

2.5 Agents

The agent is the central concept in both multi-agent systems as well as agent-
based modeling [32, 54]. We will therefore first elaborate on this concept by
defining what the essential features of agent-hood. We will do this by studying
definitions found in the literature. We will then elaborate on concepts that are
related to agents.

2.5.1 History of Agents

There are three fields of research that contributed to the concept of agent [46]:
Artificial intelligence [73], object-oriented programming [20] and concurrent ob-
ject based systems [12, 11], and human computer interface design [56].

Artificial intelligence is undoubtedly the main contributor to the field. Ulti-
mately, AI is all about building intelligent artifacts, and if these artifacts sense
and act in some environment, then they can be considered agents. This makes
agents the central study in artificial intelligence [73]. However, up until the
1980’s, little effort was put in the research of intelligent agents. In this time
period, research was focused more on the individual components of an agents,
such as question-answering systems, theorem-provers, vision systems, etc. In
1987, Genesereth and Nilsson published an influential paper [39] which caused
the concept of the whole-agent to be widely accepted in the field of artificial
intelligence.

Agents that exhibit simple reactive behaviour were the primary model adapted
by psychological behaviourists such as Skinner [76]. However, most AI re-
searchers deem these agents to be too simple to provide much leverage. Rosen-
shein [72] and Brooks [22] question this assumption. Currently a lot of research
is focused on finding efficient algorithms for keeping track of complex systems.
An impressive example is the Remote Agent Program that controlled the Deep
Space One spacecraft [61].

A more complex behavioural model was developed that introduced goals.
Goal-based agents did not simply react to perceptions in their environment,
rather they decided on an action to perform that optimized conditions to reach
a certain desired end-state or goal. With goal-based agents, the application of
agents in robotics was explored. The first robotic implementation of a logical,
goal-based agent was Shakey the Robot [62]. The agent approach also gained a
lot of attention in the field of software engineering [90]. Shoham [75] developed
a new programming paradigm based on agents, agent-oriented programming.
The goal-based view of agents also dominates the field of distributed artificial
intelligence, where a problem is divided over multiple solvers, the agents, in a
multi-agent system [46].

14

In 1987, the goal-based model was further specialized into belief-desire-
intention agents [21]. Goals were further specified into desires (general goals)
and intentions (currently pursued goals). BDI agents also have beliefs of their
environment. This allows agents to remember information from their environ-
ment that they can’t perceive.

Research has also been devoted to adding learning capabilities to agents
[23, 60]. Learning agents can be divided into two groups. Agents that can
adapt their behaviour by studying the result of their actions and agents that
can adapt there social interactions to become more competent.

In recent years, the interest in agents and agent design has increased rapidly.
This can be partly credited to the growth of the internet, which provides a
massive collection of data that can be used as environment for agents [35, 51].
Also the rise of cyber-physical systems is a growing field that utilizes the concept
of agents for automation of development in industry 4.0 settings [52, 87, 53].

2.5.2 Definition Review

In this section, we will review a set of definitions for the concept of agent. Since
an agent is a concept in MAS as well as ABM, we reviewed definitions in both
fields to see whether they have different conceptions about the term. We focused
on surveys to filter out definitions that are biased to a specific field of research.

The first definition is derived from a survey of Nick Jennings [6] and Michael
Woolridge [4] from 1996 about software agents in multi-agent systems [47].

Definition 9 Agents should have following key hallmarks:

• Autonomy: Agents should be able to perform the majority of their
problem solving tasks without the direct intervention of humans or
other agents, and they should have a degree of control over their own
actions and their own internal state.

• Social ability: Agents should be able to interact, when they deem ap-
propriate, with other software agents and humans in order to com-
plete their own problem solving and to help others with their activities
where appropriate.

• Responsiveness: Agents should perceive their environment (which may
be the physical world, a user, a collection of agents, the INTERNET,
etc.) and respond in a timely fashion to changes which occur in it.

• Pro-activeness: Agents should not simply act in response to their en-
vironment, they should be able to exhibit opportunistic, goal-directed
behaviour and take the initiative where appropriate.

Jennings et al. identify agents to be autonomous communicative entities.
They hold a degree of autonomy and should be able to solve a majority of

15

problems by themselves. They should be able to communicate with each other
on their own initiative.

Jennings et al. also introduce some terms, such as environment and goals.
An agent’s environment provides the conditions under which an entity (agent
or object) exists [64]. Agents perceive information from their environment and
can act upon it, which can in turn cause a change in the environment. Agents
also have a local goal. This is a set of conditions that the agent tries to satisfy
as best as possible. We will discuss these terms in more detail in Section 2.5.3.

The second definition is from Charles M. Macal [1] and Michael J. North.
They provide a definition for agents from the perspective of agent-based mod-
eling in A Tutorial on Agent-Based Modeling [55].

Definition 10 An agents has the following essential features:

• An agent is a self-contained, modular, and uniquely identifiable indi-
vidual.

• An agent is autonomous and self-directed

• An agent has a state that varies over time

• An agent is social having dynamic interactions with other agents that
influence its behaviour.

Both definitions are from a different perspective, however, some features recur
in both definitions. Both definition identify that agents should by autonomous
and communicative. Macal and North’s definition, does not mention that agents
are situated in an environment or have goals.

A paper that was included in Multi-Agent systems: Simulation and applica-
tions [81] by Fabien Michel et al. also provides a definition from the modeling
and simulation point of view [59].

Definition 11 An agent is a software or hardware entity (a process) situ-
ated in a virtual or a real environment:

1. Which is capable of acting in an environments

2. Which is driven by a set of tendencies (individual objectives, goals,
drives, satisfaction/survival function)

3. Which possesses resources of its own

4. Which has only a partial representation of this environment

16

5. Which can directly or indirectly communicate with other agents

6. Which may be able to reproduce itself

7. Whose autonomous behavior is the consequence of its perceptions,
representations and interactions with the world and other agents

This definition mentions that agents can have a partial view of its environ-
ment. This refers to locality of an agent. An agent can only perceive information
in its surroundings. E.g. a person can only see what is happening in the room
he is in, not a neighbouring room. He can however remember what the room
looked like when he left. When an agent only has a partial perception of his
environment, the internal representation of an agent’s environment is often re-
ferred to as the agents belief [40].

In a recent survey from Ali Dorri et al. [32] about MAS, the authors pro-
posed a general application-independent definition for an agent.

Definition 12 An agent is an entity which is placed in an environment
and senses different parameters that are used to make a decision based
on the goal of the entity. The entity performs the necessary action on the
environment based on this decision.

Though not mentioned explicitly, the definition states that agents should be
autonomous. By sensing the environment and choosing an action accordingly,
the environment can not control the agents action directly.

To compare these definitions, we constructed Table 3, in which we listed
important keywords from the definitions and put a check mark if the keyword
is discussed in the definition.

We identified autonomy as the most important feature of agent-hood. Every
definition that is reviewed mentions this feature explicitly or implicitly. Com-
munication, environment, and goals are all mentioned in 3 out of the 4 reviewed
definitions, making them also essential features for agent-hood. Pro-activeness
is only mentioned explicitly in the definition of Jennings and Woolridge, how-
ever, pro-activeness is tightly coupled to goals. If an agent does not have the
notion of goals, it can not exhibit opportunistic behaviour.

We also noticed that the definitions of Jennings and Woolridge and the
definitions of Michel et al. are very extensive, while the definitions of Macal et
al. and Dorri et al. are rather limited.

In the definitions of agents we did not notice any bias towards MAS or ABM.
This makes agents a generic concept.

17

Table 3: Table of occurences of concepts in the reviewed definitions

Jennings et
al. [47]

Macal et
al. [55]

Michel et
al. [59]

Dorri et
al. [32]

Autonomy X X X X

Communication X X X

Environment X X X

Pro-Activeness X

Beliefs X

Goals X X X

Statefull X

Self Reproducibility X

Resources X

2.5.3 Related Terms

In this section, we provide a list of terms and concepts that are often used to
describe certain aspects of agents.

Environment As seen in Section 2.5.2, many definitions state that agents are
autonomous entities. However, agents are not completely free of external de-
pendencies. ”Agents are situated in an environment that provides the conditions
under which an entity (agent or object) exists ”[64]. An agent senses its envi-
ronment and makes decisions based on the sensed data [85]. An environment
has multiple properties that have an effect on the complexity of the system [32]:

• Accessibility: Accessibility refers to the accuracy with which agents can
sense an environment. The more accessible an environment is, the more
accurate and up-to-date sensed data is.

• Determinism: This feature refers to the predictability of the outcome of
actions. In a deterministic environment, the effect of actions is predictable.
In a non-deterministic environment, multiple factors can influence the
outcome of an action and the outcome is not entirely predictable. The
Influence-Reaction model [57] aims to represents these uncertainties. We
will discuss this model in more detail later in this section.

• Dynamism: An environment can either be static or dynamic. In a static
environment, the changes in the environment only occur as a consequence
of the actions of an agent. In a dynamic environment, changes in the
environment can happen independent of agent actions.

• Continuity: Continuity refers to the continuity or discreteness of an envi-
ronment. A continuous environment influences the state of the agents in
a continuous function. In a discrete environment, agents have a discrete
set of predetermined states.

18

When mobile agents are involved, the environment will also provide the spa-
tial information. This information can be provided by a two or three dimensional
environment or the information can be more detailed and provide a rich set of
geographical information, like a GIS [55].

To describe the interactions between agents and their environment better
in a non-deterministic environment, Ferber and Müller have developed the in-
fluence/reaction theory [36, 57]. In this theory agents produce influences on
its environment and the environment reacts to the complete set of concurrent
influences.

Behaviour Next to sensing parameters from their environment, agents are
capable of performing actions which result into changes in their environment.
Agents decide autonomously which action to perform in a situation, Figure 2.
This is described in the agents behaviour [55, 85].

While an action is an atomic event, an agents behaviour can span a longer
period of time. Agents can also have multiple behaviours. Its the agents task
to decide which behaviour will optimize its goals and if he can change to that
behaviour at a particular time frame [85].

