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Abstract

Modelica is a recently developed object-oriented language for physical systems modeling. It is a
modern language built onnon-causalmodeling with mathematical equations and object-oriented
constructs.

An open source research prototype compiler forµModelica, a subset of Modelica, is presented. The
compiler takes textual Modelica source as input, translates it into flat Modelica, then performs a
series of symbolic transformations on thedifferential-algebraic equations, most notably, assigning
causality, and generates input suitable for processing by a numerical simulator such as Octave.

Design and implementation issues of theµModelica compiler are discussed in some detail in this
thesis. These issues include the general architecture of the compiler, semantic analysis, formula ma-
nipulation, and code generation. Some advanced formula manipulation techniques are also studied,
and are proposed to be implemented as future work.

Modelica est un language orienté objet d́evelopṕe ŕecemment dans le but de modéliser les syst̀emes
physiques. C’est un language moderne, bâti à partir de la mod́elisation non causale, qui supporte
deséquations math́ematiques et des constructions orientées objet.

Un prototype de compilateur libre de droit pourµModelica, un sous-ensemble de Modelica, est
présent́e. Un fichier Modelica textuel est envoyé au compilateur comme variable d’entrée. Celui-
ci traduit le texte en Modelica simple et génre une śerie de transformations symboliques partir
des équations diff́erentielles. En particulier, la causalité est d́etermińee et du code pouvantêtre
interpŕet́e par un simulateur nuḿerique, tel Octave, est géńeŕe.

Les particularit́ees d’impĺementation et de design du compilateur sont discutées en d́etail dans
cette th̀ese. Elles incluent notamment l’architecture du dit compilateur, l’analyse sémantique, la
manipulation des formules et la géńeration du code. Quelques techniques avancées dans la ma-
nipulation des formules sont aussiétudíees et l’impĺementation de celles-ci est proposée comme
avenue future.
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Thanks to Jean-Śebastien Bolduc, for his inspiring discussions during the weekly meetings for the
µModelica compiler.

Thanks to Marc Provost for his research work in PyGK (a Python graph kernel), which enables the
XML representation of Modelica models, and the transformation from C++ parse tree to Python
parse tree.

Finally, thanks to the Quebec tax payers, for their contributions to the funding for this project
(through the Fond de Recherche sur la Nature et les Technologies New Researchers fund)..

i



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

1.2 An Overview of Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2

1.2.1 Modeling an Electrical Circuit in Modelica . . . . . . . . . . . . . . . . .2

1.2.2 Basic Language Elements . . . . . . . . . . . . . . . . . . . . . . . . . .3

1.2.3 Restricted Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

1.2.4 Types and Physical Quantities . . . . . . . . . . . . . . . . . . . . . . . .6

1.2.5 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

1.2.6 Partial Models and Inheritance . . . . . . . . . . . . . . . . . . . . . . . .7

1.2.7 Modeling Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

1.3 Current Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

1.4 Thesis Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

2 The Overall Architecture 10

2.1 The Big Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

2.2 The Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

2.3 The Back End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

2.4 The Code Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

3 The Front End 15

3.1 The Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

3.2 XML Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

3.2.1 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17

3.2.2 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

3.3 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

3.3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

3.3.2 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

3.3.3 Test of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

3.4 Scoping and Name Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

3.4.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

3.4.2 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . .31

3.4.3 The Visitor Design Pattern . . . . . . . . . . . . . . . . . . . . . . . . . .34

ii



3.5 Expanding Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

3.5.1 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

3.5.2 Multiple Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

3.5.3 Modification of the Extends Clause . . . . . . . . . . . . . . . . . . . . .40

3.5.4 Short Class Definition as Class Inheritance . . . . . . . . . . . . . . . . .40

3.5.5 The Process of Expanding Inheritance . . . . . . . . . . . . . . . . . . . .41

3.5.6 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . .41

3.5.7 Order of Expanding Inheritance and Name Lookup . . . . . . . . . . . . .42

3.6 Flattening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

3.6.1 Component Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . .43

3.6.2 Flattening of Composite Components . . . . . . . . . . . . . . . . . . . .44

3.6.3 Generation of Connection Equations . . . . . . . . . . . . . . . . . . . . .48

3.7 Type Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

3.7.1 Basic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

3.7.2 Type Coercion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

3.7.3 Specification of Type Checking in theµModelica Compiler . . . . . . . . . 52

4 The Back End 56

4.1 Canonical Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

4.1.1 Why Canonical Representation? . . . . . . . . . . . . . . . . . . . . . . .56

4.1.2 Defining the Canonical Order . . . . . . . . . . . . . . . . . . . . . . . .57

4.1.3 Simplification Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

4.1.4 The Transformation Algorithm . . . . . . . . . . . . . . . . . . . . . . . .58

4.1.5 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59

4.2 Causality Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

4.2.1 Flows, Augmenting Paths, and Residual Graph . . . . . . . . . . . . . . .61

4.2.2 Dinic’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

4.2.3 ODEs in Causality Assignment . . . . . . . . . . . . . . . . . . . . . . .63

4.3 Sorting of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

4.3.1 Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

4.3.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

4.4 Algebraic Loop Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

4.4.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

4.5 Design and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

4.5.1 The Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

4.5.2 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

4.5.3 Extension to Hybrid Systems . . . . . . . . . . . . . . . . . . . . . . . . .72

5 Code Generator 74

5.1 Problems to be Solved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

iii



5.1.1 Integrating ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74

5.1.2 Solving Nonlinear Equations . . . . . . . . . . . . . . . . . . . . . . . . .75

5.2 The Structure of the Simulation Process . . . . . . . . . . . . . . . . . . . . . . .76

5.2.1 Time Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

5.2.2 Constants, Parameters, and Variables . . . . . . . . . . . . . . . . . . . .78

5.2.3 Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

5.2.4 Model Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

5.2.5 Defining Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

5.2.6 The For-Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

5.2.7 Visualized Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

6 Case Study 82

6.1 A Modelica Description of the Model . . . . . . . . . . . . . . . . . . . . . . . .82

6.2 Translation to Flat Modelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84

6.3 Formula Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

6.3.1 Canonical Representation . . . . . . . . . . . . . . . . . . . . . . . . . .87

6.3.2 Causality Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

6.3.3 Sorting and Algebraic Loop Detection . . . . . . . . . . . . . . . . . . . .89

6.3.4 Rewriting Equations into Explicit Form . . . . . . . . . . . . . . . . . . .90

6.4 Octave Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

6.5 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

7 Future Work 99

7.1 More Language Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

7.1.1 Import Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

7.1.2 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

7.2 Formula Manipulation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . .101

7.2.1 Eliminate Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

7.2.2 Tearing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

7.2.3 Inline Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

7.2.4 Higher Index Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Bibliography 106

A Grammar 109

A.1 Stored definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

A.2 Class Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

A.3 Extends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

A.4 Component Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

A.5 Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

iv



A.6 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

A.7 Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

v



List of Figures

1.1 An Electrical Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

2.1 The Overview ofµModelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

2.2 The Front End ofµModelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

2.3 The Back End ofµModelica . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

3.1 Class Diagram of Parse Tree Node . . . . . . . . . . . . . . . . . . . . . . . . . .16

3.2 A High-level Abstraction View of a Parse Tree . . . . . . . . . . . . . . . . . . . .17

3.3 Parse Tree in C++ to pyGK Graph . . . . . . . . . . . . . . . . . . . . . . . . . .18

3.4 Packages in Abstract Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

3.5 Package Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

3.6 Package Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

3.7 Package Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

3.8 Package Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

3.9 Package Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

3.10 Detailed Package Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

3.11 AST after the first pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

3.12 AST after the second pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

3.13 AST after the third pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

3.14 The Visitor Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

3.15 The Name Lookup Visitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

3.16 Component Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

3.17 Environment of Basic Component Real . . . . . . . . . . . . . . . . . . . . . . .47

4.1 Causality Assignment: Network Flow in Bipartite Graph . . . . . . . . . . . . . .61

4.2 Sorting of Equations: Dependency Graph . . . . . . . . . . . . . . . . . . . . . .66

4.3 Sorting of Equations: Another Sorting Result . . . . . . . . . . . . . . . . . . . .67

4.4 The Data Structure for Causality Assignment . . . . . . . . . . . . . . . . . . . .70

5.1 Structure of the Simulation Process . . . . . . . . . . . . . . . . . . . . . . . . . .76

5.2 GNU Plot Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

6.1 An Electrical Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

6.2 C v produced by theµModelica Compiler and Octave . . . . . . . . . . . . . . . .95

vi



6.3 C v produced by the Demo version of Dymola . . . . . . . . . . . . . . . . . . . .96

6.4 C i produced by theµModelica Compiler and Octave . . . . . . . . . . . . . . . .97

6.5 C i produced by the Demo version of Dymola . . . . . . . . . . . . . . . . . . . .97

6.6 AC i produced by theµModelica Compiler and Octave . . . . . . . . . . . . . . .98

6.7 AC i produced by the Demo version of Dymola . . . . . . . . . . . . . . . . . . .98

vii



1
Introduction

1.1 Background

Modeling and simulation have been an important part of computing for a few decades. Computer
simulation is used in industry to reduce the cost and time of development, and to optimize product
design. As computer technology develops rapidly in recent years, the demand to simulate increas-
ingly complex systems also grows.

In the past,causalmodels were most widely used n continuous, lumped parameter modeling of
systems [8]. Causal models are commonly represented in the form of eithercausal block diagrams
or in a Continuous System Simulation Languagevariant of the CSSL standard [24]. The seman-
tics of such models is gieven byordinary differential equations(ODEs). As systems under study
become more and more complex, the requirement for reuse of components in modeling is getting
increasingly important. Causal models are not very suitable for component re-use.

Over the last decades, numerous simulation tools have been developed. Some of these tools are
general-purpose simulation tools, such as Simulink [23], which are based on causal (input/output)
block diagrams. Other tools were developed for simulating models in specific domains, such as
electronic components and mechanical devices. The major disadvantage of these tools is that they
might be able to provide optimal methods in one domain, but are often not capable of representing
and/or simulating structure and behaviour of systems in other domains. This precludes supporing
multi-domain or multi-physics modeling.

To model and simulate increasingly complex and heterogeneous technical systems which consist
of components from different domains, as well as to support meaningful model re-use, a new
modeling language and supporting compiler were needed. In particular, the following problems
needed to be solved:

• allow modelers to focus more on the description of the behaviour of system components, i.e.
non-causal modeling, instead of spending a lot of effort on deriving a causal representations
suitable for efficient numerical simulation;

• provide domain-neutral modelling and efficient simulation of multi-domain systems;

• support model reusability: the capability of creating easy-to-re-use components.

For the above reasons, in 1996, initiated by Hilding Elmqvist, a group of researchers from uni-
versities and industry started the development of a new object-oriented modeling language. The
new language was called Modelica. It is a modern language built on non-causal modeling with
mathematical equations and object-oriented constructs to facilitate reuse of modeling knowledge
[5].

Comparing to other current modeling technologies, Modelica has the following advantages [16]:
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• Object-oriented modeling. This makes it possible to create physically relevant and easy-to-
re-use model components, which are employed to support hierarchical structuring, re-use,
and evolution of large and complex models covering multiple technology domains.

• Non-causal modeling. Modeling is based on equations instead of on assignment statements
as in traditional input/output block abstractions. Direct use of equations significantly in-
creases reusability of model components, since components adapt to the data flow context
in which they are used. This generalization enables both simpler models and more efficient
simulation (thanks to global, symbolic, compile-time optimizations).

• Physical modeling of multiple domains. Model components can correspond to physical ob-
jects in the real world, in contrast to established techniques that require conversion to signal
blocks. For application engineers, such physical components are particularly easy to combine
into simulation models using a (possibly domain-specific) graphical editor.

1.2 An Overview of Modelica

As in the object-oriented programming language Java, the basic structuring element in Modelica
is a class. Almost everything in the real technical world can be represented as a class, and the
entire model is hierarchically composed in terms of classes. But the structure of a Modelica class
is different from that of a Java class. A typical Modelica class has two parts, the declaration part,
and the equation part. The declaration part contains declarations of variables, which are class at-
tributes representing data. The equation part contains equations which specify the behavior, that is,
the relationship between declared variables. Equations in Modelica are different from assignment
statements in traditional languages. There is no causality assigned in Modelica equations which
are “implicit”. For example, equationa = b+c can be written asb+c = a. The meaning of these
two are equivalent. Also, equations can be written in any order.

1.2.1 Modeling an Electrical Circuit in Modelica

This section introduces the key features of Modelica through the example of an electrical circuit,
which is shown in Figure 1.1.

This circuit consists of a set of inter-connected electrical components, which include a voltage
source, two resistors, a capacitor, and a ground point. The following model is a Modelica descrip-
tion of the complete circuit:

model Circuit
Resistor R1(r=1);
Resistor R2(r=1);
Capacitor C(c=1);
VsourceAC AC;
Ground G;

equation
connect (AC.p, R1.p);
connect (R1.n, R2.p);
connect (R2.n, C.p);
connect (C.n, AC.n);
connect (AC.n, G.p);

end circuit

From this model, we can see that modeling in Modelica is very intuitive. System topology is con-
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Figure 1.1: An Electrical Circuit

served by diving the whole system into components and linking these components by connections.
The underlying meaning of a connection is again given in terms of equations. which specify the
interaction between connected components.

The declarations of resistors, capacitor, etc. create instances of components. The definitions of
these components are described in other classes.

1.2.2 Basic Language Elements

Modeling of a large system in Modelica is hierarchically broken up into a set of components, which
should be reusable. Modelica has the following language elements to support this:

• Pre-defined types: Real, Integer, Boolean, and String. These are the basic components at the
lowest level in Modelica;

• Structured components, enable hierarchical structuring

• component arrays, to handle matrices, arrays of submodels, etc.

• Equations and/or algorithms (assignment statements). Note that Modelica also supports causal
modelling. In this thesis we will focus on the non-causal part of Modelica;

• Connections which couple model components.

1.2.3 Restricted Classes

Classis the fundamental structure element in Modelica. A class in Modelica can be defined using
the keywordclass. But under certain conditions, the keywordclasscan be replaced by one of seven
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other, more specific keywords:model, connector, record, block, type, function, andpackage.

On the one hand, the restricted class mechanism makes Modelica code easier to read and maintain.
It is also modeler-friendly since the modeler does not need to learn several different language con-
structs, but just the class concept. On the other hand, all properties of a general class are identical
to all kinds of restricted classes. For example, the syntax and semantics of definition, instantiation,
inheritance, and general properties are defined in the same way for all kinds of classes. Suchor-
thogonalitysimplifies the construction of a Modelica compiler since only the syntax and semantics
of the class construct, along with some validity checks on a restricted class need to be implemented.

The following summarizes the restrictions and usage of each kind of restricted class in terms of
some examples.

model

The only restriction of amodel restricted class is that it may not be used in connections. Its seman-
tics are identical to the general class construct in Modelica, and it is most commonly used. The
previous exampleCircuit is defined as amodelclass.

record

Therecord class is used to describe structured data. No equations are allowed in the definition or in
any of its components. It may not be used in connections and may not contain protected elements.
For example:

record Student
String name;
Integer studentNumber;
String department;

end Student;

type

A type restricted class may only be an extension to the predefined types, enumerations, record
classes, or array of type. Therefore, it can only be used in short class definitions to introduce new
types. For example, the following type definition is illegal:

// Users can not define a new type
type Type1

Real x;
end Type1;

The class definitions ofVoltage andCurrent in section 1.2.4 show how new types are defined by
means of short class definition.

connector

The restrictions ofconnectorclasses are identical to those ofrecord classes, except thatconnector
classes are designed to be used in connections. A connector example is given in section 1.2.5.

block

The block restricted class is used to model causal (input/output) block diagrams. In Modelica,
the two keywords,input andoutput, are used as component prefixes to postulate the data flow
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direction. All declared variables in ablock must either have the prefixinput or output. A block
class may not be used in connections. A simple example:

block CircleAreaCalculator
parameter Real pi = 3.14;
input Real radius;
output Real area;

equation
area = pi * radiusˆ2;

end CircleAreaCalculator;

package

Since Modelica supports nested class declarations, thepackagerestricted class is designed to man-
age name spaces of classes. The restrictions of a package is that it may only contain class definitions
and constant declarations, i.e., no variable or parameter declarations. Dot-notation is used to refer
to inner classes. The following is a stripped-down example of package:

package Electronic
constant Real pi = 3.1415926;

connector Pin
...

end Pin;

model Resistor
...

end Resistor;

model Capacitor
...

end Capacitor;

end Electronic;

function

The semantics offunction classes is similar to that ofblock classes. In addition to the restrictions
applied to theblock classes, afunction class is also restricted by the following rules:

• No equations and initial algorithms are allowed. At most one algorithm clause is allowed.

• Calling a function requires either an algorithm or an external function interface.

• No calls to the Modelica built-in operatorsder, initial, terminal, sample, pre, edge, change,
reinit, delay andcardinality are allowed in a function as their arguments are time-varying
signals as opposed to intantaneous values.

A simple example function:

function Add
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input Real x;
input Real y;
output Real result;

algorithm
result := x + y;

end Add;

1.2.4 Types and Physical Quantities

Physical quantities are used to describe the properties of physical systems, e.g.VoltageandCurrent
in the electrical circuit example. These quantities can be defined in Modelica in terms of restricted
classtype:

type Voltage = Real (unit="V");
type Current = Real (unit="A");

whereRealis a pre-defined type. This is the short form of defining classes in Modelica. The above
two definitions mean that Voltage and Current have the same definition as Real except that the
attributeunit is modified.

In Modelica, pre-defined types, i.e.Real, Integer, Boolean,andStringare not the primitives. The
pre-defined types are classes built over primitives. For example, the conceptual definition of Real
is given in [5]:

type Real
RealType value;
parameter StringType quantity = "";
parameter StringType unit = "" "unit used in equation";
parameter StringType displayUnit = "" "Default display unit";
parameter RealType min = -Inf;
parameter RealType max = +Inf;
parameter RealType start=0 "initial value";
parameter BooleanType fixed = true; //default for para/const

= false; //default for other vars
parameter BooleanType enable = true; //defined for every class
parameter RealType nominal;
parameter StateSelect stateSelect = StateSelect.default;

equation
assert(value>=min and value<=max, "Variable value out of limit");
assert(nominal>=min and nominal<=max, "Nominal value out of limit");

end Real;

whereRealType, IntegerType, StringType,andBooleanTypeare the primitive types. But in order to
avoid confusion, modelers start creating models from pre-defined types. The relationship between
primitives and pre-defined types is handled internally by the compiler.

From the above class definition, we can see that Real has actually encapsulated a set of attributes,
such asvalue, unit, start,etc., which make it well-suited for describing physical quantities.
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1.2.5 Connections

In Modelica, models can be built up of components which are coupled by connections. Connectors
are communication interfaces between components, over which they are connected to form coupled
models. The connector class in the electrical circuit example is defined as follow:

connector Pin
Voltage v;
flow Current i;

end pin;

The meaning of a connection statement is given in terms of equations. A connection statement
connect(pin1, pin2), wherepin1 andpin2 are instances of connector classPin, connects the
two pins such that they form a node. The meaning of this connection is equivalent to the following
two equations:

pin1.v = pin2.v
pin1.i + pin2.i = 0

The physical meaning of the first equation is that, there is no voltage drop at a node. The second
equation describes Kirchoff’s current law.

In a connector class, a variable declared without the prefixflow is called anacrossvariable, e.g.
Voltage v here in this case. The conversion rule for connected across variables is that they are
set equal. A variable declared with the prefixflow is called athroughvariable. Connected through
variable are summed to zero at each node. Similar laws apply to flow rates in a piping network and
to forces and torques in mechanical systems [4].

1.2.6 Partial Models and Inheritance

As in other object-oriented languages, there is a mechanism in Modelica to define aninterfacefor
different types of objects that have common properties. In the electrical domain, many components
have two pins. Aninterfaceis defined as follow for these components:

partial model TwoPin "Superclass of elements with 2 electrical pins"
Pin p, n;
Voltage v;
Current i;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

In addition to the two pins,p andn, the model also includes two attributes, quantityv, which
defines the voltage drop across the component, and another quantityi, that defines the current
flowing through the component. This model introduces 4 variables and 3 equations. Therefore, it
is an incomplete model. A constitutive equation must be added to make it complete and consistent.
Modelica uses the keywordpartial to indicate that a model is incomplete and uninstantiable.

A resistor has all properties described by theTwoPin model. Therefore, the TwoPin model can be
reused in defining a resistor model:
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model Resistor "Ideal electrical resistor"
extends TwoPin;
parameter Real r (unit="Ohm") "Resistance";

equation
R * i = v;

end Resistor;

The extendsclause specifies thatTwoPin is the parent class of resistor. By inheriting a class, it
inherits all attributes and equations from the parent class. Modelica supports multiple inheritance.

