
UML Model Refactoring

Viktor Stojkovski

University of Antwerpen, Faculty of Computer Science, Master Studies - Software
Engineering, Antwerpen, Belgium

Abstract

Creating a complex UML statechart diagrams from a scratch can lead to some
bad designs which afterwards in order to be changed and modified to a better
functional and more compact model can be a painstaking job. The reason
for that is the already complex statechart which is like a chain, each small
change in the design can lead to numerous small changes in some other parts
in order for the model to maintain its functionality. There is also another
problem with the non-automated statechart transformations and that is, the
designer cant be completely sure that after all those modifications the func-
tionality of the statechart will remain unchanged. In order to prevent those
problems from happening, in this project I will present and explain how I
have implemented and used some already defined statechart transformations
published in the scientific paper with a title Refactoring UML Models Sunye
et al. (2001), with the help of the software AToM3. AToM3 is a tool mainly
used for meta-modeling and model transformations, which helped me a lot to
implement and test the rules used for refactoring the statecharts. The rules
for refactoring are made from preconditions and actions, which guaranty that
the functionality of the statechart model will be unchanged after its trans-
formation. In the end after using the known transformations on some test
models, the final product is good structured and designed UML statechart
Selic (2009) model which has preserved his behavior.

Email address: Viktor.Stojkovski@student.ua.ac.be (Viktor Stojkovski)

Preprint submitted to Model Driven Engineering January 20, 2013

1. Introduction

The main task for this project is using the already defined refactoring
rules in the paper Refactoring UML Models by Authors and the constraints
for pre and post conditions defined with the OCL (Object Constraint Lan-
guage) to create rules in AToM3 http://atom3.cs.mcgill.ca/ using the
Graph Grammar. For the purpose of fulfilling the defined pre and post con-
ditions for every rule, I have used conditions and actions on almost every
created rule. The defined rules work in a way such that, they are searching
for patterns in the created models (in this case UML statecharts) and after
recognizing a pattern they try if the conditions are true and if its so they
execute the defined actions for that particular rule. The problems with the
defined refactoring rules are that in the paper they are only defined theoret-
ically, but not in practice. The conditions written with the OCL language
OMG (2009) are using a statechart meta-model which was not provided with
the paper, but also by studying the OCL constraints one can realize that the
meta-model used for those rules is different than the meta-model used in
AToM3. The challenge is to try to transform and implement the refactoring
rules and also try to reproduce the results from the experiments that are
only theoretically approved. In order to achieve that aside from defining the
main rules for refactoring there must be created a few smaller rules which
will follow the other in order to refine the statechart mode in my case, delet-
ing transitions and contains Hyperedges. AToM3 has provided me with an
already done meta-model for statecharts called DCharts which are explained
in the paper DCharts, A Formalism For Modeling And Simulation Based
Design of Reactive Software Systems Feng (2004) and the same MM (Meta-
Model) I am using as an formalism, because of the need to change some
attributes of the DCharts model.

The next section, Section 2 is providing the reader with some useful in-
formation about the related work and in this case that is the paper Refac-
toring UML Models Sunye et al. (2001). Section 2 will provide a summa-
rization of that paper and also will include some comments about parts of
the text and brief explanation of some of the created rules for refactoring
as well as my conclusion on the article, which has helped me and provided
very useful information for starting my project and during the process of
creating the GraphGrammar (GG) http://atom3.cs.mcgill.ca/people/

jlara/AToM3_Programming/GraphGrammars.dtml.

2

Section 3 will contain an explanation of the working process, how I have
implemented the rules, problems during the implementation and some idea
about extending the work, because what has been done in this project is just a
starting point and a guideline for allowing a further extension and upgrading
the already defined and implemented rules. Statecharts are a large field for
exploration which opens many possibilities and occasion for continuing the
work in this field. The Section 3 will be the main part of this dissertation
and will include a number of smaller sections explaining the parts that were
mentioned in this paragraph.

In Section 4 there will be presented some of the results obtained by using
the GG (GraphGrammar) rules on some simple statechart models and a few
more complex models. In this sections the reader will be presented with
the final results of the project and a conclusion on whether it has been a
successful experiment and what are the advantages by using this, for now
rather simple refactorings.