Often, behaviour is categorized according to its complexity. A popular cat-
egorization divides behaviour into two categories: Reactive behaviour and Cog-
nitive behaviour [85, 33]. Reactive behaviour defines if-then rules, such that an
agent can react to the current percepts considering his own beliefs. Cognitive
behaviour is more complex in that agents have a set of goals as well as a set of
plans that to achieve their goals. A popular model for describing cognitive be-
haviour is the Belief-Desire-Intention model [40]. This model divides behaviour
into three parts:

• Beliefs The collection of internal representations an agent maintains about
itself and its environment

• Desires A set of conditions that describe a desired end-state

• Intentions A set of plans to achieve the desired end-state

Russel and Norvig [73] identified more fine-grained categories: Simple Reflex
Agents, Model-Based Reflex Agents, Goal-Based Agents, Utility-Based Reflex
Agents,and Learning Agents. They are defined as follows.

Simple reflex agents select actions on the basis of the current percept, ig-
noring the rest of the percept history. Simple reflex agents have the simplest
behaviour. Its behaviour consists only out of simple condition–action rules. A
condition-action rule checks whether the condition is met based on the current
perceptions and, if it is met, performs the action.

A model-based agent can handle partially observable environments. Its cur-
rent state is stored inside the agent maintaining some kind of structure which
describes the part of the world which cannot be seen. This knowledge about
”how the world works” is called a model of the world, hence the name ”model-
based agent”.

19

Goal-based agents further expand on the capabilities of the model-based
agents, by using ”goal” information. Goal information describes situations that
are desirable. This allows the agent a way to choose among multiple possibilities,
selecting the one which reaches a goal state.

A rational utility-based agent chooses the action that maximizes the expected
utility of the action outcomes - that is, what the agent expects to derive, on
average, given the probabilities and utilities of each outcome. A utility-based
agent has to model and keep track of its environment, tasks that have involved
a great deal of research on perception, representation, reasoning, and learning.

Learning agents are competent to initially operate in unknown environments
and to become more competent than its initial knowledge alone might allow.

Emergent Behaviour ”Emergent behavior is commonly defined as macro-
scopic coherent regularities, such as identifiable distributions, coherent patterns
(spatial, temporal, or behavioral), equilibria, and so forth” [26]. In multi-agent
systems, emergent behaviour is often considered to be global system behaviour
that is not specified in the behaviour of the individual entities. E.g. in traffic
models, we model cars such that they try to avoid traffic jams. However, due
to their partial knowledge about the system, traffic jams can still occur [67].

Topology In a system that comprises multiple agents that communicate with
each other, the agents are organized according to a topology. A topology de-
scribes the locations and relations of agents and shows who can send messages to
whom [32, 55]. There are many different ways of representing these topologies,
examples can of these can be seen in Figure 3. In some multi-agent systems,
the agents interact according to multiple topologies. For example, a topology
can describes the physical positions of each agent and its connectedness with
the other agents, while another topology describes the social structure within
the agents.

Topologies can be either dynamic or static. In a static topology, the relations
and positions of each agent remains the same. In a dynamic topology, relations
between agents can vary over time, as well as their positions.

A typical example of a dynamic topology is the connectivity between moving
agents. Each agent has a certain range for sending messages. If two agents are
withing each others range, they are able to communicate and we can say that
they are connected. If the Two agents move such that they are out of each
others range, they are no longer connected, thus the topology of the system
changes.

An agents neighbourhood is the set of agents that are connected directly
to the agent according to a topology. For example, in a spatial environment,
the neighbours of an agent can be all agents that he can communicate with
directly. In a social topology, the neighbours can be the agents peers and direct
supervisors.

20

Figure 3: Different types of topologies [55]

2.6 Relation Between Agent-Based Modeling and Multi-
Agent Systems

In this section, we will discuss how agent-based modeling relates to multi-agent
systems. First we discuss how they agree or disagree on certain concepts. In
the second section we discuss how agent-based modeling is used in multi-agent
systems.

2.6.1 Agreement on Concepts

In the previous sections, we saw that both agent-based modeling and multi-
agent systems agree on certain concepts from a high-level point of view. Both
paradigms represent entities in the system by agents which are situated in an
environment and can perform actions in the environment. Both fields mention
that agents should be autonomous and communicative.

Though they agree on general concepts, both fields are very different. The
ultimate goal for multi-agent systems is to design complex distributed systems
[46]. The goal of agent-based modeling and simulation is to study and analyze
systems [54]. If we look at the definitions by C. M. Macal we see that the first
definition does not require agents to be autonomous. In the first two definitions,
agents can not communicate with each other. We think the reason that these
properties are less important in ABM is because the agents are not necessarily
tasked with solving a complex problem that is beyond an individual’s capabil-
ity and an agent-based model isn’t necessarily distributed. ABM tools such as
NetLogo [79] and Repast [28] simulate agent based models as a single thread
process as default. Since autonomy is especially needed to deal with uncertain
situations in a distributed environment, it is less relevant on a single threaded
simulation tool. Since agents also don’t need to collaborate (e.g. in the traffic

21

model [67] cars do not communicate with each other to decide the best action),
the need for communication is less relevant. This is in line with the description
of agent based modeling in [59], which only mentions that an agent based model
explicitly models individuals, their behaviour, their interactions, and their ac-
tions on the environment. That the behaviour should be autonomous is never
mentioned.

2.6.2 Agent-Based Modeling for Multi-Agent Systems

The multi-agent systems approach often used to develop large and complex sys-
tems. Agents provide a great way to deal with uncertainty and allow developers
to divide a large problem into smaller sub-problems [45].

A methodology for facilitating the design of complex systems is model driven
engineering [74]. In model driven engineering, multiple models of the system are
created. Each model depicts a certain aspects of the system. Then simulations
are run to see whether the system performs correctly before implementing the
actual system.

Since MAS and ABM agree on the concept of agents, it seems logical that
agent-based modeling can be used for simulating MAS. However, MAS devel-
opment tools like MACE [49] and its successor MACE3J [38] feature their own
simulation tools for developing multi-agent systems. Our interpretation is that
while developing multi-agent systems, a more complex model is necessary than
provided by ABM tools such as NetLogo and Repast. Multi-agent systems need
take the problems of distributed systems into account, such as fault tolerance.

22

3 Tool Comparison

With the advent of agent-based modeling (ABM), many tools have been de-
veloped to support this modeling paradigm. However, a universally accepted
formal semantics remains absent. This situation results in a proliferation of
tools that were developed according to different interpretations of the paradigm
[9]. Moreover, the lack of formal semantics imply that the semantics of a model
are determined by its implementation in a specific tool, making them platform
dependent. Platform dependency, in turn, affects the reproducibility of simu-
lation across platforms. This is a very undesireable property for modeling and
simulation platforms.

The aim of this study is to identify whether ABM tools implement the key
features of agents and ABM, as well as determine whether reproducibility can
be achieved across platforms.

To determine this, an example model will be implemented in each of the
tools under study. A set of scenarios will be determined and run on each of
the implementations. Subsequently, we can determine to which precision the
scenarios are repeatable and reproducible among tools.

3.1 Case Study

The aim of the experiment is to determine which features, that are often related
to the ABM paradigm, are included in each of the studied tools. To do this,
we created a feature model that represents the features that are related to the
ABM paradigm. For each tool, we instantiated the feature model.

3.1.1 Tools Under Study

For the scope of this project we only reviewed a selection of tools that can be
used for ABM. The tools we will review in this study are: DEVS (resource
centric), DEVS (entity centric), NetLogo, Repast, and SARL.

DEVS [83] have been used as an implementation tool for ABM with the
aim of developing a formal semantics for ABM [80, 17]. However, the DEVS
formalism is developed to support the discrete event modeling paradigm. We
want to analyze how well we can express agent-based models in this formalism.
For this we will study two common approaches to DEVS modeling: Resource
centric and Entity centric DEVS.

Railsback et al. [70] analyzed a set of the most popular tools for agent-based
modeling. They concluded that Repast [28] is the most complete framework in
java. They also mentioned NetLogo [79] to be a very popular tool for educational
purposes. NetLogo features an easy to use interface and an extensive set of
agent-oriented capabilities. Since both tools were often mentioned in literature
regarding ABM, we chose these tools to represent specific ABM tools.

Last, we reviewed SARL [71], which is an agent-oriented programming lan-
guage. This language however has no built-in support for simulating agent
system, however a lot of concepts of MAS and ABM are first-class abstractions.

23

Figure 4: A simple diagram depicting the example model

Since SARL seems very promising for implementing agents, we wanted to see if
we can use this tool for simulation purposes in the future.

3.1.2 Example Model

To get a better understanding of the tools, we implemented an example model
in each of them. The example is chosen to be complex enough such that it
shows most of the platforms capabilities. As example, we modeled a traffic
situation where cars travel over a road. This road is divided into segments and
when a car enters a segment, he can observe the next segment and adjusts his
speed accordingly. The model was inspired by an assignment from Modeling of
Software Intensive Systems course at the University of Antwerp. In this section,
we will give a detailed explanation of the model.

In the model a road of length l is divided into n segments, each of length
l/n. Each segment has a max speed which is the maximum allowed speed on
the segment. This maximum speed depends on the speed-limit of the road and
the condition of the road-segment (e.g. potholes can decrease the maximum
allowed speed).

A car has following attributes:

• carID : A unique identifier

• preferred velocity : The preferred velocity with which the car advances

• dv pos max : This value represents the maximal difference in speed in one
section, when the car is speeding up

• dv neg max : This value represents the maximal difference in speed in one
section, when the car is slowing down

Cars arrive at the first section with random intervals, sampled between the
minimum inter arrival time and the maximum inter arrival time. Then, they
will run over each segment consecutively, starting at the first segment. At each
segment, the car will observe the next segment once. When the road is clear,
the car will try to drive at the maximum speed that he can attain (note that this
is the minimum between its preferred velocity and the speed limit of the road
segment). When their is another car present in the next segment, the car will

24

Figure 5: Graph of change in velocity

adapt its speed to avoid collision. Each car computes or remembers at which
point in time it will advance to the next section, according to his current speed.
A car can thus adjust its speed according to the time-until-departure of the car
in the next section.

In Figure 5, we see how a car changes velocity on a segment. First the car
determines the target speed. This is the minimum of the preferred speed, the
maximum speed, and the speed that prevents collision. Then the car will add
or subtract at most dv post max or dv neg max from his speed.

When two cars are in the same segment, they collide. When this happens,
both cars set their current speed to zero and their time until departure to in-
finity. When cars collide they do not try to restart and remain in the same
segment for the rest of the simulation.