Variables declared with prefixparameter are called parameter. The value of a parameters is con-
stant during a simulation run, but it can be changed between runs. This makes it possible for a user
to change the behavior of a model without recompiling it.

1.2.7 Modeling Dynamics

Dynamic systems have behavior which evolves as a function of time. Modelica has a unique pre-
defined independent variabletime. All Modelica variables are implicitly signals: their value varies
with time.

The output of a sine-wave voltage source is a function of time. The following definition of voltage
source shows that.

model VsourceAC "sin-wave voltage source"
extends TwoPin;
parameter Voltage VA = 110 "Amplitude";
parameter Real f (unit="Hz") = 50 "Frequency";
constant Real PI = 3.14159265;

equation
v = VA*sin(2*PI*f*time);

end VsourceAC;

Also, Modelica uses the predefined operatorder to represent the time derivative. It occurs in the
model definition of a Capacitor.

model Capacitor "Ideal electrical capacitor"
extends TwoPin;
parameter Real c (unit="F") "Capacitance";

equation
c * der(v) = i;

end Capacitor;

whereder(v) means the time derivative ofv.

1.3 Current Tools

There already exist some excellent commercial tools for Modelica.Dymola, an integrated modeling
and simulation tool developed byDynasim(http://www.dynasim.se), has a Modelica translator
which is able to perform all necessary symbolic transformations for large systems (more than 100
000 equations) as well as for real time applications. It includes a graphical editor for model editing
and browsing, and a simulation environment. It also provides convenient interfaces to Matlab and

http://www.dynasim.se
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the popular block diagram simulator Simulink. For example, a Modelica model can be transformed
into a SIMULINK S-function which can be simulated in Simulink as an input/output block.

Another commercial tool for Modelica isMathModelicadeveloped by MathCore (http://www.
mathcore.com). It provides a Modelica simulation environment which is closely integrated into
Mathematica (http://www.wolfram.com). The tight integration with Mathematica also makes it
possible to perform complex analysis tasks, advanced scripting, and other technical computations
on models and simulation results. MathModelica has a graphical editor for model editing and
browsing. The kernel of MathModelica is similar to that of Dymola because internally, the Dymola
symbolic and simulation engine is used for the formula manipulation and for the simulations.

TheOpen Source Modelicais a tool developed by PELAB, Link̈oping University (http://www.
ida.liu.se/labs/pelab/modelica). It is to create a complete Modelica modeling, compilation
and simulation environment based on free software distributed in source code form intended for
research purposes. TheOpen Source Modelicatool contains two major modules,ModeqandMod-
SimPack. Modeq is a translator which translates Modelica source model into flat Modelica, while
ModSimPack is a translator that translates flat Modelica model to C/C++ code.

1.4 Thesis Objectives

In the long term, we are interested in developing an integrated modeling and simulation environ-
ment for Modelica, as well as using Modelica as a meta-modeling language with AToM3, a tool
for multi-formalism and meta-modeling under development at the Modeling, Simulation, and De-
sign Lab (MDSL) in the School of computer Science of McGill University (http://moncs.cs.
mcgill.ca/MSDL/research/projects/AToM3/). A Modelica compiler is required as the kernel
for this future environment. With limited resources, our research currently focuses on a subset
of the Modelica language, and on continuous systems. We name this subsetµModelica, whereµ
stands formini, meta-modeling, multi-formalism, andMSDL.

The main objective of this thesis is to build an efficient research prototype compiler forµModelica.
More specifically, the first prototype of theµModelica compiler was designed to provide an intera-
tive environment that supports the real essence of the language—non-causal modeling. It not only
performs semantic analysis, but also carries out some computer algrebra optimization techniques
in terms of formula manipulation.

Also, this thesis is to provide a relatively complete specification of the semantics ofµModelica,
and to sumerize and propose our studies of some language features and formula manipulation
techniques as future work.

http://www.mathcore.com
http://www.mathcore.com
http://www.wolfram.com
http://www.ida.liu.se/labs/pelab/modelica
http://www.ida.liu.se/labs/pelab/modelica
http://moncs.cs.mcgill.ca/MSDL/research/projects/AToM3/
http://moncs.cs.mcgill.ca/MSDL/research/projects/AToM3/


2
The Overall Architecture

Given that our aim is to build an opensource researchprototype compiler for Modelica, rapid
prototyping and portability are the main concerns in choosing the implementation language. Python
is an interpreted, dynamically type-checked object-oriented programming language. Like Java, the
Python implementation is portable across many platforms. But compared to JAVA, it is better-suited
for rapid software prototyping. Python also supports the seamless integration of code developed in
statically type-checked language. This “extension” allows the gradual replacement of performance-
critical parts of the prototype. It also allows gluing of libraries (e.g., numerical code written in
Fortran). In addition, in order to build an integrated modeling and simulation environment with
a graphical user interface, theµModelica compiler will be embedded into AToM3, which was
implemented in Python. With the above-mentioned advantages of Python, and for consistency in
our future tool, we chose to implement theµModelica compiler in Python.

As a research prototype compiler, this project currently only focus on a subset of the Modelica lan-
guage. But this subset covers the real essence of Modelica—non-causal modeling. TheµModelica
compiler is able to resolve class inheritance and translates input models into flat Modelica, and
performs symbolic transformations on the DAEs. Support for advanced and complex language
constructs is left as future work. Following is a list of language features that are not yet supported
in theµModelica compiler:

• the causal modeling constructs, i.e. algorithm statement, function call, andblock class

• arrays and matrices

• element redeclaration

• the import statement

• external function call

• thewithin construct

• hybrid system modeling, e.g. conditional equations,when equations

• and more . . .

2.1 The Big Picture

Figure 2.1 shows a high-level view of theµModelica compiler. The compiler consists of three
modules, theFront End, theBack End, and theCode Generator. The Front End takes Modelica
source code as input, performs lexical and semantic analysis, and generates a flat Modelica model,
which is in essence a set of DAEs. The flat Modelica model is then passed to the Back End,
where formula manipulation is done. The Code Generator finally generates input for the Octave
simulator. More details on Octave will be discussed later. Also, for the purpose of testing and
debugging, pretty printers are employed to dump Modelica code from internal representation at
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Figure 2.1: The Overview ofµModelica

different phases. By comparing this Modelica code with the input model, we can verify that no
information is lost during each transformation step. It is important to note that debugging output
of eachstep of model compilation is in the form of avalid Modelica model(which is accepted by
the compiler).

2.2 The Front End

Figure 2.2 is a detailed view of the Front End. The Front End is made up of the following compo-
nents:

• A Linux executable (implemented in C++) that takes a Modelica model as input, performs
parsing, and generates an XML representation of the parse tree.

• A graph kernel calledpyGK (implemented in Python), which reloads the XML parse tree
into a pyGK graph representation.

• The ASTBuilder, which converts the parse tree into an abstract syntax tree.

• A semantic analyzer, which translates the original Modelica model into flat Modelica.

Thanks to PELAB at the Department of Computer and Information Science, Linköping University,
who have kindly offered us the lexer and parser of Modelica from their Open Source Modelica
project, we were able to save a lot of time in implementing the parser. The PELAB parser was
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Figure 2.2: The Front End ofµModelica

developed using the tool ANTLR under Windows. We recompiled it under Linux, and generated a
C++ parser.

This parser accepts Modelica models and generates parse trees. Implementing the parser and the
following parts of the compiler in different languages raised a problem: how to pass the parse
tree to Python? One solution is to “extend” Python with the parser. Another solution is to use
an external data description, through which the two different languages can communicate and
exchange data. This provides a stricter separation but is less efficient.XML is a mark up language
for describing structured data. It provides a mechanism to identify structure in data. In our design,
we chose to write out to file an XML description of the parse tree, and then reload this information
and transform it into a Python parse tree. So long as the XML representation is well-defined, no
information will be lost during this transformation. The XML representation and transformation
process will be discussed in section 3.2.

A parse tree represents theconcrete syntaxof a model. It is more desirable to have an internal
representation of theabstract syntaxof a model. The abstract syntax of a Modelica model is defined
in terms of language constructs, such asclass, element, declaration, statement, and expressionetc.
This representation is independent of the source syntax of a Modelica model being compiled. A
parse tree is transformed to anabstract syntax tree(AST) by theASTBuilder. In order to verify
that the AST transformation is correct and complete, Modelica source code is produced from the
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AST. Verification of correctness can be done by comparing the Modelica model thus produced to
the Modelica input model.

Semantic analysis is carried out in the Front End. It includes scoping analysis, name lookup, ex-
panding inheritance, flattening structured components and coupled models, and type checking.
Finally, the Front End generates a flat Modelica model, where all structured components are flat-
tened down to basic components, and connections are replaced by regular equations. Such a flat
model is a system of DAEs.

2.3 The Back End

Figure 2.3 gives a detailed view of the Back End.

Figure 2.3: The Back End ofµModelica

Automated formula manipulation is significant to non-causal modeling, which is characterized by
a set of implicit equations (DAEs). A simple approach to solving for the various unknowns in the
set of equations is to call a DAE solver, such as DASSL. However, the solution will be far more
efficient if a causal representation can be found, i.e. computational causality is assigned and equa-
tions are sorted in an appropriate computation order. In many cases it is possible to transform a
non-causal set of equations into a causal one. Even though this transformation process trades off
compile time efficiency, it gains in simulation run-time. Since the number of simulation run is
usually much greater than the number of compilations, it is certainly worths to try these transfor-
mations.
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Causality assignment, along with sorting of equations and algebraic loop detection, is implemented
in theµModelica compiler. Causality here meanscomputational causality, notphysical causality.
Causality assignment determines that which variable is to be computed in each equation. The
computational causality can be found in terms of some graph algorithms, which will be discussed
later.

Once a computation of causality is found, the equations are then sorted into a correct computation
order based on their computational dependency. However, if there existalgebraic loops, causality
assignment and sorting are not sufficient. The equations involved in an algebraic loop are mutually
dependent. Sorting is not able to give a correct computation order. These equations must be iden-
tified and be solved separately. Therefore, sorting is always followed by the detection of algebraic
loops.

In order to provide an optimal internal representation of equations, a canonical representation of
equations and corresponding transformation rules are defined in [26]. A subset of these transfor-
mation rules are implemented in theµModelica compiler.

2.4 The Code Generator

Finally, input for theOctavecode is generated. Octave (a GNU Matlab clone), provides a high-level
language for numerical computation. Octave has extensive tools for solving linear algebra prob-
lems, nonlinear equations, and integrating ordinary differential and differential-algebraic equa-
tions. The Octave model is executed by an Octave interpreter. The computation result can be vi-
sualized through GNU plot. We generate Octave input for convenience. The generated output is
similar to Matlab M-files. To maximize efficiency, Simulink S-function will be generated in the
future.



3
The Front End

The Front End performs parsing and semantic analysis. The Modelica semantics is defined in
terms of a set of rules for translating classes (including inheritance and modification), instances,
and connections into flat Modelica, which is a flat set of constants, variables, and equations. For
example, the following Modelica modelMain

class A
Real a1, a2;

equation
a1 * 2 = a2;

end A;

class B
Real b1, b2;

equation
b1 ˆ 2 = b2;

end B;

model Main
A a;
B b;

equation
a.a1 = b.b1;
b.b2 = 4;

end Main;

will be translated into the following flat Modelica:

model Main "flat"
Real a_a1;
Real a_a2;
Real b_b1;
Real b_b2;

equation
a_a1 * 2 = a_a2;
b_b1 ˆ 2 = b_b2;
a_a1 = b_b1;
b_b2 = 4;

end Main;
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where all structured components, such asa, b, are flattened to basic components, such asa a1,
b b1 etc. The equation part is the mathematical description of the model.

3.1 The Parser

As mentioned earlier, the parser was developed by PELAB at Linköpings University for itsOpen
Source Modelicaproject. It was implemented in ANTLR. ANTLR, Another Tool for Language
Recognition (http://http://www.antlr.org), is a language tool that provides a framework for
constructing recognizers, compilers, and translators from grammatical descriptions. It is able to
generate parsers in Java, C#, or C++, but not Python. The PELAB Modelica parser uses C++. We
have compiled it under Linux using thegcccompiler.

The parser takes Modelica source code as input, and generates a parse tree. A parse tree is made up
of nodes, which are defined and provided by ANTLR’s AST factory. Each tree node corresponds
to a token. It records thetypeandvalueof a token, and keeps a reference to its first child and a
reference to its next sibling. Figure 3.1 is the class diagram view of a parse tree node.

Figure 3.1: Class Diagram of Parse Tree Node

Given the following Modelica model as input,

// Example 1
model A

Real a;
end A;

a parse tree pretty printer dumps out the following parse tree:

+-117 : STORED_DEFINITION {
| +-95 : CLASS_DEFINITION {
| | +-36 : model
| | +-84 : A
| | +-98 : DECLARATION {

http://http://www.antlr.org
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| | | +-84 : Real
| | | +-84 : a
| | | +-97 : COMMENT
| | }
| }
}

The higher abstraction view of this parse tree is shown in Figure 3.2.

Figure 3.2: A High-level Abstraction View of a Parse Tree

3.2 XML Representation

In order to make a parse tree accessible to our compiler written in Python, an XML representation
of the parse tree is defined. The parser together with an XML writer, writes out a parse tree in such
an XML representation. This XML file is then reloaded by an XML reader (written in Python).

Again, for rapid prototyping, a graph kernel calledpyGKwas employed to define the XML repre-
sentation and to reload the XML file as a graph representation of a parse tree. pyGK was developed
in Python, as the graph kernel for AToM3, by Marc Provost at the MDSL, School of computer Sci-
ence at McGill University (http://moncs.cs.mcgill.ca/people/mprovost/). It provides an
XML representation for graphs, and an XML Reader and an XML Writer. Note that using pyGK
also opens up the possibility of applying graph transformations to the parse tree.

In the Front End, there is an XML writer (in C++) which writes out the parse tree into an XML
file in pyGK format. The XML file is then reloaded by the XML reader in pyGK into the data
structure defined in pyGK—a graph representation of the parse tree in Python. Figure 3.3 shows
this process.

3.2.1 Representation

A pyGK graph XML representation conceptually contains two parts, a list of nodes, and a list
of edges. This is different from the parse tree representation, which is based on adjacent nodes.
The parser takes care of this conversion when it writes out XML. Adjacencies between nodes are
explicitly written out as edges. Example 1 in section 3.1 is represented in XML as follow:

<?xml version="1.0"?>
<!DOCTYPE agl SYSTEM "http://agl.dtd">
<!-- GraphElements -->
<agl>

http://moncs.cs.mcgill.ca/people/mprovost/
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Figure 3.3: Parse Tree in C++ to pyGK Graph

<graph id="AST" type="AST">
<symb id="0" type="SymbolTable">

<map key="text">
<string id="" type="String" value="STORED_DEFINITION"/>

</map>
<map key="type">

<int id="" type="Int" value="117"/>
</map>

</symb>
<symb id="1" type="SymbolTable">

<map key="text">
<string id="" type="String" value="CLASS_DEFINITION"/>

</map>
<map key="type">

<int id="" type="Int" value="95"/>
</map>

</symb>
<symb id="2" type="SymbolTable">

<map key="text">
<string id="" type="String" value="model"/>

</map>
<map key="type">

<int id="" type="Int" value="36"/>
</map>

</symb>
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<symb id="3" type="SymbolTable">
<map key="text">

<string id="" type="String" value="A"/>
</map>
<map key="type">

<int id="" type="Int" value="84"/>
</map>

</symb>
<symb id="4" type="SymbolTable">

<map key="text">
<string id="" type="String" value="DECLARATION"/>

</map>
<map key="type">

<int id="" type="Int" value="98"/>
</map>

</symb>
<symb id="5" type="SymbolTable">

<map key="text">
<string id="" type="String" value="Real"/>

</map>
<map key="type">

<int id="" type="Int" value="84"/>
</map>

</symb>
<symb id="6" type="SymbolTable">

<map key="text">
<string id="" type="String" value="a"/>

</map>
<map key="type">

<int id="" type="Int" value="84"/>
</map>

</symb>
<symb id="7" type="SymbolTable">

<map key="text">
<string id="" type="String" value="COMMENT"/>

</map>
<map key="type">

<int id="" type="Int" value="97"/>
</map>

</symb>
<edge from="0" to="1" fromOrd="0" toOrd="0"/>
<edge from="1" to="2" fromOrd="0" toOrd="0"/>
<edge from="2" to="3" fromOrd="1" toOrd="0"/>
<edge from="3" to="4" fromOrd="1" toOrd="0"/>
<edge from="4" to="5" fromOrd="0" toOrd="0"/>
<edge from="5" to="6" fromOrd="1" toOrd="0"/>
<edge from="6" to="7" fromOrd="1" toOrd="0"/>

</graph>
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</agl>

A parse tree node is represented as aSymbolTable. Node attributes, i.e.type andtext, are stored
in the SymbolTable as entries. A SymbolTable entry is a mapping fromkeyto value. For example,
a parse tree node with the tokenReal is converted to

<symb id="5" type="SymbolTable">
<map key="text">

<string id="" type="String" value="Real"/>
</map>
<map key="type">

<int id="" type="Int" value="84"/>
</map>

</symb>

wheretype is mapped to84 (integer value of IDENTIFIER), andtext is mapped toReal.

In order to represent edges, each graph node is assigned a globally unique ID. For example, node
Real and nodea in the declarationReal a are assigned5 and6, respectively. In the parse tree,
nodea is an adjacent node of nodeReal. But in the XML representation, such an adjacency is
explicitly described by an edge

<edge from="5" to="6" fromOrd="1" toOrd="0"/>

This representation denotes an outgoing edge from node5, which isReal, to node6, which isa.
The fieldfromOrd indicates whether this edge points to a child or sibling (0 means child,1 means
sibling).

A parse tree is converted to a directed pyGK graph by means of the transformation denoted above.
Even though pyGK represents a parse tree differently, the conceptual structure is maintained.

3.2.2 Implementation Issues

The main implementation issue in the parse tree transformation via XML representation is process
management. At the top level of the computer, the data flow control is implemented in Python.
But at the very beginning of the flow, the parser program (compiled C++) needs to be executed to
generate an XML file, which will then be reloaded by a Python script. Generating and reloading of
the XML file have to be synchronized. Therefore, the problem is how to create and manage a new
process in which the parser is executed.

Python has a module calledos, which provides access to operating system functionality. It in-
cludes a series of functions for process management. One of them is thespawn*(mode, file,
...) function, which executes the programfile in a new process. The asterisk means that it has
variants. We use one of the variants,spawnlp(mode, path, file, ...), to manage the parsing
and XML generating process. Thel variants are designed to be used in the case that the parameters
of programfile are fixed, while thep variants will usepath to locate the programfile. For
example,

os.spawnlp(os.P_WAIT, parserPath, ’./xmlDumper’, arg1, arg2)

creates a new process which executes the programxmlDumper at locationparserPath, with arg1
andarg2 as parameters. Under theos.P WAIT mode, the main process will be temporarily sus-
pended till the new process exits. This mechanism guarantees that XML reloading will not happen
until the file has been generated.
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3.3 Abstract Syntax

Each node in a syntax tree must encode information to indicate the kind of the node. There are two
ways to encode this information: the homogeneous approach and the heterogeneous approach. The
homogeneous approach uses a single class type together with numerous token types to represent
tree nodes. A syntax tree with homogeneous nodes can be seen as aparse tree. The heterogeneous
approach uses different classes to represent different kinds of tree nodes. A syntax tree constructed
in this way, such asAbstract Syntax Tree, is a heterogeneous structure.

The syntax tree generated by the PELAB parser is a homogeneous parse tree. A detailed description
of the representation of tree nodes has been given in section 3.1. A parse tree represents the concrete
syntax of the corresponding program, and it is source code dependent. In order to perform semantic
analysis more efficiently, a program is typically represented in terms of anabstract syntax tree
(AST) internally in a compiler. Theabstract syntax tree, along with theVisitordesign pattern, is one
of the most important patterns in compiler design and implementation. Note that the homogeneous
parse tree representation does not support the visitor pattern. More details on the visitor pattern are
given in section 3.4.3.

3.3.1 Design

An abstract syntax of Modelica is defined. Even though this project currently only works on a
subset of the language, the full Modelica syntax is supported (implemented), from parsing to ab-
stract syntax tree construction. The abstract syntax is specified in terms of the Modelica language
constructs. According to these constructs, the abstract syntax is divided into four packages:Defini-
tion, Component, EquationPart, andExpression. Also, a package calledScopeis defined to support
scoping analysis. Figure 3.4 is the UML diagram of the abstract syntax at package level.