Section 5 will be reserved for my conclusions on this project, what are the
advantages/disadvantages of using the newmade refactorings and also what
has been my personal gain from working on this kind of project related to
the field of Model Driven Engineering.

2. Summarization of the article Refactoring UML Models Sunye
et al. (2001)

This paper is oriented on a refactoring UML models, in particular the
examples used are for UML Class and Statechart Diagrams. Because of the
necessity of software evolution, the software designers are in constant need
of already predefined tools for transformations. Those transformations will
ensure the software engineer that there will be no changes in the behavior of
the software, but only the structure of the software will be changed in order
of better functionality and continuous improvement. The transformations
can also be called refactorings, which by definition should be behavior pre-
serving transformations of an application.

The UML is well suited for testing these kind of transformations because

3

of the defined meta-model, which can be used to control the modifications,
but in the same time keeping the functionality of the application unchanged.
In order to keep the behavior of the software the same, the usage of OCL (Ob-
ject Constraint Language) constraints at the meta-model level is required.
The authors of this paper are making an assumption that if we control the im-
pact of the modifications, it should be possible a small set of transformations
to be constructed and from that set, design patterns can be made which can
be applied on some UML models for their refactoring. In my project those
design patterns are constructed as Graph Grammar rules, which have two
sides LHS (Left Hand Side) and RHS (Right Hand Side). On the LHS I
present the pattern for which the grammar should search and on the RHS
are defined the refactorings which should be applied on the graphical appear-
ance and on some of the attributes of the used entities. These rules and their
actions will be more explained in Sections 3 and 4.

As a first transformation example is used a small Class Diagram refactor-
ing example from which are made a few conclusions. Using the Composite de-
sign pattern they are trying to restructure the class diagram without changes
in his behavior. Applying that pattern has made some changes in the class
diagram, which are then justified one by one. For example, a generalization
has been made between two classes which does not change the behavior of
the model because the generalized class does not have superclass and the
general class is empty (without attributes). For refactoring class diagrams
there are 5 basic operations used: addition, removal, move, generalization
and specialization of the modeling elements. All of these refactorings are
described in the few following chapters, but I will not explain them in de-
tails because the Class Diagram refactorings are not included in the working
field of my project and they are not very important for the matters of UML
Statechart refactorings.

More complex and also more elaborated is the second part of the arti-
cle, where is presented an example which is showing some refactorings used
over the statechart diagram model. Working with statecharts is more diffi-
cult because they dont model only the structure of the system like the Class
Diagrams, but also they model its behavior. In the paper as an example
a model of a phone state diagram is used and some of the refactorings are
tested on this model. In Section 4 can be seen the results of refactoring
the phone model using the implemented transformation rules in AToM3 GG.
Over this particular model 4 transformations are executed and are justified
in order to be shown that after the refactorings the functionality of the di-

4

agram is the same. First transformation that is used is Group States and
it creates one Composite State which includes all of the states in the stat-
echart. Using this refactoring rule doesn’t harm the functionality, but only
changes the hierarchy in the model. The second transformation is called
Move State Out of Composite and what it does is moving the state
Idle and the initial state out of the composite state Active. That is legal
because the newly created composite state named Active doesnt have entry
or exit actions and because of that the order of execution of the existing
actions is unchanged. For making refactoring rules for the statecharts work
correct, constraints must be used and those comnstraints must be satisfied
before and after each transformation for the sake of behavior preservation.
For creating the constraints the language OCL is used at the metamodel
level of statecharts. Most complex parts for refactoring are the states and
the composites which have attached some of the actions as do, entry and
exit. Each of these actions is executed in particular time, as an example the
action do is executed when its state is active. The description of refactorings
for the statecharts is divided in two parts: refactorings concerning the state
and refactorings over the composite state. The first two transformations are
called Fold Incoming/Outgoing Actions and their job is to replace a
multiple set of actions attached to transitions which are incoming/outgoing
for a particular state by an exit/entry action attached to the state. For every
transformation there are some restrictions that need to be considered and for
this particular transition the action must be equivalent in order to be folded
and the transition to which they are attached must not cross a boundary of a
composite, also the state mustnt own any entry or exit actions. Concerning
the transformations of a state there are a few more of them explained such as
Unfold Entry/Exit Action (symmetrical transformations as the previous
ones) and Group State (groups one or many states in one composite state),
all of them are briefly explained and there is a particular OCL constraint
attached to them. The second part of the statechart refactoring rules is de-
scribing the transformations which can be done over the composite state.
One such is the Fold Outgoing Transitions transformation, it replaces
the set of transitions leaving the components (states) of one composite state
with a single transition. There are few restrictions before this refactoring can
happen and those are: all the transitions must lead to the same state and
the folded transition will lead to that state and all the actions attached to
the transitions, if there are any, must be equivalent. There are a few more
complex transformations such as Move State into/out of Composite, which