25

3.1.3 Scenarios

Since we are also interested in the reproducibility and the repeatability [?], we
will analyze 4 scenarios in each of the models that were implemented. Here
follows a list of the scenarios that were analyzed:

• 1 car, standard configuration The first scenario tries to show the cor-
rect behaviour of a single in a basic situation. 1 car will go through all the
segments with a random preferred velocity in the range of [10, 15], and a
maximum velocity of 13 m/s.

• Car stream, standard configuration The second scenario introduces
a variable arrival time of cars. New cars will arrive at the start of the
road with an inter-arrival time uniformly sampled from [10-20] seconds.
This scenario aims to show proper behaviour when cars will almost never
interfere with each other.

• Car stream, strong variability on IAT In the third scenario, we intro-
duce a strong variability on the inter-arrival time of cars. The IATs will
be uniformly sampled from a range [1-20], now cars have a higher chance
of interacting with each other, however, since their speed will not vary a
lot, we expect not much congestion or collisions.

• Car stream, strong variability on preferred velocity In the final
experiment, the preferred velocity will vary a lot as well. This will greatly
increase the chances of collision or congestion. The preferred velocity will
be sampled from the range [1-15]

We set the maximum speed on a segment to 13m/s, the dv pos max to 2.35
and the dv neg max to 2.5. The road itself is 200 meter long and is divided into
50 segments. Figure 6 shows the average travel time on each of the tools for
seeds [0,1,2,3,4] for scenario 2. The output traces found in the download links
were all run with seed 0.

3.1.4 Feature Model for ABM Tools

In Section 2, we analyzed the key features of agents and agent-based modeling.
To analyze how well the tools represent the paradigm of agent-based modeling,
we created a feature diagram for ABM. Later, we will instantiate a concrete
feature model for each of the reviewed tools.

3.2 DEVS - Resource Centric

DEVS [83] is a modeling formalism that was developed to model systems ac-
cording to the discrete event paradigm.

DEVS is a very generic formalism, which is aimes to be a common imple-
mentation platform for all discrete event models [84]. This entails that often
there are many ways to implement the same model. In this study, we analyzed
two popular approaches: Resource centric, and Entity centric.

26

Figure 6: A plot of the average travel time of cars in scenario 3.

In resource centric DEVS, the behaviour of resources is modeled explicitely.
The entities, which act upon the resources, are passive objects that are passed
through the resources.

To implement DEVS models, we used the tool Python PDEVS [82]. We
used version 2.4.1.

3.2.1 The DEVS Formalism

Classic DEVS features two types of models, atomic DEVS models and coupled
DEVS models. Atomic models are the indivisible building blocks of a model [83]
and model a single entity of the system under study. Atomic models can then
be connected in a coupled model.

An atomic DEVS model is a tuple < S, ta, δint, δext, Y, λ, I, O >, where:

• S is a set of internal states of the model.

• I is the set of input ports of the model.

• O is the set of output ports of the model.

• Y is the set of allowed messages.

• ta is a function ta : S 7→ R, which maps the internal state of the model to
the time to the next internal transition.

• δint or the internal transition function maps each internal state to the
subsequent internal state.

• δext or the external transition is a function δext : (Y ×I) 7→ S, which given
a message retrieved at an input port returns the next state.

27

F
ig

u
re

7
:

T
h

e
fe

a
tu

re
m

o
d

el

28

• λ or the output function is a function λ : S 7→ (Y × O) which maps each
internal state to an output message which is send via a certain output
port.

A coupled DEVS model consists of a set of atomic or coupled DEVS. Within
the coupled model, models can be coupled by connecting their ports. Above that
a coupled DEVS model also has a set of input and output ports. This allows
the creation of hierarchical models.

3.2.2 The Example Traffic Model

To implement the example model in DEVS, we started by creating the messages
that can be send by the models. There are two different types of messages in
the model: queries, and acknowledgements, Figure 8. Whenever a car arrives
at a road segment, the segment will send a query to the next segment. A query
does not contain any information. The next segment will answer a query with
a query acknowledgement (QueryAck), which contains the time until departure
of that segment. If no car is present, the time until departure is 0. If a car is
present the time until departure is computed with the current speed of the car
and remaining distance.

Figure 8: Message types in the model

Since the model we implemented is resource centric, cars are passive objects
that are passed around by the DEVS models. Cars can therefor also be send as
a message. A car has following attributes:

• car id, a unique identifier

• v pref, the preferred velocity of a car

• dv pos max, the maximum increase in velocity a car can undergo in one
segment

29

• dv neg max,the maximum increase in velocity a car can undergo in one
segment

• departureTime, the current simulation time when the car departs at the
start of the road

• arrivalTime, the current simulation time when the car arrives at the end
of the road

• velocity, the current velocity of the car

To model the road, road segments are modeled by atomic DEVS models.
Each model has three states: poll, final, and empty. In the empty state, there is
no car present on the segment. When a car arrives at the segment, the segment
reaches the poll state. In this state the car waits to send his query to simulate
the observe delay. This is the time it takes for the car to observe the next section
and react to it. When a query acknowledgement is received or there is no time
to react the segment reaches the final state. In the final state, the car proceeds
to the end of the segment and is passed on to the next segment. Furthermore,
a segment has an input and output port for queries and for acknowledgements.
Segments also have an input and output port for passing cars. Figure 9 shows
how multiple segments can be connected.

Figure 9: Connection of multiple segments

Cars need to be generated and collected. Therefor we created the generator
model and the collector model. The car generator will create a car at each in-
ternal transition and send it to the first section. As time-advance, the generator
samples a random number from [IAT min, IAT max].

3.2.3 Running the model

To run the model, we used python version 2.7 and python PDEVS version 2.4.1.
Installation instructions for the tool can be found at the documentation site.

30

https://msdl.uantwerpen.be/documentation/PythonPDEVS/installation.html

The model can be downloaded at this link. To run the model, run the
simulation.py as python file. Parameters for the simulation can be set in the
simulator.py file.

The outputs of the scenarios can also be found at this link.

3.2.4 Feature Overview

To see how well this approach is suited for agent-based modeling and simula-
tion, we instantiated the feature model in 3.1.4 for resource centric DEVS. The
resulting feature diagram can be seen in Figure 10.

In the model, the agents are passive objects that passed passed around as
messages. Agents thus have no behaviour of themselves. It is thus impossible to
define autonomous behaviour, since the agents actions are completely controlled
by the environment (the road segments). Cars can have a representation about
their environment, so it is possible to add beliefs to agents. However, there is
no concept of explicitly modeled goals in this formalism.

DEVS is a deterministic formalism [83]. This means that the internal as well
as external transition functions will always return the same state given the same
parameters. It is thus impossible to a non-deterministic environment. However,
the tool we used to implement the model offers a way to bypass this. Because
Python PDEVS is a python library, we can use the python random number
generator to randomize the outcome of the transition functions.

This approach does not allow users to create static environments. In static
environments, changes in the environment only happen as reaction to actions
by the agents. In resource centric DEVS however, it is the environment that
acts on the agents.

DEVS is a formalism to model discrete event models. This is apparent from
the time advance function, which allows models to schedule events at arbitrary
time frames. We can limit the choice of time frames to predefined equi distant
time slots to create a discrete time model. However it is impossible to create a
continuous model.

3.2.5 Repeatibility of DEVS

Here we provide the results of the repeatability of the scenarios discussed in
3.1. For this experiment we simulated each scenario 10 times and compared
their output traces. The tool we used for DEVS, python PDEVS, provides an
informative output trace of each event during the simulation. We used this
output trace for comparison. To check for differences in the output trace, we
used the diff tool on linux.

DEVS is a deterministic formalism. If we use the same random number
generator with the same seed, we expect the output traces to be identical.

After running each of the scenarios, we saw that experiments in this tool are
repeatable on trace level.

31

https://msdl.uantwerpen.be/git/tleys/ModelsAndTools/src/master/Models/TrafficModel_ResourceCentricDevs

F
ig

u
re

10
:

T
h

e
fe

at
u

re
m

o
d

el
fo

r
re

so
u

rc
e

ce
n
tr

ic
D

E
V

S
m

o
d

el
in

g
fo

r
A

B
M

32

3.3 DEVS - Entity Centric

Another approach in modeling the given system in the DEVS formalism is an
entity centric DEVS model. In entity centric DEVS models, we model the
entities in the system rather than the resources. In the example of the traffic
model, this means that the behaviour of the cars is modeled in a specific Car
model rather than the road segment models.

A problem now is that we need to add new cars during the simulation of the
model. The DEVS formalism does not support dynamic structures. There is,
however, an extension to DEVS that allows for dynamic structures [83].

Since Python PDEVS also feature dynamic structured DEVS [83, 13], we
used the same tool for this model.

3.3.1 Dynamic Structured Devs

In this section, we will discuss the extension that is needed for standard DEVS
models to include dynamic structures.

In dynamic structure DEVS, the model configuration is seen as part of the
state of the model [83]. This allows the configuration to change during the
simulation. Apart from an internal transition, models now have a model transi-
tion, which is triggered at every state change. In the model transition function
changes to the model configuration are performed. Coupled DEVS models don’t
have a state in standard DEVS, however in dynamic structure DEVS, they do.
Since coupled models don’t have an internal or external transition function,
their model transition function needs to be triggered in a different way. In
Python PDEVS, this is done by making the model transition function return
true or false. When true is returned, the model transition function of the first
encapsulating coupled model is invoked. When false is returned, the execution
of the model transition function in models higher in the hierarchy is prohibited.

Possible changes are:

• Add Model: Adds a new model to the configuration

• Remove model: Removes a model from the configuration

• Connect ports: Connects an input port of a model with an output port of
another model

• Disconnect ports: Breaks the connection of two connected ports

3.3.2 The Example Traffic Model

Here we will describe how we implemented the traffic model in dynamic struc-
tured DEVS.

The central entity in the model is the car. Each car in the system is rep-
resented by a dedicated atomic DEVS model. Next to the car models, we also
created a model that represents the environment of the cars, the road model.

33

Figure 11: Invocation of the δm function in an atomic model

(a) If segment length/velocity > obs delay(b) If segment length/velocity ≤ obs delay

Figure 12: Flow chart depicting a cars behaviour

A car has the same attributes as in the resource centric DEVS model. When
a car enters a segment, it is in the arrival state. It then waits the observe delay
before querying the next road segment. Each car is connected to the road with
a dedicated input and output port. To observe the next road segment, the car
sends a query to the road model, which responds with a queryAck containing
the time until departure. Based on the response, the car adjusts its speed and
based on his new speed and the remaining distance he has to travel, he waits
before departing to the next section. To advance, the car emits an advance
message to the road model. If the car has advanced successfully, the road sends
an advanced message to the car. Whenever a car enters a segment or adjusts
his speed, it sends a message to the road with the updated time until departure.
A flowchart of the car behaviour can be seen in Figure 12. If cars collide, the
road will send a collide message to all cars involved.