Figure 3.4: Packages in Abstract Syntax

Figure 3.5 shows the classes defined within packageDefinition. ClassFilerepresents the highest
level construct—a Modelica file. A ClassFile consists ofclass definitions, which in turn are made
up of elements. In Modelica, element refers to class definitions, extends-clauses, and component
declared in a class. A more detailed description of these language constructs can be found in the
Modelica Syntax defined in [5].

Figure 3.6, Figure 3.7, Figure 3.8, and Figure 3.9, describe the detailed definition of packageCom-
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Figure 3.5: Package Definition

ponent, EquationPart, Expressions, andScope, respectively. Each of these classes corresponds to a
specific Modelica language construct defined by the Modelica grammar in [5]. SeeAppendix for
a full description of the Modelica grammar.

3.3.2 Transformation

The transformation from parse tree to AST is implemented in a one-pass tree traversal. Each struc-
tural sub-tree is transformed to a corresponding abstract syntax construct. Parentheses, which are
syntactically significant to expressions, no longer appear explicitly in ASTs. The AST structure
contains the structural information of an expression.

3.3.3 Test of Correctness

A series of transformations are executed to convert a Modelica model into an AST. This AST has
to retain all the information from the source model. To verify this requirement, a pretty printer
is implemented to dump out syntactically correct Modelica. That is, given an AST, print out its
corresponding Modelica model. If the Modelica printout is the same as its original input, then
it proves that all the transformations are correct. In theµModelica compiler, a user can choose
whether or not to dump Modelica.

3.4 Scoping and Name Lookup

As in traditional programming languages, a name in a Modelica model has ascopein which it is
visible. The scope of a name is the region of the code where the name has a meaning corresponding
to its intended use [15]. Scoping analysis is characterized by the introduction and maintenance of
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Figure 3.6: Package Component

symbol tables, which store mappings of identifiers to their types and definitions. As class definitions
and declarations are processed,bindingsfrom identifiers to their meanings are added to the symbol
tables. When identifiers are used, they are looked up in the symbol tables andbound.

The following sections explains some Modelica language constructs, which are significant in un-
derstanding the scoping rules of Modelica. The data structure for scoping analysis is then presented.

3.4.1 Semantics

Variable Declaration

In Modelica, class instances are created via variable declarations. A declaration states the type and
other properties of a variable. A declaration in Modelica has the following form:

[prefixes] type-specifier component-list

where

• prefixes specifies accessibility, variability, and data flow.

• type-specifier specifies thetypeof a variable.

• component-list a list of component declaration. A component declaration is anidentifier,
optionally followed by an array dimension descriptor and/ormodification.

For example, the following declaration

parameter Real a, b;
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Figure 3.7: Package Equations

declares twoparameters, a andb, of typeReal. It is equivalent to the following:

parameter Real a;
parameter Real b;

Local Class Definition

Modelica supports local class definition. Local classes can be defined nested inside a class. The
number of levels of nesting is unlimited. The following example shows that classB is locally
defined within classA:

class A
class B
Real x;

end B;

class C
B b1;

end C;

B b2;
end A;

A local class definition is accessible in the class where it is defined, and from within all local nested
classes. In this example, local class definitionB can be accessed from anywhere inA andC.
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Figure 3.8: Package Expressions

Figure 3.9: Package Scope

The Concept of Parents

The classes lexically enclosing an element form an ordered set of parents. A class defined inside
another class definition (the parent) precedes its enclosing class definition in this set [5]. For ex-
ample:

class A
...
end A;

class B
Real x;

class C
Real y;

end C;
end B;

There is an unnamed parent at the top-level, which encloses all class definitions. In the example,
the parent of classA andB is that unnamed parent. The ordered set of parents of classC is [B,
unnamed], and the one of variabley is [C, B, unnamed].
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Encapsulated Class

Class encapsulation is defined by the class prefixencapsulated. It is a mechanism for scoping
control. Elements declared in a parent class are not accessible from within an encapsulated class
unless they are explicitly imported. In the previous example, if classC is defined as encapsulated,b1
can not be declared as an instance ofB. The following model shows the correct use of encapsulation
in classD.

class A
class B
Real x;

end B;

encapsulated class C
B b1; // error

end C;

encapsulated class D
import A.B;
B b1; // correct

end D;

B b2;
end A;

Use-Before-Declare

The current Modelica language (version 2.0) allowsuse-before-declare(UBD). This language fea-
ture provides better support for graphical user environments, because the order of declaration is
not determined when components are graphically created.

In some programming languages, the name of a class definition can be used before the class is
defined. In Modelica, not only class definitions, but also variables can be used before they are
declared. Below is an example demonstrating this feature.

class A
B b;
class B
Real x(start=y);
parameter y = 2;

end B;
end A;

In classA, nameB is used before it is defined. Also, within classB, variabley is referenced before
it is declared. Both these declarations are legal in Modelica.

Illegal Referencing of Declared Variables

It has been shown in the previous section that a declared class is accessible from within local nested
classes. But this rule does not apply to declared variables (except for constants). In Modelica, it
is illegal to referencevariablesor parametersdeclared in parent classes. Referencing declared
constantsin parent classes is allowed. For example:
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class A
class B
Real x;

end B;

class C
B b1; // referencing class definition in parent class is legal

end C;

Real y;
constant Real z = 10;

class D
Real d1(start=z); // referencing declared constants is also legal
Real d2 = y; // error: referencing declared variables is illegal

end D;

B b2;
end A;

For-loop

The following clause

for IDENT1 in expression1, IDENT2 in expression2 ... loop
loop body

end for

defines a for-loop in Modelica. A for-loop introduces an additional lexical scope. Variables de-
clared in a for-loop (callediteration variables) are visible only within the body of the for-loop.
The following example clearly shows how the scope of an iteration variable is just the body of the
for-loop.

class B
constant Integer j=4;
Real x[j];

equation
for j in 1:j loop // The loop variable j takes the values 1,2,3,4
x[j]=j; // Uses the loop variable j

end for;
end B;

In the for-loop index, the firstj is implicitly declared as an iteration variable, while the secondj
refers to the constant integer declared in classB.

Short Class Definition

In addition to the regular class definition form, a class can also be defined in terms of the following
short form

class IDENT1 = IDENT2 class_modification;
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which is identical to

class IDENT1
extends IDENT2 class_modification;

end IDENT1;

except that short class definition doesnot introduce an additional lexical scope for modifiers. The
following example taken from [5] demonstrates the difference:

model Resistor
parameter Real R;
...

end Resistor;

model A
parameter Real R;
model Load=Resistor(R=R);
// this is correct because the R in Resistor is set to R from model A

model LoadError
extends Resistor(R=R);
// this gives the singular equation R=R, since the right-hand side
// R is looked up in LoadError and found in its base-class Resistor

end LoadError;
...

end A;

This is an exception to the lookup rules: modifiers in short classes are looked up in the immediately
enclosing scope.

Scope of Predefined Names

User-defined classes are built from predefined types, functions etc. The predefined types in Mod-
elica areReal, Integer, Boolean, andString. Modelica also has predefined functions such as
der(), andsin(). All these predefined names are accessible from anywhere within a program,
including encapsulated classes. Thus, the scope of predefined names isglobal.

Duplicate Declarations

In Modelica, an element name is unique in each lexical scope. Therefore, duplicate element names
are not allowed in a class. The name of a declared element must be different from all other declared
elements in that class. For example, both of the following classes are illegal:

class A
Real a;
Integer a; // Error: duplicate variable name

end A;

class B
Real X;
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class X // Error: X has been declared as Real in this scope
...

end X;
end B;

Introduction of the Keyword self

In order to print out intermediate representation of Modelica models as valid Modelica, we intro-
duce the keywordself in µModelica. The meaning ofself is equivalent to that ofself in Python. That
is, it refers to the object that holds the scope within which it is used. For example, the following
model

model A
Real a=3.0;
Real b;

equation
a*b=15;

end A;

can be rewritten as

model A
Real a(self=3.0);
Real b;

equation
self.a * self.b = 15;

end A;

where the firstself refers toa, the second and the thirdself refers to modelA.

Scope Rules

From the previous examples, scope rules in Modelica can be summarized as follow:

• The scope of a top-level class definition is the entire program, except for those classes which
are encapsulated.

• The scope of a local class definition or a declared constant covers the whole class where it is
declared, including all local nested classes that are not encapsulated.

• The scope of a declared variable or parameter is the enclosing class, excluding local nested
classes.

• The scope of an iteration variable is the body of the for-loop where it is implicitly declared.

Static Name Lookup

When a class is being instantiated, names used within that class are looked up. These names in-
clude type specifiers, variables, and functions. According to the nested scope rules, Modelica uses
hierarchical lookup of names. The lookup starts searching from the scope where it is used, then
searches in the ordered set of enclosing scopes until a match is found or an enclosing class is
defined as encapsulated.
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A name in Modelica can either be a simple name (without dot referencing, e.g., A), or a composite
name (composed using dot notation, e.g., A.B.C). The lookup procedure of a simple name is as
follows:

• If a name is inside a for-loop or inside the body of a reduction expression, it is looked up
starting in the for-loop scope which contains the implicitly declared iteration variables.

• A name is then looked up sequentially in each member of the ordered set of parents, in the
built-in scope and in the predefined scope, until a match is found or a parent is encapsulated.

• If the name is not found declared in the previous two steps, the lookup continues in the global
scope which contains predefined names.

The lookup in each scope is performed as follow:

• Among declared components and local class definitions, including those inherited from base
classes.

• Among the import names of qualified import statements.

• Among the public elements of packages imported via unqualified import statements.

For a composite name of the formA.B.C:

• The first identifier is looked up as a simple name.

• If the first identifier denotes a declaration, the rest of the name, e.g,B.C, is looked up among
the declared components of the definition of the declaration.

• If the fist identifier denotes a class, the rest of the name is looked up among the declared name
elements of the class. If the class does not satisfy the requirements of a package, the lookup
is restricted to encapsulated elements only. The following example shows this restriction:

package P1
constant Real a=3.0;
class B1

Real b1=a;
end B1;

end P1;

class P2
Real a;
encapsulated class B2

Real b2;
end B2;
class B3

Real b3;
end B3;

end P2;

model M
P1.B1 x1; // This is legal since P1 satisfies

// the requirements of a package.
P2.B2 x2; // This is also allowed because B2 is an encapsulated
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// class even though P2 is not a package.
P2.B3 x3; // This is illegal because neither P2 is a

// package nor B3 is encapsulated.
end M;

3.4.2 Design and Implementation

The basic structure of semantic analysis is thesymbol table. It is a tabulation of the collection of
declarations and contextual information, which is convenient for symbol lookup. Each symbol in
the table is bound to the meaning as it is declared. This section presents the design and implemen-
tation of scoping analysis and name lookup in theµModelica compiler.

The Data Structure

The analysis in section 3.4 shows that scopes usually correspond to class definitions. Each class
definition introduces a new lexical scope. If a scope is conceptually seen as a node, the structure of
scopes in a program can then be seen as a tree.

In the AST design, aScopenode has been inserted at each structure level which introduces a lexical
scope. These includeClassFile, ClassDefinition, ForEqStm, ForAlgStm, andForFunArgExp
(reduction expression). A scope node is actually a symbol table and has two attributes:tableand
outer. table is a dictionary (in Python) which maps identifiers to their “meanings” (TableEntry),
andouter is a reference to the scope node of its outer scope. With thisouterattribute, scope nodes
are connected as a tree, with the scope node at theClassFile level as the root. Figure 3.10 is the
class diagram of the scope package.

Figure 3.10: Detailed Package Scope

A name (identifier) is bound to certain “meanings” in symbol tables. The “meanings” of a name
is represented in its correspondingTableEntry, which contains information such as prefix, type,
definition, value, etc. All the information of declarations in an AST is moved to symbol tables,
which enables efficient symbol lookup.
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Multiple Passes

As mentioned earlier, Modelica (version 2.0) allowsuse-before-declare(UBD). Multiple passes
are required to support UBD in implementing scoping analysis and name lookup. In theµModelica
compiler, these tasks are executed through three passes. Each pass carries out a specific task, which
is done via avisitor.

During the first pass, the visitor collects all declared elements, i.e., declared components and local
classes, in the AST. A newTableEntry is created for each declared name. There are two types
of TableEntry, DeclarationEntry andDefinitionEntry. The class diagram in Figure 3.10
shows the relationship. More specifically, aDeclarationEntry is created to store all the infor-
mation of a declared component, while aDefinitionEntry is created for a declared class. A
DefinitionEntry mainly keeps a reference to the class definition node in the AST. These created
entries are added to symbol tables in corresponding scopes. Each symbol table then contains all
declaration information in its own scope after the first pass completes.

In a lexical scope, whenever a declaration with duplicate name is detected, an exception is thrown.

Figure 3.11 illustrates the AST and scope nodes structure of the following Modelica model:

Figure 3.11: AST after the first pass

// Assume that this Modelica model is stored in file A.mo
class A

Real a, b;

C c;

class C
Real x;
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end C;

equation
a = b;

end A;

The second pass is to perform type specifiers lookup. For example, in the following declaration

Integer a;

Integer is the type specifier. A visitor iterates over allDeclarationEntrys in the AST. The
type specifier in each of these symbol table entries is looked up. The lookup algorithm is given
in section 3.4.1. If the type specifier is found, a reference to the definition that type in the AST
is created in thatDeclarationEntry, otherwise an exception is thrown. Figure 3.12 shows the
change in the AST of the previous example after the second pass.

Figure 3.12: AST after the second pass

Used names are looked up during the third pass. Names are used in modifications and equations.
For example, in the following piece of code

model Example
...
parameter Real a;
Real b;
Resistor R1(r=2*a);
Resistor R2;
...

equation
b = aˆ2;
connect(R1.p, R2.n);
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...
end Example;

R1 is declared as aResistor, together withmodification r= 2∗a to its attributer. In this modifica-
tion, namesr anda are used. Also, in the equation part, namesb, a, R1.p, andR2.n are referred to.
To verify that the use of these names is legal, they must be found declared in that lexical scope. The
lookup algorithm is also the same as the one given in section 3.4.1, except that the left hand side
of an element modification, e.g.,r in r = 2∗a, is looked up in its definition scope. For example,r
is looked up in the scope where classResistor is defined.

If use of a name is verified legal, a reference to theDeclarationEntry of this name in a symbol
table is created. Otherwise, an exception is thrown. Figure 3.13 shows the same AST as the one in
Figure 3.11, after the third pass.

Figure 3.13: AST after the third pass

3.4.3 The Visitor Design Pattern

In order to give a clean design and an easy-to-understand implementation, we use thevisitor design
pattern.Visitor enables the complete separation of data and the operations to be performed on the
data. In other words, one can define a new operation without changing the classes of the elements
on which it operates.

Overview of the Visitor Pattern

Programs are usually represented asAbstract Syntax Trees(AST) internally in a compiler. An
abstract syntax treeis a structure which consists of different types of elements (nodes). The se-
mantic analysis will need to perform operations, such as name lookup, type checking, etc., on
ASTs. Moreover, we might define operations on ASTs for pretty-printing, program restructuring,
and code generation. Most of these operations might treat different kinds of tree nodes differently.
For example, type-checking for sum expressions is different from type-checking for function calls.
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If all these operations are coded as methods inside various class definitions of AST nodes, it leads
to a system that is hard to understand, maintain, and change.

Another design scheme is to separate the data and the operations performed on it. More specifically,
we can place related operations, e.g., type-checking operations for various sorts of nodes, into a
separate object, namely, aVisitor. The visitor is then passed to elements of the AST as the AST is
traversed. Each AST node has anacceptmethod with thevisitor object as argument. Theaccept
method in each AST node in turn invokes the method in thevisitor that is specifically defined for
this kind of nodes. This method invocation includes the AST node itself as an argument. It is the
visitor that executes the operation for AST nodes. This technique is calleddouble-dispatchbecause
the operation that gets executed depends on both the type of thevisitor and the type of the element.

Figure 3.14: The Visitor Pattern

Figure 3.14 is the UML class diagram of theVisitor Pattern. There are two class hierarchies in
this pattern: the class hierarchy of nodes (data) and the class hierarchy of visitors (operations
performed on data). Each concrete visitor encodes an operation to be performed on various kinds
of nodes. One can add a new operation in the compiler by creating a new subclass in the visitor
class hierarchy. As long as the grammar of a language does not change, new functionality of the
compiler can be augmented simply by adding new concrete visitor classes.

Implementation Issues

As it is mentioned earlier, the underlying philosophy of the visitor pattern isdouble-dispatch.
Double-dispatchsimply means that the operation that gets executed depends on the kind of request
and the types of two receivers: the visitor’s and the element’s. Theacceptmethod is adouble-
dispatchoperation. The following block of code (Python style) is a sampleacceptmethod:

class VariableNode:

...

def accept(self, v):
v.visitVariableNode(self)

Theacceptmethod at every element is invoked during the object structure traversal. But the real
operation is not performed within theacceptmethod. Instead, it sends a request to the visitor to
execute the operation on the element being visited. Therefore, the operation that gets executed
depends on both the type of Visitor and the type of Element it visits. This is the key to the visitor
pattern.
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The second implementation issue is object structure traversal. A visitor is supposed to visit each
element in the structure. The problem is,who is responsible for traversing the structure? Or in
other words,how does the visitor get there?

In fact, we can put the structure traversal code either in the object structure itself, or in the visitor.
If we put responsibility for traversing the structure in the object structure itself, we only need to
write the traversal code once in the object structure. But each time a visitor traverses the structure,
it has to follow the same traversal algorithm. In our implementation, the visitors are responsible for
traversing the AST. Each concrete visitor has its own code for each aggregate concrete element.
This is because in our compiler, the traversal algorithm for some visitors are different, even though
it ends up duplicating code. For example, a name lookup visitor only needs to traverse the equation
part in an AST.

The Design

Figure 3.15: The Name Lookup Visitor

Figure 3.15 is a simplified UML class diagram of the design of the visitors that perform scoping
analysis and name lookup. A class hierarchy of visitors is defined to support multiple concrete
visitors. The parent classVisitor of all visitors of an AST is an abstract class. The parentVisitor
declares an operation (method) for each AST construct class it visits. In every concrete visitor, there
is a corresponding implementation for each of these methods. All these methods are not shown in
the class diagram because the number of AST constructs is relatively large.

3.5 Expanding Inheritance

Modelica supports class inheritance, a key feature of object-oriented language. An existing class,
calledsuperclassor base class, can be extended to define a more specialized class, which inherits
the properties and behavior of the base class. The specialized class is calledsubclassor derived
class. It is defined in terms of theextendsclause

extends name [class_modification]

For example, the following piece of code

partial model TwoPin "Superclass of elements with 2 electrical pins"
Pin p, n;
Voltage v;
Current i;

equation
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v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

model Resistor "Ideal electrical resistor"
extends TwoPin;
parameter Real r (unit="Ohm") "Resistance";

equation
R * i = v;

end Resistor;

definesResistor as a subclass of TwoPin.

3.5.1 Semantics

As mentioned earlier, the goal of the Front End is to translate original Modelica model into flat
Modelica, where all declared components are flattened down to predefined types. In class inheri-
tance, properties and behavior are inherited in the form of component declarations, and equations.
Derived classes need to be expanded before the model is translated into flat Modelica. In fact, all
data and equations in base classes arecopiedto the derived class. The following example shows
how extend clauses are expanded.

package P
constant Real PI=3.14;
class A
Real a1, a2;

equation
a1*a2=1.0;

end A;

class B
A a(a2=PI);
Real b;

equation
a.a2 * bˆ2 = 10.0;

end B;
end P;

class C
class C1
Real c11;

end C1;
end C;

model M
extends C;
extends P.B;
C1 x;
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end M;

// Expanding the extends clauses in model M leads to the following
// expanded version of M:
model M

// inherited from C
class C1
Real c11;

end C1;

// inherited from P.B
constant Real PI=3.14;
A a(a2=PI);
Real b;

C1 x;
equation

a.a2 * bˆ2 = 10.0;
end M;

In this example, modelM is a derived class of both classC and classB in packageP. In the process
of expanding the extends clauses, all declared elements, including variables and local class defini-
tions, and equations in base classes, are copied to the derived classM. In addition to that, referenced
constant declarations in the enclosing scope by base classes, e.g.,constant Real PI=3.14 in this
example, are also copied to the derived class.