5

have much more complex constraints than the first one and this particular
refactoring rule will be explained in Sections 3 and 4.

In the conclusion there are mentioned a few experiences of refactoring
activity diagrams and some other difficulties including the problem with the
not very precisely defined abstract syntax of OCL and because of that they
didnt managed to test their constraints or improve the definition of some of
the refactorings. At the end of this paper, the authors are mentioning an
extensive use of the action semantics in the future in order to make models
more precise and more secure refactoring although the action semantics for
the UML language are only standardized in a natural language (English) as it
is stated in the paper Formal Action Semantics for a UML Action Language
Yang et al. (2008).

6

3. Design of the solution and the work process

Before I start to explain all the rules separately i would like to present the
design of the meta-model of the Dcharts which are considered as a substitute
for the statecharts. On the picture below it can be seen the model which
i’m using as a formalism in order to create new DChart models, but also it
is possible to make some changes in the formalism of the DCharts. As an
example a have added a boolean attribute called toDelete to the Hyperedge
which is the transition, and that attribute marks the transition whether it
needs to be deleted or not. This subrule will be explained in the folowing
chapters. In order to create the meta-model for the DCharts there must
be also a meta-model for the DChart formalism. The DChart model is cre-
ated in a ER Diagram (Entity-Relationship), which consists of 3 types of
building blocks: entities (square blocks), relationships which are connecting
the entities and attributes which can be assiciated with the entities and the
relationships.

3.1. State Reafactoring Rules

3.1.1. Fold Incoming Actions

This refactoring is quite simple, what it does is, it checks if all the in-
coming transitions to one state have an actions and if those actions are equal

7

one of the conditions for executing the refactoring is checked. Two actions
are equivalent if their operations have the same effect or if they send the
same signal. Another constraint for this rule is that the state for which the
transitions are incoming doesnt have an entry action, because if all of the
preconditions are satisfied two thing are going to happen. First all the ac-
tions of the transitions will be deleted and second the equivalence of those
actions will be added to the field entry action of the state. In addition i have
also added a new preconditions which says that the refactoring should be ex-
ecuted only if the number of incoming transitions is larger than one. If this
constraint was not added the actions after the refactoring of the rules about
the states will start to travel through the diagram which is not good and will
completely mess up the statechart desigh. Under this paragraph the code
of the precondition is presented. I have created a small number of functions
which are often used as a part of the preconditions and action. Such are
as in this function compareTransAct which gets two arguments, a state
and a string which says which transitions should be taken in consideration,
incoming or outgoing.

cond i t i on f o r the r e f a c t o r i n g f o l d incoming a c t i o n s
de f foldIncomingActionsCond (s e l f , graphID , s ta t eLabe l) :

s t a t e = s e l f . getMatched (graphID ,
s e l f .LHS. nodeWithLabel (s t a t eLabe l))

enterAct ion = s t a t e . e n t e r a c t i o n . t oS t r i ng () . s t r i p ()
compare i f a l l the input t r a n s i t i o n s a c t i o n s are

the same
allInTransActSame = compareTransAct (s ta te , ” in ”)
nrInTrans = countTrans (s tate , ” in ”)
empTrans = emptyTransit ion (s tate , ” in ”)
are the same , the number o f t r a n s i t i o n s i s

l a r g e r than 1 and the a c t i o n s are not
empty f i e l d s
i f not enterAct ion and allInTransActSame and

nrInTrans > 1 and not empTrans :
r e turn 1

e l s e :
r e turn 0

8

In this paragraph will be presented and explained the action code for
the fold incoming actions rule. First the value of the action from some
of the incoming transitions is taken and the state attribute enter action is
initialized with that value. After doing that what is left is to pass to all of
the incoming transitions from another states and delete their actions using
the function deleteActFromTrans which as an value gets an array and deletes
all the actions from the transitions.