The road model keeps a dictionary from each segment to the list of cars in
that segment. The road model also has an input and output port for each of
the cars in the system. The road model keeps track of the positions of each of
the cars, and the time until departure of each of segments. It answers to queries
from the cars. This resembles agent behaviour really well. The cars sense the
environment by sending queries and perform actions on the environment by

34

sending event messages, such as the advance message.
We also created a generator model, which only purpose is to trigger the

model transition function of the encapsulating traffic model. This model then
creates a new car and connects it to the road appropriately.

3.3.3 Running the model

To run the model, we used python version 2.7 and python PDEVS version 2.4.1.
Installation instructions for the tool can be found at the documentation site.

The model can be downloaded at this link. To run the model, run the
simulation.py as python file. Parameters for the simulation can be set in the
class TrafficModel.py file.

The outputs of the scenarios can also be found at this link.

3.3.4 Feature Overview

We will now discuss which features, defined in 7, can be implemented in entity
centric DEVS.

First of all, we noticed that, since DEVS is not developed specifically for
ABM, that agent related concepts are no first-class abstractions in this formal-
ism. However, in entity centric DEVS models, structures can be defined that
closely resemble agent-based entities. The resulting diagram can be seen in
Figure 13.

Atomic models can be seen as autonomous entities. There is no way for
other models to directly trigger a state transition in the atomic model, except
from sending a message. Since the external transition, which is triggered when
a message is received, considers both the message as well as the current state of
the atomic DEVS model, it deliberates to which state it will transition. This is
clearly autonomous reactive behaviour. On top of this, it is possible to define
pro-active behaviour. For pro-active behaviour, the entity needs to be able to
schedule certain actions by himself. This allows it to exploit opportunities even
when no events happen. Defining pro-active behaviour can be done with the
internal transition function. During an internal state transition, the model can
schedule the next internal transition, which will be triggered when no external
transition happens.

It is possible to include direct as well as indirect communication. Direct
communication can be achieved by giving models that represent an agent ded-
icated ports to send messages to other agent models. Indirect communication
can be achieved by creating ports that are connected to models that represent
the environment.

To represent the environment, we advise to create a dedicated model. Agents
can then be connected through dedicated ports. To simulate the perception of
the environment by the agent, the environment can send partial information to
the agent periodically, or the agent can query its environment. As opposed to
resource centric DEVS, we can now define static behaviour. Agents can act on

35

https://msdl.uantwerpen.be/documentation/PythonPDEVS/installation.html
https://msdl.uantwerpen.be/git/tleys/ModelsAndTools/src/master/Models/traffic_segments_entity_centric

F
ig

u
re

13
:

T
h

e
fe

at
u

re
m

o
d

el
fo

r
en

ti
ty

ce
n
tr

ic
D

E
V

S
m

o
d

el
in

g
fo

r
A

B
M

36

Figure 14: Output of the diff algorithm on the first scenario

their environment by sending event messages, such as the advance message in
our example.

3.3.5 Repeatibility of DEVS

Here we provide the results of the repeatability of the scenarios discussed in
3.1. For this experiment we simulated each scenario 10 times and compared
their output traces. The tool we used for DEVS, python PDEVS, provides an
informative output trace of each event during the simulation. We used this
output trace for comparison. To check for differences in the output trace, we
used the diff tool on linux.

In Figure 14, we included the output of the diff algorithm of the first scenario.
The tool did not find any differences in the tool, however we had to format the
output first. The output trace of python PDEVS included the physical addresses
of the objects, since they are randomly determined by the operating system, they
varied among simulations. To obtain our output, physical addresses need to be
abstracted first.

As for the other scenarios, no significant differences were found, apart from
different inter-leavings of events that happened on the same time-stamp. This
was due to the dynamic structure. The select function ordered the events on
their physical address. Since models are created at run-time, their physical ad-
dress were not deterministic. After resolving this problem by ordering events
on car ID’s, we achieved identical output traces. We did had to create a custom
random number generator, such that each car samples from the same distribu-
tion with the same seed.

We can conclude that entity centric resources is deterministic and experi-
ments are repeatable on trace level.

3.4 NetLogo

NetLogo is the first tool in this section that is considered an ABM tool [70]. Its
main focus lies on mobile agents in a 2 dimensional environment [79, 78]. They
extended the functionality to incorporate 3 dimensional environments.

NetLogo is mainly used for research and educational purposes [70]. NetLogo
features a domain specific language and a GUI to facilitate development. Due
to its easy interface and complete packaging, NetLogo is the most popular tool
for ABM [70].

To implement our model we used NetLogo version 6.0.4 which can be down-
loaded here.

37

https://ccl.northwestern.edu/netlogo/download.shtml

3.4.1 The Netlogo Tool

In this section we will discuss how NetLogo works, which abstraction it made,
and how it resembles the ABM paradigm. We will first discuss how netlogo
incorporates agents and environments, then we will talk about its interface,
since it is one of the key features of the tools. Finally we will discuss the
domain specific language that NetLogo provides to define agent-based models.

Agents NetLogo is built on the concept that ”the world is made up out of
agents” [5]. This means that not only the individual entities are agents, but
also the links between agents are in turn agents, as well the environment and
the observing entities.

NetLogo divides agents into four categories: turtles, links, patches, and ob-
servers. Turtles are agents that represent ’living’ entities in the space. They
have a position and can freely move around through the environment.

Links are agents that connect two other agents. It does not have a position,
but is represented by a line between the two agents that are connected by the
link.

A patch represents a cell in the grid that makes up the 2D environment.
Patches have an x and a y coordinate, but cannot move.

An observer is an agent that is not present in the world, but rather observes
all other agents. The observer is also responsible for giving directions to all
other agents.

Environment As mentioned above, NetLogo features a spatial environment
for turtles to roam in. The standard version of NetLogo features a 2D envi-
ronment, but when installing NetLogo, it also install NetLogo3D. NetLogo 3D
features a 3-dimensional environment and graphical support.

The environment’s only responsibility is to keep track of the positions of each
of the agents. Agents have an absolute position in the environment, provided
by their x and y coordinate, as well as a grid based position, given by the patch
on which the agent is positioned.

Interface What makes NetLogo such a popular tool, is its easy to use interface
[70]. Figure 15 shows the initial screen, when starting up NetLogo. The interface
features three tabs: the interface tab, the info tab, and the code tab.

In the interface tab, developers can specify the interface for future users of
the model. The big black box that is provided for each new model renders the
agent system. When turtles are created they will appear in the box at their
appropriate position. Developers can add components to the interface.

The first components are buttons. When adding a button, you can assign a
method to it that is invoked whenever the button is pushed.

The second type of components are input components. Examples of input
components are sliders, choosers, and input prompts. These components can be
used to ask for user input. Each of these components defines a global variable
that can be accessed in the code.

38

The last type of components are output components. These components
output results from the model to the user. Examples of these components are
plots and monitors.

Each of these components can be placed arbitrarily on the window, as well
as resized.

The info tab is used to describe the model, as well as give direction on how to
use the model. The last tab is used to implement the model using the NetLogo
domain specific language.

Figure 15: Starting screen of NetLogo

Domain Specific Language NetLogo features its own domain specific lan-
guage for implementing models. Here, we will give a short overview of its

39

features, based on the documentation [5].
NetLogo allows different types of turtles called breeds. To create a breed,

you can use the breed statement:

breed [cars car] : defines a breed called cars

Each breed has a set of variables that represent that entities state. These
variables can be defined with a breed-owns statement:

cars-own [motor, velocity, petrol-level] : defines motor, velocity, and
petrol-level as breed-variables for the cars breed

NetLogo provides two types of methods. The first type of method is confined
within a to [params] ... end statement. These methods do not return a value
and thus are only a means to altering the state of the model. The second
type is confined within a to-report [params] ... end statement. Report is the
NetLogo equivalent of return. These functions thus return a value with a report
statement, but, on top of that, can also have side effects.

NetLogo does not support breed specific methods, but you can execute a
method in the context of an agent with the ask statement.

ask cars [move-forward] will execute the move-forwad function for each car
present in the model. If, for example, the method uses the motor variable, it

will use the value of the car for which the method is called.

NetLogo features specific built-in methods for turtles, patches, and links.
An example is the forward method for turtles. Forward x advances the turtle
in a forward direction over distance x.

NetLogo implements the discrete time paradigm. Time is divided into
equidistant intervals called ticks. At each tick, an advance method can be
called. The method then simulates everything that happened during the last
time interval and then advances the tick count by calling the tick method. When
the tick count needs to be updated with a value other than 1, you can call the
tick-advance method.

3.4.2 The Example Traffic Model

For the traffic model, we created 3 breeds: a Car breed, a Divider breed, and
a Road breed. The cars specific variables can be seen in Figure 16. Dividers
remember the time until-departure of the next segment. Dividers can be inter-
preted as flags at the end of each segment. Road agents are a link that links
two subsequent dividers.

NetLogo has no obligated method for implementing the run-time behaviour
of the model, however a standard approach seems to be accepted by the NetLogo
community. This method is used in the models library provided with the tool.
A setup button is added to the model which invokes one or more functions that
initialize all parameters of the simulation. A go button is added which invokes

40

Figure 16: The internal variables of a car

repeatedly a method that simulates a single time-frame and advances the tick-
count with 1. We needed to have a smaller tick size, so we used the tick-advance
function instead.

The setup function will initialize n+ 1 segment dividers and connects them
two by two with roads. The setup function also initializes all global variables
that are not defined by the user.

NetLogo only support discrete time and no discrete events. To spawn cars
at a random time interval, we introduced a global variable ticks-till-next-car. In
the go procedure, which simulates one time frame and advances the ticks with
tick-size, tick-size is subtracted from this variable. If ticks-till-next-car becomes
negative a car is spawned and ticks-till-next-car is reset to a new random value.
We used the same technique to implement the observer delay of a car.