It is possible that an inherited component from a base class has the same name as a locally declared
component. As it is mentioned in section 3.4, two declared components in a lexical scope are not
allowed to have the same name. But under certain conditions, the inherited declaration and the
local one can be merged into a single declaration. These conditions are:

• the two declarations must have the same type;

• they must have the same protection level, i.e., they must be both public elements or protected
elements;

• they must have the same type prefix, e.g., they must be both declared as continuous variable,
or both declared as discrete variables, or both declared as parameters, etc.

Satisfying these conditions means that the two declarations are identical. One of them is ignored.
Otherwise it is illegal, which will cause an exception in the compiler. For example,

class A
Real a, b;

end A;

class B
extends A;
Real a; // This is legal.
Integer b; // This is illegal since the type is different to

// to the one declared in class A.
end B;
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This rule also applies to inheritance of equations. If an inherited equation is syntactically identical
to a locally declared one in the derived class, one of the equations is discarded. For example, in the
expanded classF, only one equation is kept.

class E
Real e1, e2;

equation
e1+e2=1;

end E;

class F
extends E;

equation
e1+e2=1;

end F;

// The expanded version of F
class F

Real e1;
Real e2;

equation
e1+e2=1;

end F;

3.5.2 Multiple Inheritance

Modelica supports multiple inheritance, i.e., more than oneextends clauseis allowed. In some
cases this might lead to the problem of inheriting the same element or equation twice through
other intermediate inheritances. For example,

class Person
String name;
Integer dateOfBirth;

end Person;

class Student
extends Person;
Integer stuID;

end Student;

class Employee
extends Person;
Integer emplID;

end Employee;

class StudentEmployee
extends Student;
extends Employee;

end StudentEmployee;
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ClassStudent and Employee are derived classes of base classPerson, while classStudentEmployee
is a derived class of both classStudent and Employee. In the process of expanding classStudentEmployee,
the declarationsString name andInteger dateOfBirth are inherited twice, via the twoextends
clauses. This is an example ofrepeatedinheritance. This problem can be solved easily by applying
the rule stated in the previous section. According to that rule, only one of the identical components
is kept. ClassStudentEmployee is expanded as:

class StudentEmployee
String name;
Integer dateOfBirth;
Integer stuID;
Integer emplID;

end StudentEmployee;

3.5.3 Modification of the Extends Clause

An extends clause may carry class modifications which modify the value of attributes in base
classes. For example,

class A
Real a1=2.0;
Real a2=3.0;

end A;

class B
extends A(a2=5.0);
Real b;

end B;

When an extends clause is expanded, the modification is also applied to corresponding elements
in the base class. Finally, element modifications are merged, that is, outer modification overrides
inner modification. In theµModelica compiler, each declaration symbol table entry carries a list
of modifications. In the process of expanding inheritance, modification is appended to the copy of
corresponding elements, which are then inserted into the derived class. The following is the pretty
printed version of the expanded version of classB by theµModelica compiler:

// Expanded version of B
class B

Real a1=2.0;
Real a2(self=3.0, self=5.0);
Real b;

end B;

3.5.4 Short Class Definition as Class Inheritance

A short class definition is a concise way of defining new classes based on inheritance. As described
in section 3.4.1, the short form class definition

class IDENT1 = IDENT2 class_modification;
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is usually identical to

class IDENT1
extends IDENT2 class_modification;

end IDENT1;

which is a longer form based on the extends clause. Actually in theµModelica compiler, short
class definitions are transformed to the above longer form, which are then expanded. All semantic
analysis performed on short classes are identical to normal classes, except that modifiers in short
classes are looked up in the immediate enclosing scope.

3.5.5 The Process of Expanding Inheritance

The process of expanding inheritance consists of the following steps:

• The name of the base class is looked up;

• If the base class contains unexpanded extends clauses; recursively expand all extends clauses
in the base class;

• Copy all declared elements and equations from the base class to the derived class;

• Resolve class modification and apply the modification to corresponding inherited compo-
nents.

3.5.6 Implementation Issues

Component Deep Copy

In the process of expanding class inheritance, the modification needs to be resolved and be applied
to the declarations copied from the base class. Since modification creates a variant of the origi-
nal definition, shared objects are no longer sufficient to carry modification of multiple instances.
Therefore, true copies of declarations are needed to store the information of modification.

These true copies can be created via a deep copy operation. Python’s deep copy operation creates
copies which are unnecessarily ”too deep” with respect to what is required here. A user-defined
deep copy operation is needed to make sure that these copies are created only as deep as needed,
but not more. In the case that modification is absent, it suffices to keep a reference to the original
element object when it is copied from the base class.

Detecting Cyclic Dependency of Inheritance

Cyclic dependency of inheritance must be detected when extends clauses are expanded (to avoid
infinite expansion). The following example shows a cyclic dependency of inheritance between
classA, B andC:

class A
extends B;
Real a;

end A;

class B
extends C;

end B;
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class C;
extends A(a=1.0);
Real c;

end C;

Such a dependency can be detected by introducing a list of visited base class when inheritance is
recursively expanded. Suppose classA is the first to be expanded in this example,A is visited and
is then added to the list of visited classes, as [A]. SinceA extends classB andB extends classC, B
andC are recursively visited and are added to the list, giving [A, B, C]. Finally when the extends
clause in classC is expanded, its base classA is again visited and will be added to the list [A, B,
C], in which A already exists. Duplicate occurrences of the same class in the list means there exists
a cyclic inheritance dependency. An exception is raised when such a dependency is detected.

3.5.7 Order of Expanding Inheritance and Name Lookup

In order to guarantee that elements can be used before they are declared, expanding inheritance
and name lookup are executed in the following order in theµModelica compiler:

1. The first pass: class definitions and component declarations are added into symbol tables;

2. The second pass: class inheritances are resolved, that is, inherited elements are copied from
based classes to the derived class;

3. The third pass:type specifiersare looked up;

4. The fourth pass: uses of names in modifications and in the equation part are looked up.

3.6 Flattening

The goal of semantic analysis is to translate a Modelica model to Flat Modelica, which consists of
basic components and DAEs. For example, the following modelM

class A
Real a1;
Integer a2=1;

end A;

class B
Real b1(unit="N");
Real b2=2.0;

end B;

model M
extends A;
B b(b1=1.5, b2=3.0);

end M;

is translated to the following flat form of Modelica by the front end:

model M
Real a1;
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Integer a2;
Real b_b2;
Real b_b1;

equation
a2=1;
b_b2=3.0;
b_b1=1.5;

end M;

In the flattened model, all class attributes are declared in terms of predefined types, and modifica-
tions are merged and turned into equations.

After expanding extends clauses, a class contains attributes which can either be basic components
or composite components. Actually composite components are built up of basic components. The
purpose of flattening is to expand the class structure into a flat form, i.e., all class attributes are
declared as predefined types. The key issues in the flattening process are:

1. Component instantiation;

2. Flattening of composite components and merging of modifications;

3. Generation of connection equations.

3.6.1 Component Instantiation

In the internal representation of a Modelica model, instead of creating a concrete object instance
for each declaration, a symbol table entry just keeps a reference to its class definition, and carries
all the original information of modifications. Figure 3.16 shows the internal representation of the
previous example.

This scheme helps save memory space, and it works well until modifications are resolved. Class
modification creates a variant of the original class definition. The data structure has to be aug-
mented to hold concrete instances for these variants.

An instance stores the modified data and behavior of a component. It consists of a symbol table,
a list of initial equations, and a list of equations. The symbol table contains class attributes copied
from the original class definition, as well as the modification to that component. The equation part
is also copied from class definition to instance.

A class modification contains element modifications. Each element modification is looked up and
is applied to the found element in the concrete instance. For space efficiency, no instance will be
created for declarations which contain no modification. It is sufficient to keep references to their
definitions.

In theµModelica compiler, components are instantiated as follow:

instantiateComp(comp):
if comp has no modification:
if the type of comp is not a predefined type:
for each subcomponent(i) in comp:

instantiateComp(i)
else:
inst=createInstance(comp)
merge modification to inst
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Figure 3.16: Component Instantiation

if the type of comp is not a predefined type:
for each subcomponent(j) in inst:

instantiateComp(i)

Figure 3.16 also shows the internal representation after components are instantiated.

3.6.2 Flattening of Composite Components

A flat Modelica model is a system of equations with all variables declared in predefined types,
i.e., a declared variable must be one of the typeReal, Integer, Boolean, or String. In the process
of flattening, all structured components, i.e., composite components, are expanded to a set of basic
components.
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Resolving Variable Names

When composite components are replaced by basic components, names from different lexical
scopes are inserted into the same lexical scope. This will easily lead to a problem: some declared
variables might have the same name in the flattened model, which is in conflict with the rule that
no duplicate declarations of the same name are allowed. Therefore, the basic components in a
flattened model must be renamed such that each of them has a unique name in its lexical scope.

Renaming of basic components in a flattened model can be achieved by combining the names of
a basic component and the names of all its parents. This scheme guarantees that each combined
name is unique because each name and each of the name in its order set of parents is unique in its
own lexical scope. For example, in modelM

model M
extends A;
B b(b1=1.5, b2=3.0);

end M;

the composite componentb is replaced by

Real b_b1;
Real b_b2;

whereb b1 andb b2 are the combinations ofb and the name of basic components in base classB,
namelyb1, b2, respectively.

As mentioned earlier, theµModelica compiler is able to dump out intermediate representations as
valid Modelica models. For example, it can dump out a flat Modelica as a valid Modelica model. In
some other Modelica tools,dotnotation is used in combining names in flat Modelica. For example,
b b1 andb b2 will becomeb.b1 andb.b2, respectively. But according to the grammar of Modelica,
a declared identifier is not allowed to containdot. Among those special characters,underscoreis the
only one that is valid in an identifier. Therefore, it is used to make names unique in theµModelica
compiler.

Merge of Modifications

Modifications can be applied not only to declared components or local classes, but also to extends
clauses. Therefore, it is possible that a component can be modified multiple times through these
nestedmodifications. For example,

class A
Real a1;
Real a2=2.0;

end A;

class M
A a(a1=1.0, a2=3.0);

end M;

there are two modifiersa2 = 2.0, anda2 = 3.0, applied toa2. But finally a variable can only take
one value. This means that nested modifications must be merged.
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In Modelica, outer modification takes precedence over inner modifications.a2 = 3.0 is an outer
modification compared toa2 = 2.0 in the previous example. In theµModelica compiler, each
declared variable carries a list of modifications. The priority of modifications is encoded in the list.
After composite components have been flattened to basic components, modifications for each of
these basic components are merged. In the following example,

class A
Real a1;
Integer a2=1;

end A;

class B
Real b1(unit="N");
Real b2=2.0;

end B;

model M
extends A;
B b(b1=1.5, b2=3.0);

end M;

merging modifications in the flattened modelM gives

// flattened version of M with modifications merged
model M

Real a1;
Integer a2=1;
Real b_b1(unit="N")=1.5;
Real b_b2=3.0;

end M;

Other than representing a single value, a basic component, i.e., instance of a predefined type, has
other attributes which describe some properties of a physical quantity. For example, typeReal is
defined in Modelica syntax as follow

type Real
RealType value;
parameter StringType quantity ="";
parameter StringType unit ="";
parameter StringType displayUnit ="";
parameter RealType min =-Inf; // Inf denotes a large value
parameter RealType max =Inf;
parameter RealType start =0;
parameter BooleanType fixed =false; // "true" for parameter/constant
parameter BooleanType enable =true;
parameter RealType nominal;
parameter StateSelect stateSelect = StateSelect.default;

equation
assert(value >= min and value <= max, "Variable value out of limit");
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assert(nominal >= min and nominal <= max, "Nominal value out of limit");
end Real;

Modifications may apply to some of these attributes. In theµModelica compiler, an environment
is created for each basic component, which contains mappings from attribute to value. Figure 3.17
shows the environment for

Real b_b1(unit="N")=1.5;

Some information encapsulated in a basic component might not be so important to the simulation
back end, such as attribute ”unit”. But it will be important in the future if we are to implement
unit-based type checking. For the sake of integrity, this information is kept in the environment.

Figure 3.17: Environment of Basic Component Real

Modification Equation

Modifications in Modelica are finally turned into equations. In the simulation back end, we are
currently only concerned with thevalueattribute of each basic component. Other attributes, such
asunit, are ignored. Therefore, only modifications to thevaluefield are turned into equations. Other
modifications are stored in the environments. For example, the modification in basic component

Real b_b1(unit="N")=1.5;

is turned into

b b1 = 1.5

ModelM in the previous example is then finally flattened to

model M
Real a1;
Integer a2;
Real b_b1;
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Real b_b2;
equation

a2 = 1;
b_b1 = 1.5;
b_b2 = 3.0;

end M;

The information of modificationunit="N" is not lost. It is maintained in the environment ofb b1.
It is typically used to generate code usable in an integrated modeling and simulation environment
such as WEST [27].

3.6.3 Generation of Connection Equations

In Modelica, components may be coupled by connections, whose semantics are given by equations.
A connection is introduced by the followingconnect statement:

connect (connector1, connector2)

whereconnector1 andconnector2 are two references to connectors, each of which is either a
component of the same class or an element of one of its component.connector1 andconnector2
must betype equivalent. Two types T1 and T2 areequivalentif:

• T1 and T2 denotes the same primitive type, i.e., one ofRealType, IntegerType, StringType,
BooleanType, or EnumType;

• T1 and T2 are classes containing the same public declaration elements (according to their
names) and each of these elements in T1 is type equivalent to the corresponding one in T2.

Connection statements are converted into normal equations, which are calledconnection equations.
There are two different forms of connection equation generated, forflow andnon-flowvariables,
respectively. The main tasks in the process of generating connection equations are:

• Building connection setsfrom connection statements;

• Generating connection equations for the complete model.

Connection Sets

In Modelica, multiple connections can be made to asingleconnector. For example, in the simple
electronic circuit in section 1.2:

model Circuit
Resistor R1(r=1);
Resistor R2(r=1);
Capacitor C(c=1);
VsourceAC AC;
Ground G;

equation
connect (AC.p, R1.p);
connect (R1.n, R2.p);
connect (R2.n, C.p);
connect (C.n, AC.n);
connect (AC.n, G.p);

end circuit



3.6 Flattening 49

connectorAC.n is connected to both connectorC.n and G.p. Multiple connections to a single
connector can be seen as a node where all involved connectors are inter-connected. Through (flow)
variables from each connector are summed to zero at such a node.

Connection sets are needed to detect if there exist connectors that have multiple connections. Con-
nection sets are first built at the level of connectors, i.e.,connector connection sets. Then these
connector connection sets are expanded toprimitive connection sets.

• A connector connection setis a set of connectors connected by means ofconnect clauses.
All connectors in such a set are type equivalent.

The algorithm for building connector connection sets in theµModelica compiler is as follows:

1. Create an empty list L to store connection sets;

2. For each connect statement, create a connection set containing its two arguments, and append
this set to list L. For example, the connection set ofconnect (C.n, AC.n) is [C.n,AC.n];

3. Merge connection sets. That is, if any connector in a connection set is a member of other
connection sets, all the corresponding sets are merged. For example, the connections set of
connect statementconnect (AC.n, G.p), [AC.n,G.p], is merged with[C.n,AC.n], resulting
in [C.n,AC.n,G.p].

All connectors in a connection set are type equivalent, i.e., they have the same public attributes
(with the same names and types). If a connector type contains structured components, these struc-
tured component are expanded into basic components, i.e., predefined types. Common basic com-
ponent of members in a connector connection set form aprimitive connection set:

• A set of variables having the same name and the same Modelica predefined type.

• A primitive connection set may only contain flow variables or non-flow variables.

For example, the connector class of the electronic circuit example in section 1.2 is defined as:

connector Pin
Voltage v;
flow Current i;

end pin;

The generated primitive connection sets from the connector connection set[C.n,AC.n,G.p] are:

• Non-flow variables:[C.n.v,AC.n.v,G.p.v]
• Flow variables:[C.n.i,AC.n.i,G.p.i]

Connection Equations for Non-flow Variables

Equations generated from primitive connection sets of non-flow variables have the following form:

a1 = a2 = ... = an

which is equivalent to:

a1 = a2

a1 = a3

...

a1 = an
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Connection Equations for Flow Variables

Equations generated from primitive connection sets of flow variables have the following form:

b1 +b2 + ...+(−bk)+ ...+bn = 0

The sign of variablebi is +1 if the connector is aninsideconnector, and -1 if the connector is a
outsideconnector. Inside and outside connectors are defined as follows:

• In an element instance M, a connector component of M is called anoutsideconnector with
respect to M.

• A connector component that is hierarchically inside M is called aninsideconnector with
respect to M.

For example, all members of connector connection set[C.n,AC.n,G.p] are insideconnectors of
modelCircuit. Therefore, the generated equation for the primitive connection set of flow vari-
ables[C.n.i,AC.n.i,G.p.i] is:

G p i +AC n i +C n i = 0.0

3.7 Type Checking

After all the above-mentioned semantic analysis are executed, a Modelica model is translated into
flat Modelica. In theµModelica compiler, the textual representation of flat Modelica is still valid
Modelica model. For example, the flat Modelica representation of the circuit example is as follow:

model Circuit
flow Real R1_n_i;;
Real R2_v;;
parameter Real R1_r;
Real G_p_v;;
Real C_n_v;;
Real R1_p_v;;
flow Real R1_p_i;;
flow Real G_p_i;;
Real R2_i;;
flow Real AC_n_i;;
parameter Real R2_r;
Real R1_n_v;;
flow Real R2_n_i;;
parameter Real C_c;
flow Real R2_p_i;;
parameter Real AC_VA;
flow Real AC_p_i;;
Real C_i;;
flow Real C_p_i;;
constant Real AC_PI;
Real R1_v;;
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Real AC_v;;
Real AC_i;;
Real C_p_v;;
Real R1_i;;
Real C_v;;
Real AC_p_v;;
Real AC_n_v;;
Real R2_p_v;;
flow Real C_n_i;;
Real R2_n_v;;
parameter Real AC_f;

equation
C_c*der(C_v)=C_i;
C_v=C_p_v-C_n_v;
0=C_p_i+C_n_i;
C_i=C_p_i;
R1_r*R1_i=R1_v;
R1_v=R1_p_v-R1_n_v;
0=R1_p_i+R1_n_i;
R1_i=R1_p_i;
G_p_v=0;
R2_r*R2_i=R2_v;
R2_v=R2_p_v-R2_n_v;
0=R2_p_i+R2_n_i;
R2_i=R2_p_i;
AC_v=AC_VA*sin(2*AC_PI*time);
AC_v=AC_p_v-AC_n_v;
0=AC_p_i+AC_n_i;
AC_i=AC_p_i;
AC_p_i+R1_p_i=0.0;
AC_p_v=R1_p_v;
R1_n_i+R2_p_i=0.0;
R1_n_v=R2_p_v;
R2_n_i+C_p_i=0.0;
R2_n_v=C_p_v;
G_p_i+AC_n_i+C_n_i=0.0;
G_p_v=AC_n_v;
G_p_v=C_n_v;

end Circuit;

As in other programming languages, the type of a construct in Modelica need to match what is
expected in its usage context. For example, the - (minus) operator expects two operands of type
Integer or Real. Therefore, the expression ofa−b is a type error if any ofa or b is neither an
integer nor real number.

This leads to the next step to be performed in the compiler: type checking. The main tasks of type
checking are:

• Verify that each construct is type correct.
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• Type coercion, which changes the type of one expression to another.

3.7.1 Basic Types

As it is mentioned earlier in previous sections, the predefined types in Modelica are built over the
built-in types, i.e.,RealType, IntegerType, StringType, andBooleanType. By default, the
name of a variable of predefined types refers to itsvalueattribute. For example, equation

a+b = c

means

a.value+b.value= c.value

The basic types in Modelica areRealType, IntegerType, StringType, BooleanType, TypeError,
andVoid. The basic typevoid represents the empty set and allows an equation to be checked.
TypeError indicates a construct has type errors.

3.7.2 Type Coercion

In some cases, an operator allows its operands to have different types. For example, the expression
a+ b is legal in Modelica, wherea is of typeReal andb is of typeInteger. Since the machine
instructions of operations on reals and integers are different, specific rules are needed to convert
the type of operands by the compiler. Such a conversion of type is calledcoercion[2].