de f fo ldIncomingAct ions (s e l f , graphID , s ta t eLabe l) :
s t a t e = s e l f . getMatched (graphID ,

s e l f .LHS. nodeWithLabel (s t a t eLabe l))
a c t i on = getActFromTrans (s ta te , ” in ”)
t r a n s i t i o n s = []
s t a t e . e n t e r a c t i o n . setValue (ac t i on)

f o r t rans in s t a t e . i n c o n n e c t i o n s :
i f i s i n s t a n c e (trans , Hyperedge) :

f o r checkState in t rans . i n c o n n e c t i o n s :
i f i s i n s t a n c e (checkState , Bas ic) :

t r a n s i t i o n s . append (t rans)
deleteActFromTrans (t r a n s i t i o n s)

3.1.2. Fold Outgoing Actions

This refactoring is very similar to the previous one and because of that it
will be only explained with text, without supporting code. As the previous
rule this transformation is not very complex. Its precondition is, the outgoing
transitions from the state on which the refactoring is to have actions and all
of them need to be the same. Another condition is that the state should
not have an exit action and as last, the number of transitions outgoing from
that state should be larger than 2. The precondition of this rule is applied
to every state in the statechart, but the rule will be executed only on those
states which will fulfill the requirements. The actions taken by this rule are
very similar to the previous one. It assigns the value of the action of the
transitions to the exit action field of the state and it deletes all the values of
the action attributes of the outgoing states.

9

3.1.3. Unfold Entry Action

This and the next refactoring rule are completely opposite from the previ-
ous two rules. Unfold Entry Action is symmetrical rule to the Fold Incoming
Actions and what it does as a precondition is, checks if the state has a value
assigned in the field entry action and it copies to the action attribute of the
incoming transitions of that state. In order for that to happen the incoming
transitions mustn’t have an actions and also their number has to be larger
than 2. Below this paragraph the action code of this rule can be seen. With
the predefined AToM3 functions in transitions and out transitions we move
through the diagram and check if some of the conditions are fulfilled. Also
with the function setValue() the value of some attribute can be set by putting
the contents inside the brackets, as it can be seen below that I’m setting the
value of the attribute enter action of the state to an empty string.

de f unfo ldEntryAction (s e l f , graphID , s ta t eLabe l) :
s t a t e = s e l f . getMatched (graphID ,

s e l f .LHS. nodeWithLabel (s t a t eLabe l))
enterAct ion = s t a t e . e n t e r a c t i o n . t oS t r i ng () . s t r i p ()
t r a n s i t i o n s = []

f o r t rans in s t a t e . i n c o n n e c t i o n s :
i f i s i n s t a n c e (trans , Hyperedge) :

f o r checkState in t rans . i n c o n n e c t i o n s :
i f i s i n s t a n c e (checkState , Bas ic) :

t r a n s i t i o n s . append (t rans)
addActToTrans (t r a n s i t i o n s , enterAct ion)
s t a t e . e n t e r a c t i o n . setValue (””)

3.1.4. Unfold Exit Action

This rule is working in a similar way as the Unfold Entry Action, but
instead of working with incoming transitions and entry action, it checks if
the state has a set value of the attribute exit action and if all the outgoing
transitions dont have any actions. Also the number of outgoing transitions
should be larger than 2 so the actions can be performed. The refactoring
consists of deleting the value of the attribute exit action of the state and on
every outgoing transition action field assigning the deleted action from the
state.