Since cars can only perform one action on each segment, we created the
perform-action field for cars. When a car observes the next segment and adjust
his speed, it sets this field to false. This way the remembers that he already
performed his action.

Cars also remember what the next their next divider. At each time-step, he
will look at the closest divider in front of him. If this one is different from the
current next-divider, the car knows it moved to the next segment and resets the
appropriate values.

In Figure 17 we show how the go procedures simulates a single time-frame.

3.4.3 Running the model

To run the model, we used NetLogo version 6.0.4 Installation instructions for
the tool can be found at the documentation site.

The model can be downloaded at this link. To run the model, load the
.nlogo file in NetLogo. Then press setup to initialize the model and go to run
it. Parameters for the simulation can be set in the NetLogo interface.

The outputs of the scenarios can also be found at this link.

41

https://ccl.northwestern.edu/netlogo/download.shtml
https://msdl.uantwerpen.be/git/tleys/ModelsAndTools/src/master/Models/Netlogo

Figure 17: Flowchart depicting the functionality of the go procedure.

42

3.4.4 Feature Overview

In this section we will discuss the ABM features in NetLogo. The diagram can
be seen in Figure 18.

We found no way to create autonomous behaviour in NetLogo. To achieve
autonomous behaviour, we expect that only an agent itself can decide which
action to take, based on incoming events or messages. In NetLogo, agent be-
haviour is defined by a central script. This script is then executed by the
observer agents which directly directs the agents with the ask statement. While
the ask statement suggests that agents can choose not to perform the actions,
there is no way to do this. A statement such as ask car1 [advance] is equivalent
to a remote method invocation in object oriented programming. This is not
autonomous, since the object is controlled directly from an external source [85].

In NetLogo, we found no way to set up a dedicated channel between two
agents. Direct communication is thus not possible. NetLogo also does not
provide a way to create messages. Indirect communication can be achieved by
creating dedicated message breeds.

As for the environment, we can only use static environments, since the envi-
ronment only consists out of the positions of each agents. Since the environment
can not change these position itself, we can not define a dynamic environment.
For the same reason we can not defin non-deterministic environments.

NetLogo only allows discrete time modeling, since time is divided into ticks.

3.4.5 Repeatibility of Netlogo

To achieve repeatability, models implemented in NetLogo need to be determin-
istic. According to the documentation, NetLogo is deterministic when a random
seed is set at setup with the set-random-seed method. However, there are some
exceptions:

• The use of every and wait, such that it affects the outcome of the simula-
tion.

• Using different versions of NetLogo.

• Random hardware failure or human errors in the model, NetLogo, or the
java runtime-environment.

In Appendix A, an example is included of a NetLogo model that conforms
to the first exception. We ran 10 simulations of this model. We ran them all on
the same machine, until tick 702744. As we can see in the output of each run, in
Table 4, the simulation produced a different output under the same conditions.
We also observed the number of outputs increase as we set the tick slider to
slower, vice verse for faster. This indicates that the every statement uses real
time instead of the virtual simulation time. This makes this statement a bad
choice for any model.

In our model, we omitted the use of wait and every. To check whether our
model is repeatable in NetLogo, we ran each of the scenarios in Section 3.1 ten

43

F
ig

u
re

1
8
:

T
h

e
fe

a
tu

re
m

o
d

el
fo

r
N

et
L

o
g
o

44

times and compared the output traces. For the output trace, each car prints
the current tick-count when he advanced to the next segment. When a car is
finished, it outputs the travel-time of the car. When two cars collide, they both
output that they collided. When a car is finished it outputs its travel time.
To compare the output traces, we used the linux diff command to check for
differences in the output.

After running the experiments, all output traces of the same scenario where
identical. All experiments were run with the same random seed, 0, for the
global random number generator. We can conclude that simulations of the
same scenario are repeatable when we do not include the exceptions NetLogo
provides on their website.

3.5 Repast

Repast [28] started out as a java implementation of the swarm agent-based
modeling tool. During development, the development team decided to go their
own way, however, repast features most of the functionality of swarm. Repast
is regarded as a one of the most well developed tools for agent-based modeling
[70]. Developing models in repast can either be done in java or in their domain
specific language ReLogo. We decided to use ReLogo, since we expect it to
represent repasts functionality and semantics the best.

3.5.1 The Repast Framework

The Repast framework uses a very similar approach to creating and simulating
models as NetLogo. E.g. Repast also uses turtles, patches, links, and observers.
We will know discuss the similarities and differences between the tools.

Interface Like NetLogo, Repast features a graphical user interface to simulate
the model. In Figure 19, we see the interface after initialization. In contrast to
NetLogo, the interface can not be customized by the developer. Also the model
is developed outside of the interface, in the eclipse IDE [2]. When the model is
run, Repast starts up the interface.

Just like NetLogo, Repast’s interface provides a rendering of the model.
When turtles are created, they will appear in this screen at their appropriate
position.

To gather user input, the interface provides a User panel. In this panel, slid-
ers and input prompts can be defined. Since we cannot alter the interface, these
sliders need to be defined in the code. These can be added in the UserGlobal-
sAndPanelFactory, a standard class that is created for each new model. Here
components as well as global variables can be created with built-in methods.

The interface allows three possible execution methods. Run allows users to
run the full simulation. A special go function will be called repeatedly. Step
run allows users to run the simulation stepwise. Pressing the step run button
executes the go button once. The last option is the batch run option. This
allows users to define different simulations of the model and run them in batch.

45

Figure 19: The RePast model interface after initialization

We did not use the last method for this study. Next to the run options, Repast
has a lot of export possibilities.

Environment The environment provided by Repast is similar to that of Net-
Logo. It is a spatial environment where agents have both an absolute position
as well as a patch on which they are located.

Relogo To facilitate the development of models in the Repast framework, the
ReLogo language was developed [66]. This domain specific language is fully
compatible with java, but treats Repast specific artifacts as primitives. A full
list of primitives can be seen in [7]. We will not go into details into these
concepts, since they are very similar to NetLogo.

Next to the UserGlobalsAndPanelFactory, a UserObserver is instantiated
for each model. This agent’s task is to instantiate other agents and direct their
actions. This observer is the Repast equivalent as the observer in NetLogo
which is implemented in the script in the code tab. In this observer, two special
functions need to be defined. The first one is the setup function, which is
annotated with @Setup. This function is run before the model is simulated
and is used to initialize all necessary parameters and create an initial set of

46

agents. The other function is the go function, annotated with @Go. The go
function handles a single time frame of the simulation. This function is invoked
repeatedly when running the simulation or once when the step run button is
pressed.

Where ReLogo differs vastly from NetLogo is the object oriented capabil-
ities. Instead of creating breeds, a class needs to be created, which extends
one of the standard type agents. This allows developers to create agent specific
methods. In NetLogo, every function is considered a global function, which
can be executed in the context of an agent. The increase in modularity makes
ReLogo better suited for very large projects.

3.5.2 The Example Traffic Model

Since NetLogo and Repast are very similar, our implementation of the traffic
model is also very similar. We created the same types of agents: cars, dividers.
We omitted the connectors. Since cars move over a straight line and cars never
connect to the road, these links are unnecessary. For the implementation of the
go function, we based ourselves on the flow chart in Figure 17.

The difference with the NetLogo is that we moved the functionality that
handles the advance car to the car. Cars now have a step function, which is
called by the go function.

For a more detailed explanation, we refer to the NetLogo implementation,
Section 3.4.2.

3.5.3 Running the model

To run the model, we used Eclipse IDE for Eclipse Committers version 4.9.0
and Repast Symphony version 2.6.0. Installation instructions for the tool can
be found at the documentation site.

The model can be downloaded at this link. To run the model, you can
load the project in your eclipse workspace. Then run the project as model.
Parameters can be set in the user panel.

The outputs of the scenarios can also be found at this link.

3.5.4 Feature Overview

In this section, we will discuss the features that are present in Repast/ReLogo.
The resulting feature diagram can be seen in Figure 20.

Because ReLogo allows users to create agent specific methods, it is possible
to separate agent behaviour from the agent’s interface. Such a structure allows
users to simulate autonomous behaviour. An agent can have a public method
which is called by the UserObserver, which simulates the agent’s perception of
its environment. Based on the information provided by the environment, agents
can decide how to respond. However, this is not true autonomous behaviour. For
true autonomy, we expect that agent itself can decide itself when to observe the
environment and can only be contacted by external entities through messages

47

https://repast.github.io/download.html
https://msdl.uantwerpen.be/git/tleys/ModelsAndTools/src/master/Models/Repast

F
ig

u
re

20
:

T
h

e
fe

a
tu

re
m

o
d

el
fo

r
R

ep
a
st

/
R

eL
o
g
o

48

or events. This is not the case since the observer still acts as a central point of
control.

In Repast there is no specific way to define communication between agents.
Again, we can simulate communication by invoking methods of other agents.
However, no standard approach for such an implementation was found.

In Repast goals are not modeled explicitly.
As for the environment, Repast features a similar environment as NetLogo.

Turtle agents have an absolute position, which allows a continuous spatial en-
vironment, as well as a patch on which they are situated, which allows for a
grid based environment. Since patches are agents, the only responsibility of
the environment is to keep track of the agent’s position. This entails that the
environment can not be dynamic or non-deterministic.

3.5.5 Repeatibility of Repast

Repast is a framework written in Java. Java is a deterministic programming
language, so the expectation is that simulations are repeatable. Like NetL-
ogo, Repast has built-in functionality for generating random numbers. It does
provide a function, called randomseed(), where a user can set the seed for a sim-
ulation.The output traces that were generated by the simulation are the same
as in NetLogo. When a car transitions to the next segment, he outputs the
current ticks and his id. When a car finishes he outputs his id and travel-time
in ticks.We ran each simulation in Section 3.1 ten times with random seed 0
for 100 seconds, where 1 second is 1 tick. To make sure Repast does not cache
any computations, we restarted the tool for each output trace. In the resulting
output traces no differences where found. We can conclude that experiments
are repeatable in Repast on trace level, even when making use of the random
number generator.

3.6 SARL

SARL [71] calls itself an agent-based programming language. Agent-oriented
programming is a programming paradigm that relates a lot to the object ori-
ented paradigm. Here, agents are the central concept instead of objects. The
difference between an agent and an object, is that agents are autonomous and
their methods can not be invoked directly from an external source, while this
is very common with objects [63]. To invoke a method in an agent a message
or event should be sent to the agent, who will decide autonomously whether
to execute the desired function or not.To run a SARL program, an multi-agent
platform should be used. Such a platform implements a representation of the
environment and defines the access-points from the agent to the environment as
well as to other agents. The MAS platforms that can be used for SARL programs
are the JANUS-platform and the TinyMAS platform. SARL is not designed to
be a tool for agent-based modeling and simulation, rather it is a domain specific
language for developing MAS applications on the Janus-platform.