If type coercion is required, the type checker in theµModelica compiler will insert a conversion
operator in the expression. For example, the type checking rule for the + (plus) operator is defined
as follows:

typeOf(E1 + E2):
if E1.type=IntegerType and E2.type=IntegerType:
return IntegerType

elif E1.type=RealType and E2.type=RealType:
return RealType

elif E1.type=StringType and E2.type=StringType:
return StringType

elif E1.type=RealType and E2.type=IntegerType:
replace E2 by RealOf(E2)
return RealType

elif E1.type=IntegerType and E2.type=RealType:
replace E1 by RealOf(E1)
return RealType

else:
return TypeError

3.7.3 Specification of Type Checking in the µModelica Compiler

In theµModelica compiler, type checking is performed on the equation part of the flat Modelica
model. The type checker verifies that each equation and all expressions in that equation tree are
type compatible, and will perform type coercion if applicable. The following specifications have
been implemented:
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1. Normal equation (RegularEquation): LHS = RHS
if LHS.type==RHS.type:
return Void

elif LHS.type==IntegerType and RHS.type==RealType:
replace LHS by RealOf(LHS)
return Void

elif LHS.type==RealType and RHS.type==IntegerType:
replace RHS by RealOf(RHS)
return Void

else
return TypeError

2. Identifier (IdentExp): E
return E.type

3. Integer (IntExp):
return IntegerType

4. Real number (RealExp):
return RealType

5. String (StringExp):
return StringType

6. Boolean (BoolExp):
return BooleanType

7. Logical exp: E1 op E2, where op: and (AndExp), or(OrExp)
if E1.type==BooleanType and E2.type==BooleanType:
return BooleanType

else:
return TypeError

8. Logical exp: not E (NotExp)
if E.type==BooleanType:
return BooleanType

else:
return TypeError

9. Relation exp: E1 op E2, where op: <, <=, >, >=, ==, <>
if E1.type==RealType and E2.type==RealType:
return BooleanType

elif E1.type==IntegerType and E2.type==IntegerType:
return BooleanType

elif E1.type==StringType and E2.type==StringType:
return BooleanType

elif E1.type==BooleanType and E2.type=BooleanType:
return BooleanType
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elif E1.type=RealType and E2.type=IntegerType:
return RealType

elif E1.type=IntegerType and E2.type=RealType:
return RealType

else:
return TypeError

10. Sum exp (SumExp): E1 + E2
if E1.type=IntegerType and E2.type=IntegerType:
return IntegerType

elif E1.type=RealType and E2.type=RealType:
return RealType

elif E1.type=StringType and E2.type=StringType:
return StringType

elif E1.type=RealType and E2.type=IntegerType:
replace E2 by RealOf(E2)
return RealType

elif E1.type=IntegerType and E2.type=RealType:
replace E1 by RealOf(E1)
return RealType

else:
return TypeError

11. Exp: E1 op E2, where op: -, *, /
if E1.type=IntegerType and E2.type=IntegerType:
return IntegerType

elif E1.type=RealType and E2.type=RealType:
return RealType

elif E1.type=RealType and E2.type=IntegerType:
replace E2 by RealOf(E2)
return RealType

elif E1.type=IntegerType and E2.type=RealType:
replace E1 by RealOf(E1)
return RealType

else:
return TypeError

12. Unary minus exp: -E
if E.type=IntegerType:
return IntegerType

elif E.type=RealType:
return RealType

else:
return TypeError

13. Function call: E1(E2)
if E2.type matches the type of declared input variables:
return E1.type (types of declared output variables)
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else:
return TypeError

Type checking of some Modelica constructs is not implemented in the currentµModelica compiler.
The above type checking rules works for continuous models.



4
The Back End

A model described in Modelica is translated to a model in flat Modelica by the Front End. Basically,
a flat Modelica model can be seen as a set of DAEs. The ultimate purpose of simulation is to solve
such a set of equations.

One can solve a set of DAEs using a DAE solver, e.g., DASSL [22]. But DAE solvers are inef-
ficient. A far more efficient approach is to perform DAE transformations. The purpose of these
transformations is to obtain a causal representation of the equations, which might include ODEs
and algebraic equations. This set of causal equations can be solved more efficiently with ODE
solvers.

This chapter discusses the formula manipulation techniques implemented in theµModelica com-
piler, which includescanonical transformation, causality assignment, equation sorting, andde-
tecting algebraic loops.

4.1 Canonical Transformation

Usually an equations is represented as a tree made up of operators and operands. Thecanonical
representationof an equation means that the equation is stored internally in a particular,unique
way. More specifically, the equation is rewritten in such a way that

• Constants are folded;

• Operators and operands at every level of the tree are in a unique order;

• A few other simplification rules are implemented, the details of which are given below.

4.1.1 Why Canonical Representation?

Even though canonical transformation reuses compile-time efficiency, it is necessary to perform
such a transformation for the following reasons:

• For simulation run-time efficiency. If constants are folded at compile-time, there is no need
to calculate the same operations on these constants at each time step at simulation-time. For
example, assume that a model contains the following equation

a = 2+3+b

If 2+3 is computed at compile time, e.g.,a= 5+b, the same operation need not be computed
at each time step during simulation run-time. Therefore, it is a tradeoff between compile-time
and run-time. Because the number of simulation runs is far greater than the number of times
a model is compiled, it is worth to do so.
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• The need for causality assignment. For example, the following equation

x+x+y = 0

cannot be transformed to causal form correctly if unknownx is to be calculated based on the
value ofy, e.g.,x on the left hand side of the equation. In such a case, like terms have to be
combined, e.g,x+x is converted to 2x.

4.1.2 Defining the Canonical Order

An ordering relation on a set of operators is defined so that the nodes in an equation tree can be
sorted into the canonical order. The set of operators currently includes sum (+), multiplication (*),
power (̂ ), and function calls. The ordering of these operators is defined as follows:

’+’ < ’*’ < ’ˆ’ < ’f()’

wheref() represents function calls. The ordering relation between different function calls is de-
termined by lexicographic ordering of the names of function calls. For example, natural logarithm
log() has a higher order than e-based exponentexp(). That is,

’exp()’ < ’log()’

Thecanonical representationof an expression or an equation is obtained by sorting the children of
every node in the equation tree, together with constant folding and some simplification rules.

4.1.3 Simplification Rules

The paper [26] suggests a set of simplification rules for canonical transformation. A subset of these
rules have been implemented inµModelica. These rules are specified as follows:

1. The RHS of an equation is moved to the LHS, and the RHS is set to 0.0, eg.,a = b is
transformed toa−b = 0.0.

2. All constants are rewritten as real numbers. Fractions are evaluated. For example, 1/2 is
simplified to 0.5,x2 is rewritten asx2.0, andx1/2 is written asx0.5 etc.

3. A negative number or term is rewritten as:

• −c−→+(−c), wherec is constant

• −E −→+(−1.0)∗E, whereE is a term

4. Expressions in reciprocal form (divisions) are rewritten in terms of negative powers. For
example:

• 1/y−→ 1.0∗y−1.0

• x/y−→ x∗y−1.0

• z3/(x2 +2∗x∗y)−→ z3.0∗ (2.0∗x∗y+x2.0)−1.0

5. Binary operators + and * are converted to n-ary operators. It is feasible to do so because both
+ and * are commutative and associative. For example:

• a+b+c can be rewritten as+(a,b,c)
• a∗b∗c can be rewritten as∗(a,b,c)
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6. Constant folding. All sum, product, power or other known operations of constants are imme-
diately evaluated. Also, the following rules should be applied to remove superfluous zeros
and ones:

• 0.0+E −→ E;

• 0.0∗E −→ 0.0;

• 0.0c −→ 0.0;

• 1.0∗E −→ E;

• E1.0 −→ E;

• E0.0 −→ 1.0;

• 1.0E −→ 1.0;

7. Like terms in a sum are collected and their constant coefficients are added (* distributes over
+), eg.:

a∗xp +b∗xp −→ (a+b)∗xp

wherea,bare constants (or parameters),x, pcan be constants, variables or expressions.

8. Product of power of the same base is simplified using this rule:

xp∗xq −→ xp+q

wherex,q,pcan be constants, variables or expressions.

9. The power of a power can be simplified as:

(xp)q −→ xp+q

wherex,q,pcan be constants, variables or expressions. A further simplification occurs ifx,q
are both constants:

(xp)q −→ (xq)p

10. The power of a product:
(x∗y)p −→ xp∗yp

x,y,pcan be constants, variables or expressions, but withx,y not being both constants. The
opposite of this rule should be applied when bothx andy are constants, and so they can be
folded:

xp∗yp −→ (x∗y)p.

11. A constant multiplying an expression which is a sum of terms containing variables, is dis-
tributed:

c∗ (t1 + t2 + ...+ tn)−→ c∗ t1 +c∗ t2 + ...+c∗ tn

wherec is a constant, andti is a set of terms.

4.1.4 The Transformation Algorithm

The transformation consists of a series of applications of the simplification rules. These rules are
invoked in the following order:

1. According to rule 3 and 4, convert division expressions, and subtraction expressions into
multiplications, and sum expressions, respectively.
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2. According to rule 5, on both sides of the equation, convert the binary operators + and * into
n-ary operators.

3. Move the RHS of the equation to the LHS, and set the RHS to 0.0

4. Apply rule 5 to the resulting LHS again.

5. Constant folding according to rule 6.

After these preliminary transformation steps, the following rules are iterated over until all nodes in
the tree are in canonical order:
While the tree changes:

1. Simplify the powers of products by applying rule 10.

2. Apply rule 5 to the LHS to flatten the + and * operators.

3. Constant folding according to rule 6.

4. Sort nodes into canonical order.

5. Apply rule 9 to flatten the powers of powers.

6. Apply rule 8 to simplify the products of powers of the same base.

7. Constant folding according to rule 6.

8. Sort nodes into canonical order.

The iteration stops if there is no further change occurs in the tree. Finally the following rules are
applied:

1. Rule 11: distribute constants.

2. Flatten the + and * operators on the LHS.

3. Constant fold.

4. Sort nodes into canonical order.

5. Apply rule 7 to collect like terms.

6. Constant fold again.

7. Sort nodes into canonical order.

4.1.5 An Example

Here is an example showing the canonical transformation in theµModelica compiler. Given the
following model as input:

class Canonical
Real a, b, c, d, x;
Real e, f, g, h;

equation
2-1-3-4-5=h;
a+a+2.0*a+b+(c+d*a/b)=a-2*b*c-d;
2*aˆ3+3*cˆd=aˆ3-2*cˆd;
a*a*b*c*c*d+b*aˆ2*a+eˆa*fˆb*eˆ(c+d)=0.0;
eˆa*fˆb*eˆ(c+d+g)=0.0;
((4/2*aˆ(0+b))ˆ2)ˆ(2*(3+2))=0;
2*aˆa+aˆa+aˆ2=0;
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(a*(b+c)ˆ2*dˆe*(2*3+4)ˆ2)ˆ3=e;
(x+b)ˆ2-(c*b)ˆ2+aˆ2*d=(c+d)ˆ2;

end Canonical;

TheµModelica compiler rewrites the equation part into the following canonical form:

(-11.0)+h*(-1.0)=0.0;
a*3.0+a*bˆ(-1.0)*d+b+b*c*2.0+c+d=0.0;
aˆ3.0+cˆd*5.0=0.0;
aˆ2.0*b*cˆ2.0*d+aˆ3.0*b+eˆ(a+c+d)*fˆb=0.0;
eˆ(a+c+d+g)*fˆb=0.0;
aˆ(b*20.0)*1048576.0=0.0;
aˆ2.0+aˆa*3.0=0.0;
aˆ3.0*(b+c)ˆ6.0*dˆ(e*3.0)*1000000.0+e*(-1.0)=0.0;
aˆ2.0*d+(b+x)ˆ2.0+bˆ2.0*cˆ2.0*(-1.0)+(c+d)ˆ2.0*(-1.0)=0.0;

4.2 Causality Assignment

The real essence of Modelica is non-causal modeling, which is characterized by a set of implicit
equations. To solve the various unknowns in the system more efficiently, it is far more preferrable
to have a causal representation of equations. It is possible in many cases to transform a non-causal
representation into a causal one. Such a transformation is calledcausality assignment. For example,
consider the following set of implicit equations:

x+y+z = 0 Eq 1
x+3z+u2 = 0 Eq 2
z−u−16 = 0 Eq 3

u−5 = 0 Eq 4.

To compute this set of equations on a computer, each equation must be identified that it is used to
solve for what variable. That is, amatchingbetween equations and variables must be found. This
problem can be solved in terms of graph algorithms. More specifically, it can be solved elegantly by
turning it into the problem of finding amaximum network flowin a bipartite graph. Equations and
variables are turned into nodes and the dependencies between equations and variables are turned
into edges. Adding a source node and a sink node to the bipartite graph results in a directed graph.
For example, figure 4.1 shows the resulting graph of this set of equations. Causality assignment can
be obtained by maximizing the flow from the source node to the sink node. As shown in figure 4.1,
the flow paths indicate the correspondence between each variable and the equation used to compute
it: 

y = −x−z
x = −3z−u2

z = u+16
u = 5

Therefore, the problem to be solved here is to find a maximum flow in a directed bipartite graph. In
history, many attempts have been made to solved this problem. Dinic’s algorithm in finding such
a maximum flow is efficient if all edges in the graph has unit capacity. It is implemented in the
µModelica compiler. This section discusses Dinic’s algorithm in detail [9].
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Figure 4.1: Causality Assignment: Network Flow in Bipartite Graph

4.2.1 Flows, Augmenting Paths, and Residual Graph

Before discussing Dinic’s algorithm, some important concepts in the theory of network flows are
introduced.

Let G = [V,E] be a directed graph made up of the set of verticesV ≡ {v} and the set of edges
E ≡ {e}. Two special vertices, the source and the sink, are identified ass andt, respectively. The
number of vertices inG is n and the number of edges ism. Every edge is associated with a positive
capacity cap(v,w). A flow f on G is defined as a real-value function on vertex pairs. It has the
following properties:

• Skew symmetry: f (v,w) =− f (w,v).
Also, if f (v,w) > 0, then there is a flow fromv to w.

• Capacity constraint: f (v,w)≤ cap(v,w).
A flow is said tosaturatethe edge[v,w] if the equality f (v,w) = cap(v,w) holds.

• Flow conservation: for every vertexv excluding the sources and sinkt, the net incoming
flow must equal the net outgoing flow:∑w∈V f (v,w) = 0.

Theresidual capacityfor a flow f in a network is also given by a function on vertex pairs. It is the
difference in the capacity of the edge connecting the two vertices and the flow across the edge:

res(v,w) = cap(v,w)− f (v,w). (4.1)

An amount ofres(v,w) additional units of flow can be pushed fromv to w by increasing the flow
f (v,w) and correspondingly decreasingf (w,v). We can construct theresidual graph Rfor a flow
f , which is the graph with vertex setV including the sources and sinkt, and an edge[v,w] of
capacityres(v,w), such that this capacity is positive:res(v,w) > 0.

An augmenting pathfor f is defined as a pathp from s to t in R. The residual capacityof this
path, denoted byres(p), is the minimum value ofres(v,w) for [v,w] an edge ofp. The value of the
flow f can be increased by any amount∆ up to res(p) by increasing the flow on every edge ofp
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by ∆. To satisfy the property of symmetry, if a change of∆ is made tof (v,w), there should be a
corresponding amount of−∆ made tof (w,v).
The concepts ofblocking flowand level graphare important to understand Dinic’s algorithm. A
flow f is ablocking flowif every path from the sources to the sinkt contains a saturated edge (an
edge[v,w] is said to besaturatedif f (v,w) = cap(v,w)). There is no way to increase the value of
a blocking flowby increasing additional flow along any path in the graph. However, it is possible
to do so by rerouting, which means the flow on some edges is decreased while it is increased in
other edges. LetRbe the residual graph of a flowf . Thelevelof a vertexv in R is the length of the
shortest path from the source nodes to v. The level graph Lfor f is the subgraph ofR containing
only the vertices reachable froms, and only the edges[v,w] such thatlevel(w) = level(v) + 1.
L contains every shortest augmenting path and can be constructed inO(m) time by breadth-first
search.

4.2.2 Dinic’s Algorithm

Dinic’s algorithm is implemented in theµModelica compiler to solve the problem of causality
assignment. It is to find amaximum flowfrom the source node to the sink node on a directed graph.
Given a directed graph with a source and a sink, it starts with zero flow and repeats theblocking
stepuntil the sinkt is no longer in the level graph for the current flow.

Theblocking stepin Dinic’s algorithm is defined as follows:

• Find a blocking flowf ′on the level graph for the current flowf .

• Replacef by the flow f + f ′ defined by:( f + f ′)(v,w) = f (v,w)+ f ′(v,w).

The remaining problem is to find a blocking flow. We also adopt Dinic’s method: letG be the input
acyclic graph, use depth-first search (DFS) to find a path from the source nodes to the sink node
t, push along the path the amount of flow that saturate the edge with smallest residual, then delete
all newly saturated edges, and repeat this procedure untilt is not reachable froms. The algorithm
is described more formally below:

• Initialize : Let p = [s] andv = s. Go toAdvance.

• Advance: If there is no outgoing edge fromv, go to Retreat. Otherwise, let[v,w] be an
outgoing edge ofv. Replacep by p+[w], andv by w. If w 6= t repeatAdvance; if w = t, go
to Augment.

• Augment: Let δ bemin(cap(v,w)− f (v,w)) where[v,w] is any edge in pathp. Add δ to the
flow of very edge onp, delete fromG all newly saturated edges, and go toInitialize .

• Retreat: If v = s, halt. Otherwise, let[u,v] be the last edge onp. Deletev from p and[u,v]
from G, replacev by u, and go toAdvance.

It can be proved that Dinic’s algorithm above correctly finds a blocking flow inO(nm) time, and
a maximum flow inO(n2m) time. It can also be proved that on a unit network, Dinic’s algorithm
finds a blocking flow inO(m) time, and a maximum flow inO(n1/2m) time. In a unit network, all
edge capacities are integers, and each vertexv other than the source and the sink has either a single
entering edge of capacity one, or a single outgoing edge of capacity one.On a network whose edge
capacities are all one, Dinic’s algorithm finds a maximum flow inO(min{n2/3m,m3/2}) time [13].



4.2 Causality Assignment 63

4.2.3 ODEs in Causality Assignment

In Modelica, thetime derivativeof a state variable is introduced by the operatorder(). An ordinary
differential equation(ODE) has the following form (in Modelica syntax):

der(x) = f (x)

The numerical approximation of the time derivative of a variable is defined as:

der(x) = (x−xold)/∆t

The value ofx can be computed by numerical integration methods.

Because either the value ofx can be computed via integration based onder(x), or the value or
der(x) can be derived from the current value ofx and xold, only one ofx or der(x) is treated
as unknown in causality assignment. How theµModelica compiler handles ODEs in causality
assignment is discussed in this section. More specifically, an algorithm to choose which form of a
state variable as unknown is given.

Integral Causality and Derivative Causality

In causality assignment,integral causalitymeans that the time derivative of a state variable is
chosen as unknown, while the state variable itself is computed through numerical integration.Dif-
ferential causalityworks in the other way around. That is, a state variable itself is chosen as known,
and the time derivative of the state variable is computed through numerical differentiation.

In fact, integral causalityis more preferrable in simulation computation since it gives more stable
simulation results. But in some cases, choosing integral causality might lead to failure in causality
assignment. Consider the following example:

y = sin(time)
der(x) = y+z
der(y) = x+z .

If der(x), der(y), andz are chosen as unknowns, a valid causality assignment result can not be
found because both sides of the first equation are known. However, it is possible to find a valid
causality if some of the unknowns with integral causality are replaced by differential causality. For
example, if state variabley is assigned derivative causality, a valid causality assignment can be
found.

The Algorithm

An algorithm for handling ODEs in causality assignment is implemented in theµModelica com-
piler. Based on the fact that integral causality can give more accurate simulation result, the algo-
rithm prefers integral causality as many as possible. The algorithm is described more formally as
follows:

• By default, integral causality is chosen for all state variables. For example,der(x), der(y),
andz are regarded as unknowns by default in the previous system.

• If a valid causality assignment is found, return.

• Otherwise, a list of all possible combinations of integral causality and derivative causality is
generated. In the previous example, all possible combinations are:

• der(x), y, z
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• x, der(y), z

• x, y, z

• Begin with the combination with least derivative causality. If causality assignment still fails,
try the next combination in the list that has the least derivative causality. Repeat this step
until a valid causality is found.

• If finally causality assignment fails after all the combinations have been tried, a DAE solver
is called to solve the set of implicit equations directly.

This algorithm is a heuristic approach to finding the most appropriate combination of integral
causality and derivative causality. In the worst case, the algorithm’s complexity is combinatorial.
We realize that there might exist a more direct and efficient approach. But ours is an easy-to-
understand approach. At the time being for the sake of fast prototyping, we chose this approach
because it is easy to implement.