10

3.1.5. Group States

This is the first more complex refactoring in this paper and because of that
the condition and the action code will be explained. Below, the code for the
precondition is shown and what it does can be also concluded from the com-
ments in the code. In short, with the command state.roodNode.listNodes[’NodeName’]
all the nodes in the AToM3 model with the specfied name NodeName can
be taken and putted in a list. If the number of the composites in the model
is larger than 1 and if there are states on the root level of the model all of
them will be contained in the new created composite state.

de f groupStatesCond (s e l f , graphID , s ta t eLabe l) :
s t a t e = s e l f . getMatched (graphID ,

s e l f .LHS. nodeWithLabel (s t a t eLabe l))
get a l l the s t a t e s from the model
s t a t e s = s t a t e . rootNode . l i s t N o d e s [’ Bas ic ’]
get a l l the composite s t a t e s from the model
comps = s t a t e . rootNode . l i s t N o d e s [’ Composite ’]
i f the re are no composite s t a t e s in the model

check i f the re are any s t a t e s
i f l en (comps) i s 0 :

i f l en (s t a t e s) > 0 :
r e turn 1

i f the re are any composite s t a t e s in the model
check i f the re are any s t a t e s

out o f the compos ites and i f i t ’ s so re turn
p o s i t i v e answer

e l i f l en (comps) > 0 :
f o r s t in s t a t e s :

i f not getCompositeFromState (s t) :
r e turn 1

re turn 0

After fulfilling the requirements there are a few actions that need to be
done. As it can be seen from the action code below with the function create-
NewComposite() a new composite state is created. Now the composite needs
to be connected to all the states and composites in the top of the model hi-
erarchy and that is done with the helping function makeConnection(), which
takes two nodes and connects them. With this rule I have explained all the

11

implemented rules that are concered with the states in the statechart model,
next to be explained will be the refactorings for the composite.

de f groupStates (s e l f , graphID , s ta t eLabe l) :
s t a t e = s e l f . getMatched (graphID ,

s e l f .LHS. nodeWithLabel (s t a t eLabe l))
s t a t e s = s t a t e . rootNode . l i s t N o d e s [’ Bas ic ’]
comps = s t a t e . rootNode . l i s t N o d e s [’ Composite ’]
c r e a t e a new composite s t a t e
newComp = createNewComposite (s t a t e . parent , 100 ,

100 , 1)
f o r a l l the s t a t e s that f u l f i l l the c o n d i t i o n s

connect them with the new composite
f o r s t in s t a t e s :

i f not getCompositeFromState (s t) :
makeConnection (newComp, s t)

f o r a l l the compos i tes that f u l f i l l the
c o n d i t i o n s connect them with the new composite

f o r comp in comps :
i f not getCompositeFromState (comp) :

don ’ t connect the new composite with
i t s e l f (atom3 was doing that)

i f comp == newComp :
cont inue

makeConnection (newComp, comp)

3.2. Composite Refactoring Rules

3.2.1. Fold Outgoing Transitions

This refactoring is more complex than the other rules explained so far.
Below is the code for checking the preconditions before executing the actions
and from the code comments it can be clearly understood what it does. For
the sake of clarifying the code actions it will be briefly explained. What
this transformation does is, it’s checking if all the states in one composition
have mutual outgoing state, it deletes the transitions and creates new Hy-
peredge from the composite to the destination state. Here are used a few
helping functions such as getAllStatesFromComp(composite) - it gets all the
states inside the given composite, checkDestState(statesList, destState) - it

12

checks if the given destState is a destination state for all the states in the list
statesList, incomingTransConnection(statesList, destState) - it returns a list
of transitions between the states in the list and going to the destination state
and equalTransAct(transitions) - it recieves as an input a list of transitions
and returns true if their actions are equal.

de f fo ldOutgoingTrans i t ionsCond (s e l f , graphID ,
s tateLabe l , de s tSta teLabe l) :

s t a t e = s e l f . getMatched (graphID ,
s e l f .LHS. nodeWithLabel (s t a t eLabe l))

de s tS ta t e = s e l f . getMatched (graphID ,
s e l f .LHS. nodeWithLabel (de s tSta teLabe l))

comp = getCompositeFromState (s t a t e)
compDestState = getCompositeFromState (de s tS ta t e)
checks i f the s t a t e i s in a composite and a l s o

i f the d e s t i n a t i o n s t a t e composite , i f any ,
i s d i f f e r e n t from the source composite from