49

3.6.1 The SARL Programming Language

In this section, we will discuss the agent-oriented primitives of SARL. For this,
we base ourselves on the documention provided on the SARL website [8]. SARL
is also a fully object-oriented programming language, however, we will not focus
on this here.

In SARL agents can communicate with each other by sending events. Events
have a name, a type, a source, and optional data. Events can be created as
follows:

event MyEvent {
va l s t r i n g = ”abcd”
va l number : I n t e g e r

new(nb : I n t e g e r) {
number = nb

}
}

Here an event of type MyEvent is defined, which has two data fiels, string and
number, of which string has a default value and number’s value is set in a
constructor method.

Another approach for communication between entities is messaging. Mes-
sages have the same properties as events, but additionally have a destination.
SARL chose for the event option, because it is a more generic approach in which
messages can be encoded.

A capacity is a specification of a collection of actions. It resembles closely
an interface in object-oriented programming. Implementations of capacities are
called skills. In an agent definition, developers can specify which capacities an
agent can use. When an agent is created, it installs a set of skills. When a
certain action of a capacity is called, the agent searches the associated skill and
uses that implementation of the action.

The main concept in SARL is the agent. Like objects and classes, agents are
instantiated according to an agent specification. Within the agent specification,
developers can describe how agents react to certain events. This is done with
an on statement. Let’s look at following example:

agent MyAgent{
uses Logging ;

on MyEvent {
i n f o (” r e c e i v e d an in s t anc e o f MyEvent”)

}
}

50

In this example, whenever an agent of type MyAgent receives a MyEvent event.
It will respond by printing the text ”received an instance of MyEvent”. Note
that to print output, the agent makes use of the logging capacity, which is a
built-in capacity.

On statements can be accompanied with a guard. In this case the reaction
of the agent is only performed if the guard results to true. In following example,
the agent will print ”reaction 1” only if his number is smaller then 1. The agent
will print ”reaction 2”, only when his number is higher than 40. In all other
cases the agent will not react. Guards can overlap, so in some cases an agent
can perform multiple reactions for the same event.

agent MyAgent{
uses Logging ;

de f number : I n t e g e r

on MyEvent [number < 1]{
i n f o (” r e a c t i o n 1”)

}

on MyEvent [number > 40]{
i n f o (” r e a c t i o n 2”)

}
}

In the two previous examples we defined the agent’s behaviour in the agent
specification. However, in SARL, behaviour is a first-class abstraction. This
allows agent to have multiple behaviours and choose during runtime which be-
haviour is used.

Agents live in contexts, which in turn consist out of spaces. In the docu-
mentation [8], a context is defined as a boundary of a sub-system, and gathers a
collection of spaces. Whereas a space is defined as the support of the interaction
between agents respecting the rules defined in a Space Specification.

3.6.2 The JANUS MAS Platform

In order to run, SARL code needs to be run on a SARL runtime-environment.
Such a runtime-environment executes or interprets a SARL program on a hard-
ware platform. An overview of the compilation process can be seen in Figure
21.

Currently, there are two run-time environment available for SARL: Janus
and TinyMAS. Since TinyMAS is not yet fully supported by SARL and devel-
opment of this platform has stopped, we will focus on the Janus platform in this
section.

Janus is a multi-agent platform that allows developers to easily create web,
enterprise, and desktop multiagent-based applications [3]. It provides a compre-
hensive set of features that allow the development, deployment, and monitoring

51

Figure 21: Compilation process of SARL

Figure 22: The Space interface

of these systems. Janus-based applications can also be distributed over a com-
puter network.

3.6.3 The Example Traffic Model

SARL has a very poor support for environments. There is no concept of spatial
environments, however it features a concept called spaces and sub-spaces, which
act like a minimalistic environment. Agents are situated in a space and can also
be situated in a sub-space within the space. A built-in type of space is an
EventSpace. This is a space in which agents can send events to each other.

The user can however develop custom environment by extending from the
Space interface, which can be seen in Figure 22. We implemented a Road space,
which contains segments. Segments, in turn, contain a list of cars that are cur-
rently present on that space. The road also has a map of the time until departure
of each segment

For the agents to interact with the road, we defined a capacity that defines
the possible actions that a car can perform on the road. Figure 23, shows an
UML diagram of the CarCapacity. We implemented the capacity in a skill. The
CarSkill is initialized with a reference to the road on which the car is situated.

Next we defined a Car agent. This agent makes use of the CarCapacity to
interact with the road. At each segment the agent determines whether their is
enough time to observe the next section. If there is not enough time he schedules
a depart action at the appropriate time and sets his time until departure for that
section. Otherwise, he schedules an adjust speed action and notifies the road

52

Figure 23: The car capacity

Figure 24: UML diagram of the system

with his time until departure. When the adjust speed action is executed, the
car adjusts his speed according to the time until departure of the next segment.
It then updates his time until departure and schedules a depart event.

Finally we create a CarGenerator agent. In SARL only agents can spawn
other agents. The CarGeneretor’s responsibility is to spawn new Car agents.
To schedule the creation of the next car, it samples a random number generator
that returns values between IAT min and IAT max. A UML diagram of the
complete system can be seen in Figure 24.

3.6.4 Running the Application

To run the application, we used SARL version 0.9.0, which can be downloaded
at this link. The project can be downloaded here. The project can then be
imported in the SARL IDE and running the project as SARL agent and selecting
the generator agent.

53

http://www.sarl.io/download/index.html
https://msdl.uantwerpen.be/git/tleys/ModelsAndTools/src/master/Models/SARL

3.6.5 Feature Overview

In this section, we will discuss the features analysis of SARL. The diagram can
be seen in Figure 25.

We first noticed that SARL has a very poor support for environments. There
is no built-in way to define an environment. The closest alternative is spaces.
Spaces are used to define how agents can interact with each other. The only
built-in implementation of spaces that we found were simple event spaces. In
these spaces, agents can send events either to a specific agent or broadcast them
to all agents in the same space. In these environments, we could not specify
dynamic or non deterministic behaviour of the environment.

As opposed to their support for environments, SARL provides a really good
support for agents and agent specific concepts. We already discussed that agents
can communicate by sending events either to a single receiver or by sending it
into the environment. SARL also provides a specific statement to define reactive
behaviour. SARL also provides a build-in capacity for scheduling actions at
specific time stamps.

Agents can not influence other agents behaviour directly. Interaction is only
possible with communication. This makes SARL agents truly autonomous.

Behaviour is a first class abstractions. Users can define multiple behaviours
regardless of which agent will adopt it. Agents can then install a behaviour and
change the installed behaviour when there is a need for it.

3.6.6 Adding M&S Functionality to SARL

The Janus platform is a MAS platform and features no concept of virtual time.
We therefor did not investigate its repeatibility. Instead, we investigated the
possibilities to include modeling and simulation to the SARL programming lan-
guage.

Adding a Scheduling Agent The first possibility is to define a scheduling
agent. All agents should schedule their actions with the scheduling agents which
will keep track of a virtual clock and instruct agents to perform certain actions
according to the schedule.

This approach is very similar to the observer agent in NetLogo and Repast.
Here, the observer is also responsible for directing agent behaviour and increases
the tick count.

The approach of creating a modeling and simulation tool from a MAS plat-
form is not a novel approach. The TurtleKit platform [58] is a simulation plat-
form based on the MadKit platform [43].

The advantages of such an approach is that, by explicitly modeling the
scheduler, developers have a high degree of control over the simulation. The
disadvantage is that this complicates the model drastically. Also, agent-based
modeling is used to model individual behaviour. By including a scheduling
agent, the representation of the real system becomes less clear, because the

54

F
ig

u
re

2
5
:

T
h

e
fe

a
tu

re
m

o
d

el
fo

r
S

A
R

L

55

behaviour has to take into account that he needs to operate with a scheduling
agent.

Simulation Platform Another approach that we propose is a simulation
SRE. Instead of changing the original SARL program, the same program can be
deployed on either the simulation runtime-environment and the Janus platform.
This approach is similar to MAS development tools such as MACE [49], which
feature simulation tools for developing MAS applications.

56

4 Related Work

Railsback et al. reviewed five software platforms for scientific agent-based mod-
els [70]. The platforms under study were NetLogo, Repast, Swarm (Objective-
C), Swarm (Java), and MASON. In each platform, they modeled sixteen ver-
sions of a model, each with increasing complexity. The primary goal of there
research is to provide guidance to possible platform users and to give recom-
mendations for which tool to use in which situation. There research focuses
more on the practicality of the tools and less on the theoretical concepts of the
ABM paradigm. In our study, we will aim to analyze how these tools adhere to
the theoretical concepts of ABM.

In [9], a list is provided of almost the entire spectrum of agent-based mod-
elling and simulation tools. This list clearly shows the proliferation in ABM
tools. They also provide a guide for engineers, researchers, learners and aca-
demicians for selecting the most appropriate tool for their needs.

In [54], C. M. Macal gives a good introductory explanation of agent-based
modeling. In this paper, he describes what agent based models are, gives a set
of definitions, and discusses the different fields in which ABM is used. Another
interesting paper that was co-authored by C.M. Macal is [55]. In this paper, the
concepts of autonomy, agents, agent interaction, and environment is explained
in more detail.

In [59], the history of agent-based modeling is discussed. They also discuss
in great detail the need for modeling and simulation for multi-agent systems
and how modeling and simulation can be used for multi-agent systems.

To get a better understanding about agents and multi-agent system, we
recommend this paper [46]. This paper explains in detail the history of agents
and multi-agents systems. They also discuss the wide variety of application of
multi-agent systems.

In [80], A. Uhrmacher describes how agents can be implemented in discrete
event simulations. She also discusses the James platform, a discrete event agent-
based simulation platform. In our study we used a similar approach when
modeling the entity centric DEVS model.