Example

Consider the following Modelica model encoding the equations given above:

class ODE1
Real x, y, z;

equation
y=sin(time);
der(y)=x+z;
der(x)=y+z;

end ODE1;

TheµModelica compiler generates the following causality assignment result for this model:

-------causality assignment result -------
Variables: der(y), der(x), z,
der(x)+y*(-1.0)+z*(-1.0) = 0.0 is used to solve for ’der(x)’
der(y)+x*(-1.0)+z*(-1.0) = 0.0 is used to solve for ’der(y)’
***Invalid causality!***

-------causality assignment result -------
Variables: y, der(x), z,
sin(time)*(-1.0)+y = 0.0 is used to solve for ’y’
der(x)+y*(-1.0)+z*(-1.0) = 0.0 is used to solve for ’der(x)’
der(y)+x*(-1.0)+z*(-1.0) = 0.0 is used to solve for ’z’
***Valid causality!***

From this output, one can see that the compiler first tried with all integral causality but failed. Then
it succeeded in finding a valid causality assignment result for the model when variabley is given
derivative causality.

Inserting Derivative Equation and Integration Equation

TheµModelica compiler, inserts a derivative equation of the following form:

der(x) = (x−xold)/∆t
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for every variable that was given derivative causality. An integration equation of the following
form:

x = integration(xold,der(x))

is inserted for every variable that was given integral causality. For example, inserting these types
of equations leads to the following complete computation model for the previous system:

y = sin(time)
der(y) = (y−yold)/∆t

z = xold−der(y)
der(x) = y+z

x = integration(xold,der(x)) .

These additional equations are inserted at code generation time after the equations are sorted. That
is, they are not taken into account in sorting.

4.3 Sorting of Equations

Even though the original set of DAEs has been transformed to a causal representation, in general
they are not yet in a correct computation order. The following example (set of equations) illustrates
this problem when a mathematical sets of equations are coded in a programming language with
sequence semantics such as C, wheresin(time) is considered as known:

a = b2 +3
b = sin(c∗e)
c = (d−0.5)0.5

d = 1/2
e= sin(time)

If it is coded in the above sequence, uninitialized variables will be given a zero value which leads
to erroneous results: 

a = 3
b = 0
c = −0.50.5(exception)
d = 1/2
e= sin(time)

However, it is possible to compute the correct solution of the set of equations if they are re-arranged
in the following sequence: 

d = 1/2
e= sin(time)
c = (d−0.5)0.5

b = sin(c∗e)
a = b2 +3

Therefore, the equations must be sorted in the reverse order of their dependencies, i.e., if to com-
pute the value of an unknown it is necessary to know the value of another variable, then the latter
variable must be computed prior to this one. This section presents the algorithm for sorting the
equations into a correct computation order.
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4.3.1 Dependency Graph

Before equations are sorted, the computation dependency graph is built. Each vertex in the graph
represents a variable to be computed. An edge from vertexa to vertexb means that the value ofa
depends on the value ofb, i.e.,b appears on the RHS of the equation to computea. For example,
the computation dependency graph of the set of equations given above is shown in figure 4.2.

Figure 4.2: Sorting of Equations: Dependency Graph

4.3.2 The Algorithm

Based on the graph of computation dependency, the sorting of equations can be achieved by a
topological sortwith post-order numbering on this graph. The numbers indicate the order in which
equations are computed. In theµModelica compiler, the following algorithm is implemented to
determine the order in which equations need to be written:

# topSort() and dfsLabelling() both refer to the global counter,
# dfsCounter, which will be incremented during the topological sort.
# It is used to assign an orderNumber to each node in the graph.
dfsCounter = 1

# topSort() performs a topological sort on a directed graph
# (either acyclic or cyclic)
def topSort(graph G)
# mark all nodes as unvisited
for nods in G

node.visited = false
# start dfsLabelling() from any node in the graph until all
# nodes have been visited
for node in G
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if node.visited == false
dfsLabelling(node)

# dfsLabelling() performs a depth-First traversal of a possibly
# cyclic directed graph. Nodes are labelled with numbers.
def dfsLabelling(node n, graph G)
if node.visited == false

# mark the node as visited
node.visited = true
# perform dfsLabelling() on all neighbours
for neighbour in node.out_neighbour
dfsLabelling(neighbour, G)

# label the node with the counter and subsequently increment
# the counter
node.orderNumber = dfsCounmter
dfsCounter ++

# The program terminates when all nodes have been visited.
# As a result, all nodes are labelled with numbers which
# indicate the order of computation.

Figure 4.2 also shows the result of sorting. The numbers beside vertices indicate the order of
computation. The result of sorting is not unique. Figure 4.3 gives another correct computation
order.

Figure 4.3: Sorting of Equations: Another Sorting Result
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4.4 Algebraic Loop Detection

In some cases, sorting is not possible due to the existence of dependency cycles (algebraic loops).
For example, the following set of equations

x = y+16
y = −x−z
z= 5

can not be sorted since there exists a dependency cycle betweenx andy, or in other words, the
equations to calculatex andy form an algebraic loop. Therefore, before sorting equations, detecting
algebraic loops is required. Once detected, the equations involved should be isolated, and be solved
simultaneously either with symbolic or numerical methods.

4.4.1 The Algorithm

Detecting algebraic loops (finding dependency cycles) can be turned into the problem of locating
strongly connected componentsin a graph. A strongly connected component is a set of nodes in a
graph whereby each node is reachable from each other node in the strongly connected component.
Based on the result of the previous topological sort with post-order numbering, this problem can
be solved by producing a list of strongly connected components. If a node is not in a cycle, it will
be a strongly connected component with only itself as a member. Therefore, if there exist algebraic
loops, some of the strongly connected components in the produced list must contain more than one
node. The algorithm for locating strongly connected components is given below.

# Producing a list of strongly connected components.
# Strongly connected components are given as lists of nodes.
def strongCom(graph G)
# Perform a topological sort in the graph with post-order
# numbering (the algorithm is given in the previous section)
topSort(G)
# Produce a new graph with all edges reversed.
rev_graph = reverse_edges(G)
# Start with an empty list of strong components
strong_components = []
# Mark all nodes as not visited
for node in rev_graph:

node.visited = false
# As strong components are discovered and added to the
# strong_components list, they will be removed from rev_graph.
# The algorithm terminates when rev_graph is reduced to empty.
while rev_graph != empty:

# Start from the highest numbered node in rev_graph
start_node = highest_orderNumber(rev_graph)
# Perform a depth first search on rev_graph starting from
# start_node, collecting all nodes visited.
# This collection (a list) will be a strong component.
# dfsCollect() also marks nodes as visited to avoid infinite
# loops.
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component = dfsCollect(start_node, rev_graph)
# Add the found strong component to the list of strong
# components.
strong_components.append(component)
# Remove the identified strong component
rev_graph.remove(component)

If a subset of equations are located in the same strongly connected component, they will be iden-
tified as analgebraic loop. This subset of equations need not to be rewritten into causal form.
Instead, they will be solved simultaneously with numerical methods.

Causality assignnment, sorting, and algebraic-loop detection can also be carried out by transform-
ing the DAEs into theblock-lower-triangular(BLT) form. Algebraic loops can be more easily
identified in the BLT form. But using a dependency graph to detect algebraic loops is a clean and
didactic way to illustrate the problem and it enables visualization (for small problems).

In most cases, a Modelica model is finally transformed to a set of causally represented equations
with correct computation order. Such a set of equations may contain algebraic loops. Integrators
and algebraic loop solvers are required to compute the solution of the equations. In the worst case,
if formula manipulation fails, a DAE solver is required. But it is a far less efficient approach than
the previous one.

4.5 Design and Implementation

There are different approaches to implementing causality assignment, sorting, and algebraic-loop
detection. TheBlock-lower-triangular(BLT) transformation approach has been implemented in
some tools such as the PELAB openModelica compiler. It is a technique based on matrix transfor-
mation. Our implementation of these problems is purely based on graph algorithms. This section
presents the data structure and some issues in our implementation of the Back End.

4.5.1 The Data Structure

As mentioned earlier during the description of Dinic’s algorithm, the causality assignment problem
is turned into the problem of finding a maximum flow in a bipartite graph. Such a bipartite graph
consists of different types of nodes, and edges, as depicted in Figure 4.4.

A class hierarchy of nodes is defined. There are 3 types of nodes in a bipartite graph: the ones that
represent equations, the ones that represent variables, and the source and sink. The source and the
sink are instances of the parents classNode. Equations and variables are represented byEqNode
andVarNode, respectively.

A bipartite graph is an instance ofFlowGraph, which consists of a source, a sink, a list ofEqNode,
and a list ofVarNode. Also, there is a class calledFlowEdge representing outgoing edges from
each node. It is similar to the representation of an adjacency list. That is, each node has a list of
outgoing edges. Each edge specifies the destination node, as well as edge capacity and currently
flow.

Remember that in Dinic’s algorithm, alevel graphis created based on the residual graph. It is a
subgraph of the residual graph. It contains a subset of nodes of the residual graph, but the nodes are
connected by different edges. In our implementation, an object instance ofFlowGraph is used to
represent both flow/residual graph and level graph. The way that these two graphs are distinguished
is that, each node keeps two different lists to store its outgoing edges in a flow/residual graph and
its outgoing edges in a level graph, respectively. Even though this approach might cause more
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Figure 4.4: The Data Structure for Causality Assignment

coherence between the residual graph and the level graph, it is more efficient, in the rerouting step,
to combine a new blocking flow into the existing one in the residual graph.

Sorting is executed based on computational dependency, which is represented by a dependency
graph. Causality assignment gives one-to-one pairings (via saturated edges) between equation
nodes (EqNode) and variable nodes (VarNode) in the bipartite graph. Unsaturated edges from
equation nodes to variable nodes indicate computational dependency. A dependency graph is con-
structed by turning each pairing (consists of anEqNode and anVarNode linked by an saturated
edge) into aDNode, and unsaturated edges into dependency edges. The design of these classes is
shown in Figure 4.4.

4.5.2 Implementation Issues

Finding a blocking flow is the key issue in solving the problem of causality assignment in terms of
Dinic’s algorithm. This section presents our implementation (pseudocode) of theblocking stepin
Dinic’s algorithm.

Level Graph Construction

We are to find a blocking flow in a level graph. Before discussing the implementation of how to
find a blocking flow, we first show how a level graph is constructed.

In a residual graphR, thelevelof a vertexv is the length of the shortest path from the source node
s to v. The level graph Lfor a flow f is the subgraph ofR containing only the vertices reachable
from s, and only the edges[v,w] such thatlevel(w) = level(v)+1. L can be constructed inO(m)
time bybreadth-first search. The pseudocode of constructing a level graph is given as follows:

# G::FlowGraph
# G represents the residual graph
def buildLevelGraph(G):

# initialization
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for node in G.getAllNodes():
node.deleteAllOutgoingEdgesInL()
node.setVisited(false)
node.setLevel(0)

G.isSinkInL=False
G.source.setVisited(True)
L0=[G.source]
# a global counter of the current level during graph traversal
level=0
G.source.setLevel(level)
# graph traversal by breadth-first search
while L0 not empty:

level=level+1
# another list for breadth-first search
L1=[]
for v in L0:

for each unsaturated outgoing edge [v, w]:
# add edge [v,w] to L if w is not visited
if not w.isVisited():

w.setVisited(True)
w.setLevel(level)
# set the flag if L contains the sink node
if w==G.sink:

G.isSinkInL=True
L1.append(w)
v.addOutgoingEdgeInL([v,w])

# add edge [v,w] to L if level(w)=level(v)+1
else:

if v.level+1==w.level:
v.addOutgoingEdgeInL([v,w])

L0=L1
# now G also contains the information of the level graph
return G

A Blocking Step

A blocking step in Dinic’s algorithm consists of finding a blocking flowf ′ on the level graphL
with the current flowf , and replace the current flowf by f + f ′. The following method implements
a blocking step. The input to the method is a residual/level graph with flowf , and the output is the
same graph with flowf + f ′.

# Find a blocking flow f’ on the level graph L for the
# current flow f,
# and replace the current flow by f+f’
def blockingStep(L):

# initialize
p=[L.source]
v=L.source
while True:
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# Advance
outgoingEdges=v.getAllUnsaturatedEdgesInL()
# if v has outgoing edges
if outgoingEdges is not empty:

# by default, pick the first edge [v,w] in the list
[v,w]=outgoingEdges[0]
# replace path p by p+w, and v by w
p.append(w)
v = w
if v is not L.sink:

# repeat Advance
continue

# Retreat
else:

if v is L.source:
# halt
return L

else:
[u,v]=last edge of p
delete [u,v] in L
delete v in p
# replace v by u
v = u
continue

# Augment
# compute the saturated flow delta on p
delta=saturatedFlow(p)
for each edge (e) on p:

# add delta to the flow of every edge on p
e.addFlow(delta)
# add -delta to the flow of corresponding reversed edge
e1=reversed(e)
e1.addFlow(-delta)
#delete newly saturated edge in L
if e.getCap()==e.getFlow():

delete e in L
# initialize
p=[L.source]
v=L.source

return L

4.5.3 Extension to Hybrid Systems

Even though this thesis does not cover hybrid behavior in Modelica, it is important to consider that
the current data structure is capable of supporting hybrid models. That is, the current data struc-
ture should be capable of handling all Modelica features from syntax to semantics, and symbolic
transformation in the Back End.

It has been mentioned earlier that theµModelica compiler provides full support of Modelica syntax.
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The abstract syntax covers all Modelica constructs. The semantics of hybrid models is also defined
in terms of the translation of original Modelica source file into DAEs, while some of the DAEs
are conditionally evaluated. The current data structure supports conditional equstions. This should
enable the translation of hybrid models into flat Modelica.

Causality assignment is more complicated with hybrid behavior. Our implementation of causality
assignment is based on a very general graph data structure. It is hard to predict that the current data
structure will fully support hybrid systems in causality assignment. But we are confident that using
graph algorithms is general enough (as opposed to matrix-based approaches), and it will work with
hybrid models, possibly with additional structures.



5
Code Generator

As it has been mentioned, TheµModelica compiler project is an open-source project, and it is based
entirely on all freely available resources in the public domain. To meet the requirement that one can
simulate Modelica models with free resources, a free simulator is also needed.GNU Octaveis a
high-level language and environment which is primarily intended for numerical computation. It is
intended as a free alternative to Matlab. It can solve linear and nonlinear problems numerically, and
can perform other types of numerical experiments. It is a freely available software. TheµModelica
compiler currently generates Octave code. This approach is far from optimal, and the flavor of the
generated code is more suited forSimulink S-functionsor DSblock[20]. This chapter presents how
Octave is used to simulate Modelica models.

5.1 Problems to be Solved

After formula manipulation has been performed in the Back End, a set of implicit DAEs are possi-
bly transformed to a set of explicit (causal) equations, which might contain linear equations, ODEs
and integration equations, and algebraic loops (linear or nonlinear). This section discusses how
Octave solves each of these problems.

5.1.1 Integrating ODE

Octave is able to solve nonlinear differential equations of the following form:

dx
dt

= f (x, t)

with initial condition
x(t0) = x0.

Users must specify the functionf (x, t), i.e., the RHS of the equation, for Octave to integrate the
equation. Consider the following example:

function xdot = f(x, t)
a = 1.5
b = 2.0
c = 3.0
d = 6.0
xdot(1) = a*x(1)+b*x(1)*x(2)ˆ2
xdot(2) = cˆ2*x(1)+d*x(2)*x(1)ˆ2

endfunction
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This function will solve the following set of nonlinear ODEs{ dx1
dt = ax1 +bx1x2

2
dx2
dt = c2x1 +dx2x2

1

Users also need to specify the time space and the time step over which the differential equations
are integrated. For example,

t = linspace(0, 50, 200)

defines the set of output times as a column of vector, where 0 is the initial time, 50 is the end time
of integration. This time space is divided into 200 intervals. Given the initial condition

x0 = [1; 2]

the set of differential equations can be solved by calling the built-inlsodefunction

x = lsode("f", x0, t).

The return value is a matrix of size 2×200. The first column of the matrix corresponds to the value
of x1, and the second column corresponds to the value ofx2, at each time step. The output at initial
time corresponds to the initial condition given above.

5.1.2 Solving Nonlinear Equations

During formula manipulation in the Back End, algebraic loops are identified and the equations
involved are not transformed to causal representation. An algebraic loop can either be linear or
nonlinear. Octave can solve sets of nonlinear equations of the form

F(x) = 0

using the functionfsolve, which is defined as follow:

[x, in f o,msg] = f solve( f cn,x0)

where f cn is the name of a function of the formf (x), x0 is an initial guess value ofx. For example,
the function to solve the following set of nonlinear equations:{

2x2 +3xy+y2 = 5
3x−2xy2 +2y3 = 2

is written as :

function y = f(x)
y(1) = 2*x(1)ˆ2+3*x(1)*x(2)+x(2)ˆ2-5
y(2) = 3*x(1)-2*x(1)*x(2)ˆ2+2*x(2)ˆ3-2

endfunction

To solve this set of equations, one must give an initial guess ofx(1) andx(2). For example,

x0 = [0; 0].

Then callfsolveto find the roots of the system

[x, info] = fsolve("f", [0;0])

A return value ofin f o = 1 means that the solution has converged.
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5.2 The Structure of the Simulation Process

Figure 5.1 depicts the structure of the simulation process.

Figure 5.1: Structure of the Simulation Process

Consider the following example:

model Equation
constant Real pi=3.1416;
parameter Real a=2.0;
Real w, x, y, z;

equation
x = sin(time);
der(y)+x = yˆ2;
w+z+x = 3;
w-2*z = 1;

end Equation;

Given this model as input, theµModelica compiler transforms the equations into a causal form:
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x=a*pi+sin(time)
der(y)=(-1.0)*x+yˆ2.0
Algebraic Loop 1: -3.0+w+x+z = 0.0
Algebraic Loop 1: -1.0+w+z*(-2.0) = 0.0

and generates the following Octave code:

# set time
time_init=input("Please enter initial time: ");
time_end=input("Please enter end time: ");
time_step=input("Please enter time step: ");
num_of_intervals=(time_end - time_init)/time_step;
time = linspace(time_init, time_end, num_of_intervals)’;
# Constants
global pi_last=3.1416
# Parameters
global a_last=2.0
a_last=input("enter parameter value: a(2.0)");
# Variables and model initialization
global z=zeros(num_of_intervals, 1);
z(1)=input("Please enter initial value of z: ");
global z_last=z(1);
global w=zeros(num_of_intervals, 1);
w(1)=input("Please enter initial value of w: ");
global w_last=w(1);
global y=zeros(num_of_intervals, 1);
y(1)=input("Please enter initial value of y: ");
global y_last=y(1);
global der_y=zeros(num_of_intervals, 1);
der_y(1)=input("Please enter initial value of der_y: ");
der_y_last=der_y(1);
global x=zeros(num_of_intervals, 1);
x(1)=input("Please enter initial value of x: ");
global x_last=x(1);

function loop1 = f_loop1(x)
global x_last;
loop1(1)=(-3.0)+x(2)+x_last+x(1);
loop1(2)=(-1.0)+x(2)+x(1)*(-2.0);

endfunction

function y_dot = f_y(yi, ti)
global x_last;
global y_last;
y_dot(1)=(-1.0)*x_last+yi(1)ˆ2.0;

endfunction

for i=2:num_of_intervals
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# Equation 1
x(i)=a_last*pi_last+sin(time(i));
x_last=x(i);
# Equation 2
der_y(i)=(-1.0)*x_last+y_lastˆ2.0;
der_y_last=der_y(i);
time_i=linspace(time(i-1), time(i), 10)’;
yi0=[y_last];
y_i=lsode("f_y", yi0, time_i);
y(i)=y_i(10);
y_last=y(i);
# Equation 3
init_guess=zeros(2, 1);
[loop1, info]=fsolve("f_loop1", init_guess);
z(i)=loop1(1);
z_last=z(i);
w(i)=loop1(2);
w_last=w(i);

endfor

From this sample, we can see that the simulation process consists of the following steps:

• Set the initial time, end time, and time steps of a simulation run;

• Set up parameters for a simulation run;

• Set up initial conditions;

• Define functions to compute integration equations and algebraic loops;

• Compute the value of unknowns in order, at each time step.

Note that the main simulation loop advances simulation time in fixed time-steps. Within each
time step, Octave solvers, includinglsodeget called. Obviously, this use of Octave is overkill.
The structure of the generated code (without the time-step loop) is closer to that of Simulink S-
functions.

