
UML Model Refactoring 
Viktor Stojkovski 

University of Antwerpen, Faculty of Computer Science, Masters of Software Engineering 

January, 2013, Belgium 

Email: Viktor.Stojkovski@student.ua.ac.be 



Introduction to UML Model 

Refactoring 

• Because of constant evolution, systems 

must be modified and evolve 

• There is no precise validation whether the 

modifications won’t change the system 

behavior 

• Necessity of basic set of model 

transformations (refactorings) 



Main goal of the project 

• Create UML Statechart refactoring rules 

using the defined transformations in the 

article Refactoring UML Models 

• Define GraphGrammar rules using the 

Meta-Modeling software AToM3 

 

- Sunye, G., Pollet, D., Traon, Y. L., Jezequel, J.-M., 2001. Refactoring UML Models. Springer. 

- http://atom3.cs.mcgill.ca/ 



Working process(1) 

1. Reading and understanding the defined 

rules and the OCL (Object Constraint 

Language) constraints 

2. Create a testing model in AToM3 using 

the DCharts as formalism 

Group States model example 

Feng, H., 2004. Dcharts, a formalism for modeling and simulation based 

design of reactive software systems 



Working process(2) 

3. Specify the grammar by creating the rules 

– LHS and RHS 

Group States rule example 



Working process(3) 

4. Add conditions to the rules as pre-

conditions and actions as post-conditions 

5. Program the pre and post conditions in 

Python 

Precondition for the Fold Incoming Actions rule 
Acton for the FIA rule 



Working process(4) 

6. Organizing the rules in the grammar by 

giving them priorities 

– The order of the rules is very important 

(explanation!?) 

Hierarchy of the rules in the GG 



Working process(5) 

7. Executing the grammar 

8. Analyzing the results: 

– Does the execution of the grammar over the 

statechart give the expected results? 

– Is the model behavior preserved? 

Example of the Group State rule execution 



Presentation of an example 

from the practical work of the 

project 

• Refactoring a Statechart diagram that is 

modeling a phone call 

• Explanation of the refactoring process 

through an examples 

• Comparing the results of the refactoring to 

the theoretical results from the article 

 Sunye, G., Pollet, D., Traon, Y. L., Jezequel, J.-M., 2001. Refactoring UML Models 



Conclusion 

• After testing the refactoring grammar on a 

number of UML Statechart models the results 

were satisfactory 

• Room for improvements: 

– More wide-ranging pre and post conditions 

covering all of the states in which the model 

can be 

– Inventing new and expanding the already 

specified refactoring rules (example with the 

extension of the Move State out of Composite 

rule) 



References 

• Feng, H., 2004. Dcharts, a formalism for modeling and simulation 

based design of reactive software systems. A Masters Thesis 

• OMG, 2009. OMG Object Constraint Language (OCL). OMG 

• Selic, B., 2009. Unified Modeling Language Specification (version 

2.1). OMG 

• Sunye, G., Pollet, D., Traon, Y. L., Jezequel, J.-M., 2001. 

Refactoring UML Models. Springer 

• Yang, M., Michaelson, G. J., Pooley, R. J., 2008. Formal action 

semantics for a UML action language. Journal of Universal 

Computer Science 

• http://atom3.cs.mcgill.ca/ 



Questions & Discussion 