57

5 Conclusion and Future Work

In the first part of the document, we investigated the literature about agent-
based modeling and multi-agent systems. We reviewed a set of definitions for
multi-agent systems and concluded that they are very similar. This suggest
that the concept of a multi-agent system is well established. On the other hand,
we observed that this is not the case with agent-based modeling. The different
definitions of C. M. Macal suggest that different interpretations of agent-based
modeling exist. We also investigated how the concept of agent is defined. We
saw that definitions from both the agent-based modeling perspective as well as
the multi-agent perspective. However, if we take a closer look at agent-based
modeling, we noticed that certain properties of agents are less strict.

In the second part of the document we investigated a set of tools that im-
plement the agent-based modeling paradigm. We analyzed the features that
each of the tools has implemented by creating a feature diagram of agent-based
related features and instantiating the model for each of the tools. We also in-
vestigated the repeatability of the tools that feature a simulation platform. Due
to the diversity in the tools we studied, it is hard to draw a single conclusion.
We conclude that NetLogo and Repast are very similar tools. They are also the
two tools that are specifically for agent-based modeling and simulation. How-
ever, we found that they have a very poor support for modeling behaviour.
Though we established that the lack of autonomy is justified due to the single
threaded execution of the models, we would have liked to see better support for
implementing reactive and cognitive behaviour, like we saw in SARL. Resource
Centric DEVS doesn’t seem like a good fit for agent-based modeling. The fact
that agent behaviour emerges from the behaviour of the resources is kind of the
opposite approach to agent-based modeling.

For future work, we aim to unify the field of agent-based modeling. We will
investigate the needs of the different fields that use the approach and define a
formal semantics for agent-based modeling. Then, we will develop a formalism
based on this formal semantics and show the relation between the formalism
and existing tools.

58

References

[1] Charles m. macal biography. https://www.anl.gov/profile/charles-m-
macal.

[2] Eclipse. https://www.eclipse.org/. Accessed: 16-August-2019.

[3] Janus. http://www.janusproject.io/. Accessed: 17-August-2019.

[4] Michael woolridge summary. http://www.cs.ox.ac.uk/people/michael.wooldridge/.

[5] Netlogo documentation. https://ccl.northwestern.edu/netlogo/

docs/programming.html. Accessed: 15-August-2019.

[6] Nick jennings summary. https://www.imperial.ac.uk/people/n.jennings.

[7] Relogo primitives. https://repast.github.io/docs/api/repast_

simphony/ReLogoPrimitives.html. Accessed: 16-August-2019.

[8] Sarl documentation. http://www.sarl.io/docs/official/reference/

Event.html. Accessed: 17-August-2019.

[9] Sameera Abar, Georgios K Theodoropoulos, Pierre Lemarinier, and Gre-
gory MP O’Hare. Agent based modelling and simulation tools: a review
of the state-of-art software. Computer Science Review, 24:13–33, 2017.
Amount of References: 44.

[10] Gul Agha. Concurrent programming using actors. Object-oriented concur-
rent programming, pages 37–53, 1987.

[11] Gul Agha, Peter Wegner, and Akinori Yonezawa. Research directions in
concurrent object-oriented programming. Mit Press, 1993.

[12] Gul A Agha and Wooyoung Kim. Actors: A unifying model for parallel and
distributed computing. Journal of systems architecture, 45(15):1263–1277,
1999.

[13] Fernando J Barros. Dynamic structure discrete event system specification:
a new formalism for dynamic structure modeling and simulation. In Winter
Simulation Conference Proceedings, 1995., pages 781–785. IEEE, 1995.

[14] Maurice Stevenson Bartlett. Stochastic population models; in ecology and
epidemiology. Technical report, 1960.

[15] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. De-
veloping multi-agent systems with JADE, volume 7. John Wiley & Sons,
2007.

[16] Carole Bernon, Marie-Pierre Gleizes, Sylvain Peyruqueou, and Gauthier Pi-
card. Adelfe: a methodology for adaptive multi-agent systems engineering.
In International Workshop on Engineering Societies in the Agents World,
pages 156–169. Springer, 2002.

59

https://www.eclipse.org/
http://www.janusproject.io/
https://ccl.northwestern.edu/netlogo/docs/programming.html
https://ccl.northwestern.edu/netlogo/docs/programming.html
https://repast.github.io/docs/api/repast_simphony/ReLogoPrimitives.html
https://repast.github.io/docs/api/repast_simphony/ReLogoPrimitives.html
http://www.sarl.io/docs/official/reference/Event.html
http://www.sarl.io/docs/official/reference/Event.html

[17] Paul-Antoine Bisgambiglia, Paul Antoine Bisgambiglia, and Romain
Franceschini. Agent-oriented approach based on discrete event systems.

[18] Eric Bonabeau. Agent-based modeling: Methods and techniques for sim-
ulating human systems. Proceedings of the National Academy of Sciences,
99(suppl 3):7280–7287, 2002.

[19] Alan H Bond and Les Gasser. Readings in distributed artificial intelligence.
Morgan Kaufmann, 2014.

[20] Grady Booch. Object oriented analysis & design with application. Pearson
Education India, 2006.

[21] Michael Bratman. Intention, plans, and practical reason, volume 10. Har-
vard University Press Cambridge, MA, 1987.

[22] Rodney Brooks. A robust layered control system for a mobile robot. IEEE
journal on robotics and automation, 2(1):14–23, 1986.

[23] Bruce G Buchanan and Tom M Mitchell. Model-directed learning of pro-
duction rules. In Pattern-directed inference systems, pages 297–312. Else-
vier, 1978.

[24] Stephanie Cammarata, David McArthur, and Randall Steeb. Strategies
of cooperation in distributed problem solving. In Readings in Distributed
Artificial Intelligence, pages 102–105. Elsevier, 1988.

[25] Davy Capera, J-P Georgé, M-P Gleizes, and Pierre Glize. The amas theory
for complex problem solving based on self-organizing cooperative agents. In
WET ICE 2003. Proceedings. Twelfth IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises, 2003.,
pages 383–388. IEEE, 2003.

[26] Wai Kin Victor Chan, Young-Jun Son, and Charles M Macal. Agent-
based simulation tutorial-simulation of emergent behavior and differences
between agent-based simulation and discrete-event simulation. In Simula-
tion Conference (WSC), Proceedings of the 2010 Winter, pages 135–150.
IEEE, 2010. Amount of References: 112.

[27] Adam Cheyer and David Martin. The open agent architecture. Autonomous
Agents and Multi-Agent Systems, 4(1):143–148, 2001.

[28] Nick Collier. Repast: An extensible framework for agent simulation. The
University of Chicago’s Social Science Research, 36:2003, 2003. Amount of
References: 305.

[29] Daniel D Corkill and Victor R Lesser. The use of meta-level control for
coordination in a distributed problem solving network. Technical report,
MASSACHUSETTS UNIV AMHERST DEPT OF COMPUTER AND IN-
FORMATION SCIENCE, 1983.

60

[30] Massimo Cossentino. From requirements to code with passi methodology.
In Agent-oriented methodologies, pages 79–106. IGI Global, 2005.

[31] Robert G Coyle. System dynamics modelling: a practical approach. Journal
of the Operational Research Society, 48(5):544–544, 1997.

[32] A. Dorri, S. S. Kanhere, and R. Jurdak. Multi-agent systems: A survey.
IEEE Access, 6:28573–28593, 2018. Amount of References: 0.

[33] Alexis Drogoul, Diane Vanbergue, and Thomas Meurisse. Multi-agent
based simulation: Where are the agents? In International Workshop on
Multi-Agent Systems and Agent-Based Simulation, pages 1–15. Springer,
2002. Amount of References: 330.

[34] Edmund H Durfee. Coordination of distributed problem solvers, volume 55.
Springer Science & Business Media, 2012.

[35] Oren Etzioni and Daniel S Weld. Intelligent agents on the internet: Fact,
fiction, and forecast. IEEE expert, 10(4):44–49, 1995.

[36] Jacques Ferber and Jean-Pierre Müller. Influences and reaction: a model
of situated multiagent systems. In Proceedings of Second International
Conference on Multi-Agent Systems (ICMAS-96), pages 72–79, 1996.

[37] Jacques Ferber and Gerhard Weiss. Multi-agent systems: an introduction
to distributed artificial intelligence, volume 1. Addison-Wesley Reading,
1999. Amount of References: 3893.

[38] Les Gasser and Kelvin Kakugawa. Mace3j: fast flexible distributed sim-
ulation of large, large-grain multi-agent systems. In Proceedings of the
first international joint conference on Autonomous agents and multiagent
systems: part 2, pages 745–752. ACM, 2002.

[39] Michael R Genesereth and Nils J Nilsson. Logical foundations of. Artificial
Intelligence. New York: Morgan Kaufmann Publishers, 1987.

[40] Michael Georgeff, Barney Pell, Martha Pollack, Milind Tambe, and Michael
Wooldridge. The belief-desire-intention model of agency. In Jörg P. Müller,
Anand S. Rao, and Munindar P. Singh, editors, Intelligent Agents V: Agents
Theories, Architectures, and Languages, pages 1–10, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg. Amount of References: 719.

[41] Rhys Goldstein and Azam Khan. A taxonomy of event time representations.
In Proceedings of the Symposium on Theory of Modeling & Simulation,
page 6. Society for Computer Simulation International, 2017.

[42] Cláudio Gomes, Joachim Denil, and Hans Vangheluwe. Causal-block dia-
grams. 2016.

61

[43] Olivier Gutknecht and Jacques Ferber. Madkit: a generic multi-agent plat-
form. In Proceedings of the fourth international conference on Autonomous
agents, pages 78–79. ACM, 2000.

[44] Aaron Helsinger, Michael Thome, and Todd Wright. Cougaar: a scalable,
distributed multi-agent architecture. In 2004 IEEE International Con-
ference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583),
volume 2, pages 1910–1917. IEEE, 2004.

[45] Nicholas R Jennings. An agent-based approach for building complex soft-
ware systems. Communications of the ACM, 44(4):35–41, 2001.

[46] Nicholas R Jennings, Katia Sycara, and Michael Wooldridge. A roadmap
of agent research and development. Autonomous agents and multi-agent
systems, 1(1):7–38, 1998.

[47] Nick Jennings and Michael Woolridge. Software agents. IEE Review, pages
17–20, 1996.

[48] Dennis Kafura and Jean-Pierre Briot. Actors and agents. IEEE Concur-
rency, (2):24–28, 1998.