where the f o l d i n g w i l l be c r ea ted
i f comp and comp <> compDestState :

compStates = getAllStatesFromComp (comp)
checks i f a l l the composite s t a t e s are

connected with the d e s t i n a t i o n s t a t e
i f checkDestState (compStates , de s tS ta t e) :

get a l l the t r a n s i t i o n s between the
composite s t a t e s and the d e s t i n a t i o n
s t a t e

t r a n s i t i o n s =
incomingTransConnection (compStates ,
de s tS ta t e)

check i f a l l the a c t i o n s o f the
t r a n s i t i o n s are equal

i f equalTransAct (t r a n s i t i o n s) :
r e turn 1

re turn 0

After the checking of the conditions there are a few actions that need
to be completed. First the newly created attribute in the Hyperedge called
toDelete is set to true because the transitions from the composite states

13

and the destination state need to be deleted. The delete process will be
done by another rule called deleteTransitions which will be explained in the
next sections where the results of using the rules will be presented. After
the deleting of the transitions a new connection should be made between
the composite and the destination state and that is done with the function
makeConnection().

de f f o ldOutgo ingTrans i t i ons (s e l f , graphID , s tateLabe l ,
de s tSta teLabe l) :

s t a t e = s e l f . getMatched (graphID ,
s e l f .LHS. nodeWithLabel (s t a t eLabe l))

de s tS ta t e = s e l f . getMatched (graphID ,
s e l f .LHS. nodeWithLabel (de s tSta teLabe l))

comp = getCompositeFromState (s t a t e)
compStates = getAllStatesFromComp (comp)
s e t the toDe l e t e a t t r i b u t e o f the t r a n s i t i o n s to

True
setToDeleteAtt (compStates , de s tS ta t e)
c r e a t e a new Hyperedge between the composite and

the d e s t i n a t i o n s t a t e
makeConnection (comp , de s tS ta t e)

3.2.2. Move State out of Composite

This is the most complex refactoring rule implemented in this project
and what it does it checks if some of the states can be moved out of the
composite state and it takes the necessary actions for that transformation.
The precodition needs to check a few more complex contraints. The first is if
the state that needs to be moved out of the composite has an incoming/out-
going inner transitions (transitions that are not crossing the boundary of the
composite) all the actions from those transitions need to correspond with the
exit/entry actions of the composite state. If the composite has an exit/entry
actions and the state is connected with transitions with outer states (states
outside the composite), after getting the state out all the exit/entry actions
of the composite should be added to the incoming/outgoing transitions of
the state correspondingly. As last if the state is a default state for that par-
ticular composite all of the incoming transitions for the composite should be
transfered to the moved state. The code for the preconditions and actions of

14

this refactoring is rather large, but after reading the previous explanations
and the comments in the code the user should be able to easy figure out how
the program functions.

3.2.3. Delete Contains

This rule is an example of a side rule for helping the other main rules
to finish their tasks. The main task of this rule is to check if in the model
there are any Contains transitions with the boolean variable toDelete set to
True as it can be seen on the LHS (Left Hand Side), and it deletes them by
leaving the RHS of the rule empty. The actual transition can’t be seen on
the LHS because of its properties to be not visual, but we can see its label
which is the number 3.

3.3. Challenges and Room for Improvements

The biggest challenge was to implement the complex rules which have a
need of checking all the possibilities for their execution. It was a common
error during the testing that some of the rules which condition did returned
false instead of true. There is also a room for a big improvement in the some
of the preconditions of the refactorings. In the statecharts there are many
possibilities and that is why the statechart can be in a lot of different states
in different time. It is very important to cover all of the possibilities and

15

combinations that one state can be in, so that the precondition constraints
will check only important conditions and will decide what should happen
according to the given situation. The actions are pretty precise in their func-
tions and explanation in the article by Sunye et al. (2001) and when executed
they are refactoring only the things that theoretically we have established are
needed to be refactored .Finding the errors in the code is also a challenging
task because in one precondition there can be a lot of nested functions and
the AToM3 doesn’t point to the exact place where the error has happened,
but that is solved using a number of prints positioned on a strategic points in
the code. In the next section at the end it will be explained the new action
a have added to the refactoring Move State out of Composite. That is when
the state that is going to be moved out of the composite is a default state
for that composite and if it has only one outgoing transition to some of the
states in the composite. The rule will remove that transition and replace it
with a transition from the state to the composite and the state to which the
transition was going it will become a default state for that composition.