5.2.1 Time Setup

Before a simulation run, users are prompted to enter the initial time (usually 0), the end time, and
the number of intervals that this time space is divided into. Smaller time step leads to more accurate
simulation result, at the cost of lower run time efficiency.

5.2.2 Constants, Parameters, and Variables

In simulation models, it is meaningful to specify thevariability of identifiers. As in some other
modeling and simulation languages, three levels of variability are identified in Modelica:

1. Constant: the value of a constant never changes after it is declared. Wherever the identifier
occurs, it may be replaced by its value. Here in theµModelica compiler, substituting constant
values, which is calledconstant propagationin compiler theory, is not implemented. The
value of a constant identifier is evaluated at run time. But this is left as future work for code
optimization.
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2. Parameter: the value is set at the beginning of a simulation but remains constant during
a single simulation run. In generated Octave models, the literal value of a parameter is not
substituted in equations until that equations is evaluated. In future work, parameter equations
will be moved outside the time-step loop.

3. Variable: the value is set to an “initial condition” at the beginning of a simulation run and
may subsequently change over the whole integration domain. Variables occurring in the
form of der(x) (replaced byder x in Octave code) are calledderived statevariables. De-
pending on the causality aderived statevariable is assigned (integral causalityor derivative
causality), an integration equation or a derivative equation is inserted to solve both ofx and
der x. All other variables arealgebraicvariables. In Octave models, a zero vector of size
numberO f TimeIntervals×1 is created for each variable. Theith element of a vector corre-
sponds to the value of that variable at time stepi.

5.2.3 Global Variables

The RHS of an ODE, or an algebraic loop, may contain other algebraic variables, such as

der(y)=(-1.0)*x+yˆ2.0

in this example. To solvey by integration, the value ofx also need to be known. We can see that
from the function definition introduced in section 5.1.1, there is no way to pass the value ofx into
the function body as a formal parameter. The solution to solving this problem is to declarex as
a global variable. In Octave, a variable that has been declared asglobal may be accessed from
within a function body without having pass it as a formal parameter.

In generated Octave models, all variables, including constants and parameters, are declared as
global. Also, there is a reference to the latest evaluated value of each variable at the previous
time-step, e.g.,x last. These names are also declared as global.

5.2.4 Model Initialization

Before a simulation run, all variables in a model are assigned consistent initial values. This process
is calledmodel initialization. During this phase, all derivatives,der(...), are treated as unknown
algebraic variables. Initial values assigned to variables must beconsistent. They are subject to the
following constrains:

• All equations that are utilized in the intended operation;

• As equations in “initial equation” sections;

• Implicitly by using the value of attributestart in the declaration of variables.

Using the dependency graph described in section 4.3.1, it is possible to derive a consistent initial
state of a model. Model initialization has not yet been implemented in theµModelica compiler cur-
rently. Instead, users are responsible for creating a consistent initial state of a model, by assigning
each variable a value at initial time.

5.2.5 Defining Functions

For each explicit ODE, an integration equation is inserted. such an integration equation is turned
into a function representing the RHS of the corresponding differential equation in Octave. For
example, the ODE
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der(y)=(-1.0)*x+yˆ2.0

corresponds to the function

function y_dot = f_y(yi, ti)
global x_last;
global y_last;
y_dot(1)=(-1.0)*x_last+yi(1)ˆ2.0;

endfunction

Functions are also defined for identified algebraic loops. For example, the function

function loop1 = f_loop1(x)
global x_last;
loop1(1)=(-3.0)+x(2)+x_last+x(1);
loop1(2)=(-1.0)+x(2)+x(1)*(-2.0);

endfunction

is defined to solve the following algebraic loop:

Algebraic Loop 1: -3.0+w+x+z = 0.0
Algebraic Loop 1: -1.0+w+z*(-2.0) = 0.0

5.2.6 The For-Loop

The for-loop is designed to solve variables at each time step, in the order of their dependencies.
It starts from the second time step since the value of each variable at the first time step is deter-
mined by model initialization. Equations within the for-loop are written in the order of computation
dependency, which is the result of sorting described in section 4.3. The reference to the latest eval-
uated value of a variable is updated right after it is computed at each time step.

ODEs are integrated over the time interval of every two consecutive time steps, i.e., integrated at
each[t(i−1), t(i)]. Such a time interval is divided into 10 slices, i.e.,

time_i=linspace(time(i-1), time(i), 10)’

The value of integration at the 10th slice is assigned to the state variable being integrated.

5.2.7 Visualized Output

When the for-loop terminates, the solution signal for each variable is stored in the vector which
was created before the simulation run. Octave supports graphical output of simulation results. The
following command is used to display solutions graphically

plot(time, x)

For the above example, this gives figure 5.2
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Figure 5.2: GNU Plot Sample



6
Case Study

In order to show that theµModelica compiler is able to solve real problems, a case study is pre-
sented in this chapter. The study is based on the simple circuit example mentioned in chapter 1. It
is a circuit which consists of two resistors, a capacitor, a sine voltage source, and a ground point.
All these components are connected in, as shown in Figure 6.1.

R=1

Resistor1

R=1

Resistor2

Ground1

C
=1

C
apacitor1

S
ineV

oltage1=1

Figure 6.1: An Electrical Circuit

As it will be shown later in this chapter, this is a nontrivial case because the model involves the
most important features of Modelica, such as class inheritance, class modifications, components
coupled by connection equations, and non-causal modeling with implicit equations. Finally this is
a model that ends up with both ODEs and algebraic loops after causality assignment. This chapter
presents how theµModelica compiler translates the original Modelica source code of the model
into flat Modelica, the transformations of equations, and finally how Octave simulates the model.
The simulation result is compared to the one obtained in the demo version of the Modelica com-
mercial tool,Dymola 5, by Dynasim AB (http://www.dynasim.se/).

6.1 A Modelica Description of the Model

A complete description of the simple circuit model in Modelica is given as follows:

http://www.dynasim.se/
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// declaring physical quantities
type Voltage = Real (unit="V");

type Current = Real (unit="A");

// define connector class
connector Pin

Voltage v;
flow Current i;

end pin;

// define the partial model of components with two pins
partial model TwoPin "Superclass of elements with 2 electrical pins"

Pin p, n;
Voltage v;
Current i;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;

// definition of resistor
model Resistor "Ideal electrical resistor"

extends TwoPin;
parameter Real r (unit="Ohm") "Resistance";

equation
r * i = v;

end Resistor;

// definition of capacitor
model Capacitor "Ideal electrical capacitor"

extends TwoPin;
parameter Real c (unit="F") "Capacitance";

equation
c * der(v) = i;

end Capacitor;

// sine voltage source
model VsourceAC "sin-wave voltage source"

extends TwoPin;
parameter Voltage VA = 110 "Amplitude";
parameter Real f (unit="Hz") = 1 "Frequency";
constant Real pi = 3.14159265;

equation
v = VA*sin(2*pi*f*time);

end VsourceAC;
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// the ground point
model Ground "Ground"

Pin p;
equation

p.v = 0;
end Ground;

// the complete model
model circuit

Resistor R1(r=1);
Resistor R2(r=1);
Capacitor C(c=1);
VsourceAC AC;
Ground G;

equation
connect (AC.p, R1.p);
connect (R1.n, R2.p);
connect (R2.n, C.p);
connect (C.n, AC.n);
connect (AC.n, G.p);

end circuit;

From the source code, we can see that circuit components are built hierarchically from basic com-
ponents, i.e., predefined types. Subsequently, these circuit components are connected viaconnect
statements.

Since theµModelica compiler currently does not supportimportstatements, all the class definitions
have to be placed in one file. This file is the input to the compiler.

6.2 Translation to Flat Modelica

Given this file as input, theµModelica compiler eventually generates corresponding Octave code.
But there are some intermediate transformation steps which lead to corresponding intermediate
representations of the model. This section shows the intermediate representations in the Front End.

During the process of flattening, class inheritance is first expanded. The printout of the intermediate
representation of the expanded classes is as follows:

// expanded version of Resistor
model Resistor

Pin p, n;
Voltage v;
Current i;
parameter Real r (unit="Ohm");

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;
r * i = v;

end Resistor;
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// expanded version of Capacitor
model Capacitor

extends TwoPin;
Pin p, n;
Voltage v;
Current i;
parameter Real c (unit="F");

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;
c * der(v) = i;

end Capacitor;

// expanded version of VsourceAC
model VsourceAC

Pin p, n;
Voltage v;
Current i;
parameter Voltage VA = 110;
parameter Real f (unit="Hz") = 1;
constant Real pi = 3.14159265;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;
v = VA*sin(2*pi*f*time);

end VsourceAC;

In this model, bothResistor, Capacitor, andVsourceAC are derived classes ofTwoPin. All
declarations and equations inTwoPin are copied and inserted into these three classes, respectively.

Then the model is translated into flat Modelica in terms of flattening composite components, flat-
tening connect equations, and resolving modifications. After these translation steps have been ex-
ecuted, a flat Modelica description of the model is generated by the Front End:

model Circuit
flow Real R1_n_i;
Real R2_v;
parameter Real R1_r
Real G_p_v;
Real C_n_v;
Real R1_p_v;
flow Real R1_p_i;
flow Real G_p_i;
Real R2_i;
flow Real AC_n_i;
parameter Real R2_r;
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Real R1_n_v;
flow Real R2_n_i;
parameter Real C_c;
flow Real R2_p_i;
parameter Real AC_VA;
flow Real AC_p_i;
Real C_i;
flow Real C_p_i;
constant Real AC_pi;
Real R1_v;
Real AC_v;
Real AC_i;
Real C_p_v;
Real R1_i;
Real C_v;
Real AC_p_v;
Real AC_n_v;
Real R2_p_v;
flow Real C_n_i;
Real R2_n_v;
parameter Real AC_f;

equation
C_c*der(C_v)=C_i;
C_v=C_p_v-C_n_v;
0=C_p_i+C_n_i;
C_i=C_p_i;
R1_r*R1_i=R1_v;
R1_v=R1_p_v-R1_n_v;
0=R1_p_i+R1_n_i;
R1_i=R1_p_i;
G_p_v=0;
R2_r*R2_i=R2_v;
R2_v=R2_p_v-R2_n_v;
0=R2_p_i+R2_n_i;
R2_i=R2_p_i;
AC_v=AC_VA*sin(2*AC_f*AC_pi*time);
AC_v=AC_p_v-AC_n_v;
0=AC_p_i+AC_n_i;
AC_i=AC_p_i;
AC_p_i+R1_p_i=0.0;
AC_p_v=R1_p_v;
R1_n_i+R2_p_i=0.0;
R1_n_v=R2_p_v;
R2_n_i+C_p_i=0.0;
R2_n_v=C_p_v;
G_p_i+AC_n_i+C_n_i=0.0;
G_p_v=AC_n_v;
G_p_v=C_n_v;
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end Circuit;

In the flat Modelica description of the model, only modifications of real numbers or integers are
turned into equations. Modifications of strings, e.g., modification to theunit attribute, are ignored.

6.3 Formula Manipulation

The Back End performs formula manipulation on the set of equations declared in the flat Modelica
description. Formula manipulation includes the techniques of canonical transformation, causality
assignment, sorting and algebraic loop detection. This section shows the result of each transforma-
tion step.

6.3.1 Canonical Representation

The set of equations are transformed to the following canonical form:

C_c*der(C_v)+C_i*(-1.0)=0.0;
C_n_v+C_p_v*(-1.0)+C_v=0.0;
C_n_i*(-1.0)+C_p_i*(-1.0)=0.0;
C_i+C_p_i*(-1.0)=0.0;
R1_i*R1_r+R1_v*(-1.0)=0.0;
R1_n_v+R1_p_v*(-1.0)+R1_v=0.0;
R1_n_i*(-1.0)+R1_p_i*(-1.0)=0.0;
R1_i+R1_p_i*(-1.0)=0.0;
G_p_v=0.0;
R2_i*R2_r+R2_v*(-1.0)=0.0;
R2_n_v+R2_p_v*(-1.0)+R2_v=0.0;
R2_n_i*(-1.0)+R2_p_i*(-1.0)=0.0;
R2_i+R2_p_i*(-1.0)=0.0;
AC_VA*sin(2*AC_f*AC_pi*time)*(-1.0)+AC_v=0.0;
AC_n_v+AC_p_v*(-1.0)+AC_v=0.0;
AC_n_i*(-1.0)+AC_p_i*(-1.0)=0.0;
AC_i+AC_p_i*(-1.0)=0.0;
AC_p_i+R1_p_i=0.0;
AC_p_v+R1_p_v*(-1.0)=0.0;
R1_n_i+R2_p_i=0.0;
R1_n_v+R2_p_v*(-1.0)=0.0;
C_p_i+R2_n_i=0.0;
C_p_v*(-1.0)+R2_n_v=0.0;
AC_n_i+C_n_i+G_p_i=0.0;
AC_n_v*(-1.0)+G_p_v=0.0;
C_n_v*(-1.0)+G_p_v=0.0;

6.3.2 Causality Assignment

TheµModelica compiler finds a matching between equations and variables in causality assignment.
The result is as follows:

Eq: AC_n_i+C_n_i+G_p_i = 0.0
--is used to solve G_p_i
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Eq: AC_n_v*(-1.0)+G_p_v = 0.0
--is used to solve AC_n_v

Eq: C_p_i+R2_n_i = 0.0
--is used to solve C_p_i

Eq: C_n_v*(-1.0)+G_p_v = 0.0
--is used to solve C_n_v

Eq: R1_n_i+R2_p_i = 0.0
--is used to solve R1_n_i

Eq: R1_n_v+R2_p_v*(-1.0) = 0.0
--is used to solve R2_p_v

Eq: R2_n_v+R2_p_v*(-1.0)+R2_v = 0.0
--is used to solve R2_v

Eq: R2_i*R2_r+R2_v*(-1.0) = 0.0
--is used to solve R2_i

Eq: R2_i+R2_p_i*(-1.0) = 0.0
--is used to solve R2_p_i

Eq: R2_n_i*(-1.0)+R2_p_i*(-1.0) = 0.0
--is used to solve R2_n_i

Eq: AC_n_v+AC_p_v*(-1.0)+AC_v = 0.0
--is used to solve AC_p_v

Eq: AC_VA*sin(2*AC_f*AC_pi*time)*(-1.0)+AC_v = 0.0
--is used to solve AC_v

Eq: AC_i+AC_p_i*(-1.0) = 0.0
--is used to solve AC_i

Eq: AC_n_i*(-1.0)+AC_p_i*(-1.0) = 0.0
--is used to solve AC_n_i

Eq: AC_p_v+R1_p_v*(-1.0) = 0.0
--is used to solve R1_p_v

Eq: AC_p_i+R1_p_i = 0.0
--is used to solve AC_p_i

Eq: C_p_v*(-1.0)+R2_n_v = 0.0
--is used to solve R2_n_v

Eq: C_c*der(C_v)+C_i*(-1.0) = 0.0
--is used to solve der(C_v)

Eq: C_n_i*(-1.0)+C_p_i*(-1.0) = 0.0
--is used to solve C_n_i

Eq: C_n_v+C_p_v*(-1.0)+C_v = 0.0
--is used to solve C_p_v

Eq: R1_i*R1_r+R1_v*(-1.0) = 0.0
--is used to solve R1_v

Eq: C_i+C_p_i*(-1.0) = 0.0
--is used to solve C_i

Eq: R1_n_i*(-1.0)+R1_p_i*(-1.0) = 0.0
--is used to solve R1_p_i

Eq: R1_n_v+R1_p_v*(-1.0)+R1_v = 0.0
--is used to solve R1_n_v

Eq: G_p_v = 0.0
--is used to solve G_p_v
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Eq: R1_i+R1_p_i*(-1.0) = 0.0 is
--used to solve R1_i

By default, thederived state variable der(C v) is given integral causality. That is,der(C v) is
treated as an algebraic unknown, andC v is computed by integration.

6.3.3 Sorting and Algebraic Loop Detection

The µModelica compiler also found that there exists an algebraic dependency loop among some
of the equations. This is detected while the equations are sorted into a correct computation order
based on their computational dependencies.

--------------- Sorting ------------------
(1) R1_p_i---7: R1_n_i*(-1.0)+R1_p_i*(-1.0) = 0.0
(2) R1_i---8: R1_i+R1_p_i*(-1.0) = 0.0
(3) R1_v---5: R1_i*R1_r+R1_v*(-1.0) = 0.0
(4) G_p_v---9: G_p_v = 0.0
(5) AC_n_v---25: AC_n_v*(-1.0)+G_p_v = 0.0
(6) AC_v---14: AC_VA*sin(2*AC_f*AC_pi*time)*(-1.0)+AC_v = 0.0
(7) AC_p_v---15: AC_n_v+AC_p_v*(-1.0)+AC_v = 0.0
(8) R1_p_v---19: AC_p_v+R1_p_v*(-1.0) = 0.0
(9) R1_n_v---6: R1_n_v+R1_p_v*(-1.0)+R1_v = 0.0
(10) R2_p_v---21: R1_n_v+R2_p_v*(-1.0) = 0.0
(11) C_n_v---26: C_n_v*(-1.0)+G_p_v = 0.0
(12) C_p_v---2: C_n_v+C_p_v*(-1.0)+C_v = 0.0
(13) R2_n_v---23: C_p_v*(-1.0)+R2_n_v = 0.0
(14) R2_v---11: R2_n_v+R2_p_v*(-1.0)+R2_v = 0.0
(15) R2_i---10: R2_i*R2_r+R2_v*(-1.0) = 0.0
(16) R2_p_i---13: R2_i+R2_p_i*(-1.0) = 0.0
(17) R1_n_i---20: R1_n_i+R2_p_i = 0.0
(18) AC_p_i---18: AC_p_i+R1_p_i = 0.0
(19) AC_n_i---16: AC_n_i*(-1.0)+AC_p_i*(-1.0) = 0.0
(20) R2_n_i---12: R2_n_i*(-1.0)+R2_p_i*(-1.0) = 0.0
(21) C_p_i---22: C_p_i+R2_n_i = 0.0
(22) C_n_i---3: C_n_i*(-1.0)+C_p_i*(-1.0) = 0.0
(23) G_p_i---24: AC_n_i+C_n_i+G_p_i = 0.0
(24) AC_i---17: AC_i+AC_p_i*(-1.0)= 0.0
(25) C_i---4: C_i+C_p_i*(-1.0) = 0.0
(26) der(C_v)---1: C_c*der(C_v)+C_i*(-1.0) = 0.0

----------- Algebraic Loops --------------
Algebraic Loop: 1
20: R1_n_i+R2_p_i=0.0
7: R1_n_i*(-1.0)+R1_p_i*(-1.0)=0.0
8: R1_i+R1_p_i*(-1.0)=0.0
5: R1_i*R1_r+R1_v*(-1.0)=0.0
6: R1_n_v+R1_p_v*(-1.0)+R1_v=0.0
21: R1_n_v+R2_p_v*(-1.0)=0.0
11: R2_n_v+R2_p_v*(-1.0)+R2_v=0.0
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10: R2_i*R2_r+R2_v*(-1.0)=0.0
13: R2_i+R2_p_i*(-1.0)=0.0

6.3.4 Rewriting Equations into Explicit Form

The subset of equations that are involved in an algebraic loop are identified when the whole system
is rewritten into explicit form. They are grouped together and are placed in the right position
according to the computation order.