[49] Charles Edwin Killian, James W Anderson, Ryan Braud, Ranjit Jhala, and
Amin M Vahdat. Mace: language support for building distributed systems.
In ACM SIGPLAN Notices, volume 42, pages 179–188. ACM, 2007.

[50] Barbara Kitchenham. Procedures for performing systematic reviews. Keele,
UK, Keele University, 33(2004):1–26, 2004.

[51] David Kotz and Robert S Gray. Mobile agents and the future of the inter-
net. ACM Operating Systems Review, 1999.

[52] Paulo Leitao, Stamatis Karnouskos, Luis Ribeiro, Jay Lee, Thomas
Strasser, and Armando W Colombo. Smart agents in industrial cyber–
physical systems. Proceedings of the IEEE, 104(5):1086–1101, 2016.

[53] Jing Lin, Sahra Sedigh, and Ann Miller. Modeling cyber-physical systems
with semantic agents. In Computer Software and Applications Conference
Workshops (COMPSACW), 2010 IEEE 34th Annual, pages 13–18. IEEE,
2010. Amount of References: 66.

[54] Charles M Macal. Everything you need to know about agent-based mod-
elling and simulation. Journal of Simulation, 10(2):144–156, 2016. Amount
of References: 70.

[55] Charles M Macal and Michael J North. Tutorial on agent-based modelling
and simulation. Journal of simulation, 4(3):151–162, 2010. Amount of
References: 1235.

[56] P Maes. aagents that reduce work and information overload, o comm, 1994.

62

[57] Fabien Michel. The irm4s model: the influence/reaction principle for mul-
tiagent based simulation. In Proceedings of the 6th international joint con-
ference on Autonomous agents and multiagent systems, page 133. ACM,
2007. Amount of References: 63.

[58] Fabien Michel, Grégory Beurier, and Jacques Ferber. The turtlekit simu-
lation platform: Application to complex systems. In SITIS: Signal-Image
Technology and Internet–Based Systems, 2005.

[59] Fabien Michel, Jacques Ferber, and Alexis Drogoul. Multi-agent systems
and simulation: A survey from the agent commu-nity’s perspective. In
Multi-Agent Systems, pages 17–66. CRC Press, 2018.

[60] Tom M Mitchell. Machine learning, 1997.

[61] Nicola Muscettola, P Pandurang Nayak, Barney Pell, and Brian C
Williams. Remote agent: To boldly go where no ai system has gone before.
Artificial intelligence, 103(1-2):5–47, 1998.

[62] Nils J Nilsson. Shakey the robot. Technical report, SRI INTERNATIONAL
MENLO PARK CA, 1984.

[63] James Odell. Objects and agents compared. Journal of object technology,
1(1):41–53, 2002.

[64] James J Odell, H Van Dyke Parunak, Mitch Fleischer, and Sven Brueck-
ner. Modeling agents and their environment. In International Work-
shop on Agent-Oriented Software Engineering, pages 16–31. Springer, 2002.
Amount of References: 187.

[65] Guy H Orcutt. A new type of socio-economic system. The review of eco-
nomics and statistics, pages 116–123, 1957.

[66] Jonathan Ozik, Nicholson T Collier, John T Murphy, and Michael J North.
The relogo agent-based modeling language. In 2013 Winter Simulations
Conference (WSC), pages 1560–1568. IEEE, 2013.

[67] Praveen Paruchuri, Alok Reddy Pullalarevu, and Kamalakar Karlapalem.
Multi agent simulation of unorganized traffic. In Proceedings of the first
international joint conference on Autonomous agents and multiagent sys-
tems: part 1, pages 176–183. ACM, 2002.

[68] Gauthier Picard and Marie-Pierre Gleizes. The adelfe methodology. In
Methodologies and Software Engineering for Agent Systems, pages 157–175.
Springer, 2004.

[69] Mark Pinsky and Samuel Karlin. An introduction to stochastic modeling.
Academic press, 2010.

63

[70] Steven F Railsback, Steven L Lytinen, and Stephen K Jackson. Agent-
based simulation platforms: Review and development recommendations.
Simulation, 82(9):609–623, 2006. Amount of References: 793.

[71] Sebastian Rodriguez, Nicolas Gaud, and Stéphane Galland. Sarl: a general-
purpose agent-oriented programming language. In 2014 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence (WI) and Intelligent
Agent Technologies (IAT), volume 3, pages 103–110. IEEE, 2014.

[72] Stanley J Rosenschein. Formal theories of knowledge in ai and robotics.
New generation computing, 3(4):345–357, 1985.

[73] Stuart J Russell and Peter Norvig. Artificial intelligence: a modern ap-
proach. Malaysia; Pearson Education Limited,, 2016.

[74] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COM-
PUTER SOCIETY-, 39(2):25, 2006.

[75] Yoav Shoham. Agent-oriented programming. Artificial intelligence,
60(1):51–92, 1993.

[76] Burrhus Frederic Skinner. Science and human behavior. Number 92904.
Simon and Schuster, 1953.

[77] Peter Stone and Manuela Veloso. Multiagent systems: A survey from a
machine learning perspective. Autonomous Robots, 8(3):345–383, 2000.

[78] Seth Tisue and Uri Wilensky. Netlogo: A simple environment for modeling
complexity. In International conference on complex systems, volume 21,
pages 16–21. Boston, MA, 2004. Amount of References: 566.

[79] Seth Tisue and Uri Wilensky. Netlogo: Design and implementation of a
multi-agent modeling environment. In Proceedings of agent, volume 2004,
pages 7–9, 2004. Amount of References: 265.

[80] Adelinde M Uhrmacher and Bernd Schattenberg. Agents in discrete event
simulation. In European Simulation Symposium-ESS, volume 98, pages
129–136, 1998. Amount of References: 55.

[81] Adelinde M Uhrmacher and Danny Weyns. Multi-Agent systems: Simula-
tion and applications. CRC press, 2009.

[82] Yentl Van Tendeloo and Hans Vangheluwe. An overview of python-
pdevs. JDF 2016-Les Journées DEVS Francophones-Théorie et Applica-
tions, pages 59–66, 2016.

[83] Yentl Van Tendeloo and Hans Vangheluwe. An introduction to classic devs.
arXiv preprint arXiv:1701.07697, 2017.

64

[84] Hans Vangheluwe et al. Devs as a common denominator for multi-formalism
hybrid systems modelling. In IEEE international symposium on computer-
aided control system design, volume 134. IEEE, 2000.

[85] José M Vidal, Paul A Buhler, and Michael N Huhns. Inside an agent. IEEE
Internet Computing, 5(1):82–86, 2001. Amount of References: 69.

[86] Vito Volterra. Fluctuations in the abundance of a species considered math-
ematically, 1926.

[87] Shiyong Wang, Jiafu Wan, Daqiang Zhang, Di Li, and Chunhua Zhang.
Towards smart factory for industry 4.0: a self-organized multi-agent sys-
tem with big data based feedback and coordination. Computer Networks,
101:158–168, 2016.

[88] Gerhard Weiss. Multiagent systems: a modern approach to distributed ar-
tificial intelligence. MIT press, 1999. Amount of References: 5368.

[89] Michael Wooldridge. An introduction to multiagent systems. John Wiley
& Sons, 2009.

[90] Michael Wooldridgey and Paolo Ciancarini. Agent-oriented software engi-
neering: The state of the art. In International Workshop on Agent-Oriented
Software Engineering, pages 1–28. Springer, 2000.

65

A Non-Repeatable NetLogo Example

breed [t e s t s t e s t]

t e s t s−own [output]

to setup
c l ea r−a l l
r e s e t−t i c k s
random−seed 0
l e t index 1
create−t e s t s 4 [

s e t output index
s e t index (index + 1)

]
end

to go
every 1 [ask t u r t l e s [

p r i n t (output)
]
p r i n t (”−−”)]
t i c k

end

run 1 [1,4,2,3] [3,2,4,1] [1,2,4,3] [3,4,1,2]

run 2 [1,4,2,3] [3,2,4,1] [1,2,4,3] [3,4,1,2]

run 3 [1,4,2,3] [3,2,4,1] [1,2,4,3] [3,4,1,2]

run 4 [1,4,2,3] [3,2,4,1] [1,2,4,3] [3,4,1,2]

run 5 [1,4,2,3] [3,2,4,1] [1,2,4,3] [3,4,1,2]

run 6 [1,4,2,3] [3,2,4,1] [1,2,4,3] [3,4,1,2] [1,2,4,3]

run 7 [1,4,2,3] [3,2,4,1] [1,2,4,3] [3,4,1,2] [1,2,4,3]

run 8 [1,4,2,3] [3,2,4,1] [1,2,4,3] [3,4,1,2] [1,2,4,3]

run 9 [1,4,2,3] [3,2,4,1] [1,2,4,3] [3,4,1,2]

run 10 [1,4,2,3] [3,2,4,1] [1,2,4,3] [3,4,1,2] [1,2,4,3]

Table 4: Output of the NetLogo example at normal speed on a single machine

66

	Introduction
	Literature Review of ABM and MAS Concepts
	Methodology
	Multi-Agent Systems
	History of Multi-Agent Systems

	Definition review
	Single-Agent Systems

	Agent-Based Modeling
	History of Agent-Based Modeling
	Definition Review
	Comparison with Other Modeling Paradigms
	Simulation Time

	Agents
	History of Agents
	Definition Review
	Related Terms

	Relation Between Agent-Based Modeling and Multi-Agent Systems
	Agreement on Concepts
	Agent-Based Modeling for Multi-Agent Systems

	Tool Comparison
	Case Study
	Tools Under Study
	Example Model
	Scenarios
	Feature Model for ABM Tools

	DEVS - Resource Centric
	The DEVS Formalism
	The Example Traffic Model
	Running the model
	Feature Overview
	Repeatibility of DEVS

	DEVS - Entity Centric
	Dynamic Structured Devs
	The Example Traffic Model
	Running the model
	Feature Overview
	Repeatibility of DEVS

	NetLogo
	The Netlogo Tool
	The Example Traffic Model
	Running the model
	Feature Overview
	Repeatibility of Netlogo

	Repast
	The Repast Framework
	The Example Traffic Model
	Running the model
	Feature Overview
	Repeatibility of Repast

	SARL
	The SARL Programming Language
	The JANUS MAS Platform
	The Example Traffic Model
	Running the Application
	Feature Overview
	Adding M&S Functionality to SARL

	Related Work
	Conclusion and Future Work
	Non-Repeatable NetLogo Example