4. Using the created refactoring rules over statechart models

Within the AToM3 user area there are provided models for every imple-
mented rule and they are named after the rule they are dedicated to. Those
are small and simple models on which the refactoring rules are working prop-
erly. The most challenging experiment is done over the model presented in
the article Refactoring UML Models Sunye et al. (2001) and that is the
statechart model of the phone. After trying the theoretically correct trans-
formations presented in the paper on the phone model, I have gotten the
same results as expected. In the next few paragraphs the whole process will
be explained and shown on pictures.

On the picture below the starting model of the phone diagram is pre-
sented. As it can be seen we can conclude that it is not the best modeled
phone diagram. From every state there is a transition to the state Idle and
that can be refactored so it will be more elegant and well structured without
changing the model behavior.

16

The first rule with the biggest priority in the grammar is the rule group
states which will group all the states into one composite and the result of
that can be seen on the picture below. After grouping all states there will
be good conditions for the next rules to be executed in order to get to the
final result.

17

Next rule to be executed is the Move State Out of Composite refactoring
rule. It should find the state Idle as a state that fulfills all the predispositions
to be moved outside of the composite state. The effect of the refactoring can
be seen on the following picture. Although the picture is not very clear it
can be seen that the state Idle is taken outside from the Composite0, but all
the transitions are making the model very messy and hard to understand.
The next refactoring will take care of the bulk of transitions, but also it can
be seen from the picture below that a new Composite1 is created and the
Composite0 and the state Idle are inside it. That happened because the rule
group states has the biggest priority and whenever it sees more than one
state or composite on the highest hierarchy of the model it will group them
in one composite.

18

In order to finish the experiment successfully there is only one refactoring
to be done. That is the fold outgoing transitions rule which should fold all
those incoming transitions to the state Idle into one transitions going from
the Composite0 to Idle.

On the last picture below as it can be seen we can conclude that the
experiment has been succsessful. All the transitions have been replaced with
one transition, but there is also one property which has been explained in
the section room for improvements and the result of that is, the state Idle
is not connected to directly to the state Dial Tone. Instead the Idle is con-
nected to the Composite0 and the state Dial Tone has been made a deafult
transition inside the Composite0. With this example we can conclude that
the refactorings were succsessful and that they give the expected results.

19

20

5. Conclusion

It can be concluded after reading this project paper and after doing the
implementation of the refactoring rules that the rules which were only theo-
retically proven that are working, now they can be proven also with a prac-
tical work. There are possibilities of correction and upgrading of the already
implemented refactorings, but as a starting point in the field of practical
refactoring of statechart UML diagrams, this project has achieved its goal.
Also i can conclude that the method of Meta-Modeling as part of the Model
Driven Engineering, has proven itself as a very powerful methodology for
creating a hierarchy of meta-models and model and manage their behavior
by using constraints, rules and predefined formalisms. AToM3 is also very
helpful and powerful tool for better understanding and managing the meta-
modeling levels and creating useful rules and conditions, without which the
goal of this project won’t be possible to be achieved. The future work on
these UML Models Reafctoring rules can be in the direction of making them
more sophisticated and useful also comprehending work on the complexity
and throughness especially on the preconditions which are very important
because they choose on which object in the diagram the rules will be exe-
cuted.

21

References

Feng, H., 2004. Dcharts, a formalism for modeling and simulation based
design of reactive software systems. A Masters Thesis Submitted in Partial
Fulfillment of Requirements.

OMG, 2009. OMG Object Constraint Language (OCL). OMG.

Selic, B., 2009. Unified Modeling Language Specification (version 2.1). OMG.

Sunye, G., Pollet, D., Traon, Y. L., Jezequel, J.-M., 2001. Refactoring UML
Models. Springer.

Yang, M., Michaelson, G. J., Pooley, R. J., 2008. Formal action semantics
for a uml action language. Journal of Universal Computer Science.

22