************* Equations in Explicit Form ***************
G_p_v=0.0
AC_n_v=G_p_v
AC_v=AC_VA*sin(2*AC_f*AC_pi*time)
AC_p_v=AC_n_v+AC_v
R1_p_v=AC_p_v
C_n_v=G_p_v
C_p_v=C_n_v+C_v
R2_n_v=C_p_v
Algebraic Loop 1: R1_n_i+R2_p_i = 0.0
Algebraic Loop 1: R1_n_i*(-1.0)+R1_p_i*(-1.0) = 0.0
Algebraic Loop 1: R1_i+R1_p_i*(-1.0) = 0.0
Algebraic Loop 1: R1_i*R1_r+R1_v*(-1.0) = 0.0
Algebraic Loop 1: R1_n_v+R1_p_v*(-1.0)+R1_v = 0.0
Algebraic Loop 1: R1_n_v+R2_p_v*(-1.0) = 0.0
Algebraic Loop 1: R2_n_v+R2_p_v*(-1.0)+R2_v = 0.0
Algebraic Loop 1: R2_i*R2_r+R2_v*(-1.0) = 0.0
Algebraic Loop 1: R2_i+R2_p_i*(-1.0) = 0.0
AC_p_i=(-1.0)*R1_p_i
AC_n_i=(-1.0)*AC_p_i
R2_n_i=(-1.0)*R2_p_i
C_p_i=(-1.0)*R2_n_i
C_n_i=(-1.0)*C_p_i
G_p_i=(-1.0)*AC_n_i+(-1.0)*C_n_i
AC_i=AC_p_i
C_i=C_p_i
der(C_v)=C_i*C_cˆ(-1.0)

6.4 Octave Code

Finally, the following Octave code is generated for the simple circuit model:

# simulation time set up
time_init=input("Please enter initial time: ");
time_end=input("Please enter end time: ");
time_step=input("Please enter time step: ");
num_of_intervals=(time_end - time_init)/time_step;
time = linspace(time_init, time_end, num_of_intervals)’;

# Constants
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global AC_pi_last=3.14

# Parameters
global R1_r_last=1
R1_r_last=input("enter parameter value: R1_r(1)");
global R2_r_last=1
R2_r_last=input("enter parameter value: R2_r(1)");
global C_c_last=1
C_c_last=input("enter parameter value: C_c(1)");
global AC_VA_last=110
AC_VA_last=input("enter parameter value: AC_VA(110)");
global AC_f_last=1
AC_f_last=input("enter parameter value: AC_f(1)");

# variables
global C_v=zeros(num_of_intervals, 1);
C_v(1)=input("Please enter initial value of C_v: ");
global C_v_last=C_v(1);
global der_C_v=zeros(num_of_intervals, 1);
der_C_v(1)=input("Please enter initial value of der_C_v: ");
der_C_v_last=der_C_v(1);
global C_i=zeros(num_of_intervals, 1);
C_i(1)=input("Please enter initial value of C_i: ");
global C_i_last=C_i(1);
global AC_i=zeros(num_of_intervals, 1);
AC_i(1)=input("Please enter initial value of AC_i: ");
global AC_i_last=AC_i(1);
global G_p_i=zeros(num_of_intervals, 1);
G_p_i(1)=input("Please enter initial value of G_p_i: ");
global G_p_i_last=G_p_i(1);
global C_n_i=zeros(num_of_intervals, 1);
C_n_i(1)=input("Please enter initial value of C_n_i: ");
global C_n_i_last=C_n_i(1);
global C_p_i=zeros(num_of_intervals, 1);
C_p_i(1)=input("Please enter initial value of C_p_i: ");
global C_p_i_last=C_p_i(1);
global R2_n_i=zeros(num_of_intervals, 1);
R2_n_i(1)=input("Please enter initial value of R2_n_i: ");
global R2_n_i_last=R2_n_i(1);
global AC_n_i=zeros(num_of_intervals, 1);
AC_n_i(1)=input("Please enter initial value of AC_n_i: ");
global AC_n_i_last=AC_n_i(1);
global AC_p_i=zeros(num_of_intervals, 1);
AC_p_i(1)=input("Please enter initial value of AC_p_i: ");
global AC_p_i_last=AC_p_i(1);
global R1_n_i=zeros(num_of_intervals, 1);
R1_n_i(1)=input("Please enter initial value of R1_n_i: ");
global R1_n_i_last=R1_n_i(1);
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global R1_p_i=zeros(num_of_intervals, 1);
R1_p_i(1)=input("Please enter initial value of R1_p_i: ");
global R1_p_i_last=R1_p_i(1);
global R1_i=zeros(num_of_intervals, 1);
R1_i(1)=input("Please enter initial value of R1_i: ");
global R1_i_last=R1_i(1);
global R1_v=zeros(num_of_intervals, 1);
R1_v(1)=input("Please enter initial value of R1_v: ");
global R1_v_last=R1_v(1);
global R1_n_v=zeros(num_of_intervals, 1);
R1_n_v(1)=input("Please enter initial value of R1_n_v: ");
global R1_n_v_last=R1_n_v(1);
global R2_p_v=zeros(num_of_intervals, 1);
R2_p_v(1)=input("Please enter initial value of R2_p_v: ");
global R2_p_v_last=R2_p_v(1);
global R2_v=zeros(num_of_intervals, 1);
R2_v(1)=input("Please enter initial value of R2_v: ");
global R2_v_last=R2_v(1);
global R2_i=zeros(num_of_intervals, 1);
R2_i(1)=input("Please enter initial value of R2_i: ");
global R2_i_last=R2_i(1);
global R2_p_i=zeros(num_of_intervals, 1);
R2_p_i(1)=input("Please enter initial value of R2_p_i: ");
global R2_p_i_last=R2_p_i(1);
global R2_n_v=zeros(num_of_intervals, 1);
R2_n_v(1)=input("Please enter initial value of R2_n_v: ");
global R2_n_v_last=R2_n_v(1);
global C_p_v=zeros(num_of_intervals, 1);
C_p_v(1)=input("Please enter initial value of C_p_v: ");
global C_p_v_last=C_p_v(1);
global C_n_v=zeros(num_of_intervals, 1);
C_n_v(1)=input("Please enter initial value of C_n_v: ");
global C_n_v_last=C_n_v(1);
global R1_p_v=zeros(num_of_intervals, 1);
R1_p_v(1)=input("Please enter initial value of R1_p_v: ");
global R1_p_v_last=R1_p_v(1);
global AC_p_v=zeros(num_of_intervals, 1);
AC_p_v(1)=input("Please enter initial value of AC_p_v: ");
global AC_p_v_last=AC_p_v(1);
global AC_v=zeros(num_of_intervals, 1);
AC_v(1)=input("Please enter initial value of AC_v: ");
global AC_v_last=AC_v(1);
global AC_n_v=zeros(num_of_intervals, 1);
AC_n_v(1)=input("Please enter initial value of AC_n_v: ");
global AC_n_v_last=AC_n_v(1);
global G_p_v=zeros(num_of_intervals, 1);
G_p_v(1)=input("Please enter initial value of G_p_v: ");
global G_p_v_last=G_p_v(1);
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# functions to compute ODEs
function C_v_dot = f_C_v(C_vi, ti)

global C_i_last;
global C_c_last;
C_v_dot(1)=C_i_last*C_c_lastˆ(-1.0);

endfunction

# functions to compute algebraic loops
function loop1 = f_loop1(x)

global R1_r_last;
global R1_p_v_last;
global R2_n_v_last;
global R2_r_last;
loop1(1)=x(1)+x(9);
loop1(2)=x(1)*(-1.0)+x(2)*(-1.0);
loop1(3)=x(3)+x(2)*(-1.0);
loop1(4)=x(3)*R1_r_last+x(4)*(-1.0);
loop1(5)=x(5)+R1_p_v_last*(-1.0)+x(4);
loop1(6)=x(5)+x(6)*(-1.0);
loop1(7)=R2_n_v_last+x(6)*(-1.0)+x(7);
loop1(8)=x(8)*R2_r_last+x(7)*(-1.0);
loop1(9)=x(8)+x(9)*(-1.0);

endfunction

for i=2:num_of_intervals
# Equation 1
G_p_v(i)=0.0;
G_p_v_last=G_p_v(i);
# Equation 2
AC_n_v(i)=G_p_v_last;
AC_n_v_last=AC_n_v(i);
# Equation 3
AC_v(i)=AC_VA_last*sin(2*AC_f_last*AC_pi_last*time(i));
AC_v_last=AC_v(i);
# Equation 4
AC_p_v(i)=AC_n_v_last+AC_v_last;
AC_p_v_last=AC_p_v(i);
# Equation 5
R1_p_v(i)=AC_p_v_last;
R1_p_v_last=R1_p_v(i);
# Equation 6
C_n_v(i)=G_p_v_last;
C_n_v_last=C_n_v(i);
# Equation 7
C_p_v(i)=C_n_v_last+C_v_last;
C_p_v_last=C_p_v(i);
# Equation 8
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R2_n_v(i)=C_p_v_last;
R2_n_v_last=R2_n_v(i);
# Equation 9
init_guess=zeros(9, 1);
[loop1, info]=fsolve("f_loop1", init_guess);
R1_n_i(i)=loop1(1);
R1_n_i_last=R1_n_i(i);
R1_p_i(i)=loop1(2);
R1_p_i_last=R1_p_i(i);
R1_i(i)=loop1(3);
R1_i_last=R1_i(i);
R1_v(i)=loop1(4);
R1_v_last=R1_v(i);
R1_n_v(i)=loop1(5);
R1_n_v_last=R1_n_v(i);
R2_p_v(i)=loop1(6);
R2_p_v_last=R2_p_v(i);
R2_v(i)=loop1(7);
R2_v_last=R2_v(i);
R2_i(i)=loop1(8);
R2_i_last=R2_i(i);
R2_p_i(i)=loop1(9);
R2_p_i_last=R2_p_i(i);
# Equation 10
AC_p_i(i)=(-1.0)*R1_p_i_last;
AC_p_i_last=AC_p_i(i);
# Equation 11
AC_n_i(i)=(-1.0)*AC_p_i_last;
AC_n_i_last=AC_n_i(i);
# Equation 12
R2_n_i(i)=(-1.0)*R2_p_i_last;
R2_n_i_last=R2_n_i(i);
# Equation 13
C_p_i(i)=(-1.0)*R2_n_i_last;
C_p_i_last=C_p_i(i);
# Equation 14
C_n_i(i)=(-1.0)*C_p_i_last;
C_n_i_last=C_n_i(i);
# Equation 15
G_p_i(i)=(-1.0)*AC_n_i_last+(-1.0)*C_n_i_last;
G_p_i_last=G_p_i(i);
# Equation 16
AC_i(i)=AC_p_i_last;
AC_i_last=AC_i(i);
# Equation 17
C_i(i)=C_p_i_last;
C_i_last=C_i(i);
# Equation 18
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der_C_v(i)=C_i_last*C_c_lastˆ(-1.0);
der_C_v_last=der_C_v(i);
time_i=linspace(time(i-1), time(i), 10)’;
C_vi0=[C_v_last];
C_v_i=lsode("f_C_v", C_vi0, time_i);
C_v(i)=C_v_i(10);
C_v_last=C_v(i);

endfor

6.5 Simulation Result

Given the following initial setup of a simulation run:

initial time: 0
end time: 10
time step: 0.02

parameter R1_r=1.0
parameter R2_r=1.0
parameter C_c=1.0
parameter AC_VA=110.0
parameter AC_f=1.0

initial value of all variables: 0

Octave generates theC v signal, as shown in Figure 6.2.
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Figure 6.2:C v produced by theµModelica Compiler and Octave

Given the same model as input to the demo version of the commercial tool Dymola, and the same
initial simulation setup, Dymola generates theC v signal shown in Figure 6.3.



6.6 Conclusion 96

� � � � � � �

��

��

�

�

�

� �

� �

�	


Figure 6.3:C v produced by the Demo version of Dymola

Also, comparisons are made between theC i signals generated by the two tools, as well asAC i.
These variables are shown in Figure 6.4, Figure 6.5, Figure 6.6, and Figure 6.7.

6.6 Conclusion

We can see that the simulation result given by theµModelica Compiler and Octave is almost
identical to that given by the demo version of Dymola. Even though large-scale testing has not
yet been performed, this case study shows that the compiler is able to compile and simulate non-
trivial models of continuous system.
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Figure 6.4:C i produced by theµModelica Compiler and Octave
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Figure 6.5:C i produced by the Demo version of Dymola
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Figure 6.6:AC i produced by theµModelica Compiler and Octave
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Figure 6.7:AC i produced by the Demo version of Dymola



7
Future Work

Given the objective that we are to build a research prototype compiler for Modelica, theµModelica
compiler currently only focuses on a subset of Modelica, which is the real essence of the language—
non-causal modeling. As shown in chapter 6, the compiler is able to solve non-trivial problems.
But compiling and simulating large models is not possible due to the absence of support for some
language features, such as import statements, arrays and matrices, etc. In order to make it possible,
and to employ large scale testing on the Modelica standard library, more language features will be
implemented in theµModelica compiler. Also, as a research prototype compiler, we are interested
in implementing some advanced formula manipulation techniques, such asteaingfor solving al-
gebraic loops [18], andinline integration[12]. This chapter gives an introduction to some of these
techniques, and proposes the future work for theµModelica compiler.

7.1 More Language Features

Among the language features to be supported, resolvingimport statementsand supportingarrays
are the most important ones. With the support of these two features, we can make use of the
Modelica standard library. Therefore, we will be able to simulate large models and perform large
scale testing, which will in turn give us feedback to improve the design and implementation of the
compiler.

7.1.1 Import Statement

An import Statementis introduced by the followingimport clause:

import (IDENT "=" name | name ["." "*"])

It can be either a qualified import statement, e.g.,import A.B.C, and import D=A.B.C, or an
unqualified import statement, e.g.,import A.B.*. The following example demonstrates various
forms of import statement:

package A
package B
partial model C
Real x;

end C;
model D
extends C(x=5);

end D;
end B;
package B1
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model C
extends B.C(x=4);

end C;
end B1;
package B2
model C
extends B.C(x=7);

end C;
model E=B.C(x=6);
model F=B.C(x=10);

end B2;
end A;

class Import1
import A.B.*;
import A.B2.*;
import A.B1.C;
import MyC=A.B2.C; //Note that a qualified import takes

// precedence over a unqualified import
C c;
D d;
E e;
MyC myc;

end Import1;

Qualified import statements may only import a package or an element of a package. For example,
in import A.B.C, or import D=A.B.C, A.B must be a package, whileC can either be a package or
an element of a package. Unqualified import statements may only import elements from packages,
e.g., inimport A.B.*, A.B must be a package.

Lookup of the name in an import statement is different from the normal lexical lookup. The first
part of the name, e.g.,A in A.B, is looked up at the top level.

Classes imported from external files can be loaded in two different ways. One of them is the
pessimisticapproach, that is, whenever an import statement is resolved, all imported classes are
loaded. Another approach is theoptimisticapproach, that is, a imported element will not be loaded
until it is used. For instance, in the sample model, classA.B2.F will not be loaded because it is
not used in classImport1. The first approach is easier to implement. But the latter one is more
efficient and use less memory space.

7.1.2 Arrays

Modelica supportsarrays andmatrices. An array variable can be declared by appending dimen-
sions after the type-specifier name or after a component name. For example

model Array1
Integer x[5] = {1,2,3,4,5};
Integer[3] y = 1:3;

end Array1;
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declares two arrays:x of size 5, andy of size 3. The flat Modelica description of this model is as
follows:

class Array1
Integer x[1];
Integer x[2];
Integer x[3];
Integer x[4];
Integer x[5];
Integer y[1];
Integer y[2];
Integer y[3];

equation
x[1] = 1;
x[2] = 2;
x[3] = 3;
x[4] = 4;
x[5] = 5;
y[1] = (1:3)[1];
y[2] = (1:3)[2];
y[3] = (1:3)[3];

end Array1;

From this description, we can see that the semantics of array variables is defined by expanding
arrays to individual scalar variables. The implementation of arrays is related to the implementation
of relevant language features such as thefor-loopconstruct. Further studies on arrays will be carried
out in the near future.

7.2 Formula Manipulation Techniques

This section introduces some of the formula manipulation techniques we have studied, which are
important in improving simulation run-time efficiency. These techniques will be implemented in
the future version of theµModelica compiler.

7.2.1 Eliminate Aliases

Recall that the flat Modelica description of the simple circuit model includes the following set of
equations:

C_c*der(C_v)=C_i;
C_v=C_p_v-C_n_v;
0=C_p_i+C_n_i;
C_i=C_p_i;
R1_r*R1_i=R1_v;
R1_v=R1_p_v-R1_n_v;
0=R1_p_i+R1_n_i;
R1_i=R1_p_i;
G_p_v=0;
R2_r*R2_i=R2_v;
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R2_v=R2_p_v-R2_n_v;
0=R2_p_i+R2_n_i;
R2_i=R2_p_i;
AC_v=AC_VA*sin(2*AC_f*AC_pi*time);
AC_v=AC_p_v-AC_n_v;
0=AC_p_i+AC_n_i;
AC_i=AC_p_i;
AC_p_i+R1_p_i=0.0;
AC_p_v=R1_p_v;
R1_n_i+R2_p_i=0.0;
R1_n_v=R2_p_v;
R2_n_i+C_p_i=0.0;
R2_n_v=C_p_v;
G_p_i+AC_n_i+C_n_i=0.0;
G_p_v=AC_n_v;
G_p_v=C_n_v;

Due to the “connect” statements in coupled models, the original set of equations contains many
aliases, e.g., there exist many trivial equations of the typea = b or a+ b = 0. Actually they are
the same variables stored under different names. In the simple circuit example, we can see that
16 out of 26 equations are of this type. It will seriously affect the simulation run-time efficiency
if all these trivial equations are computed during the simulation process. Actually, some of these
equations can be eliminated without affecting the simulation result. This section presents how these
equations can be eliminated.

The algorithm for eliminating aliases is straightforward. We only need to get rid of the equations
of the typea = b, and replace all occurrences of variablea in all other equations by variableb.
Also, this rule applies to the following variants ofa = b:

• a =−b

• −a = b

• −a =−b

• a+b = 0

• a−b = 0

• −a+b = 0

• −a−b = 0

• eithera or b is a constant

For example, equations of the typea+b = 0 is eliminated and all occurrences ofa are replaced by
-b.

There is an exception to this rule: variables that were declared asinput or output shouldnot be
eliminated. For instance, ifa is an input or output variable, the equationa = b will be eliminated
as well, but all occurrences ofb are replaced bya. If both a andb are declared as input or output
variables, the equation will not be eliminated.

The eliminated variables are no longer visible to the simulator. They will not be computed at
simulation run-time. But a user may be interested in knowing the simulation output of some of
those eliminated variables. This problem can be solved by keeping a reference table which stores
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the relationship of the eliminated variables to variables computed at simulation run-time. These
variables will only be computed when required.

7.2.2 Tearing

Once equations are identified as forming an algebraic loop, they are isolated and will be solved si-
multaneously, either with a symbolic solver or a numerical solver. There are two types of algebraic
loops, linear algebraic loops and non-linear algebraic loops. Linear algebraic loops can be solved
analytically using Cramer’s rule, or with numerical techniques in case the analytical solution grows
too large. Non-linear algebraic loops can not generally be solved by formula manipulation. It may
be preferrable to employ a numerical method to solve such a set of equations.

The technique to solve non-linear algebraic loops we are to discuss here is calledtearing, which
was introduced by Kron in 1962 [18]. It is a simple technique to reduce a large system of linear
or non-linear algebraic equations to a smaller system of equations. It consists of finding a reduced
subset of variables over which to iterate, so that the remaining paired variables can be calculated
explicitly as a function of these variables.

Consider a set of non-linear algebraically coupled equationsh to be solved for the unknown vector
z:

0 = h(z) (7.1)

Tearing means breaking algebraic loops in the dependency structure of equations and variables.
A subset ofz, calledz1, are chosen astearing variables. A subset ofh, calledh1, are chosen
asresidual equations. The choice is made in such a way that the remainder ofz, calledz2, can be
calculated in sequence using the remaining equationsh2, assuming that thez1 variables are known,
i.e.:

z2 = h2(z1) 0 = h1(z1,z2) (7.2)

This system of equations can be solved by Newton iteration over the tearing variablesz1. The
numerical procedure to computez is as follow:

• Choosez1

• Give an estimate toz1

• Compute :z2 = h2(z1)
• Compute the residual inres(z1) = h1(z1,z2)
• Iterate untilres(z1) are within tolerance.

We can observe from this procedure that it reduces the dimension of the iterated system of equa-
tions fromdim(h) = dim(h1)+dim(h2) down todim(h1).
However, the optimal selection of tearing variables and residual equations is not trivial. This is
because:

• The more tearing variables there are, the greater the computational overhead.

• Numerical errors may differ considerably from one selection to another.

• Fewer tearing variables may mean greater errors since the errors are propagated through the
equations and may be amplified.

These factors make it almost impossible to know automatically whether a selection of tearing
variables is good or not. This means that, in general, it is preferable for the user to make the choice
based on knowledge of the problem domain. But the compiler itself has to check whether the user’s
selection is valid.
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7.2.3 Inline Integration

Inline integration is a new method for solving DAEs using a mixed symbolic and numerical ap-
proach, which is proposed by [12].

In practice, it is either the modeling software or simulation software that converts the continuous-
time problem to a discrete-time problem that can be solved through iteration. Traditionally this
task was assigned to simulators. However, the conceptinline integrationenables the conversion of
continuous-time problem to discrete-time problem at compile time by modeling software.

The basic idea of inline integration is to transform ODEs to algebraic equations through either an
explicit or implicit integration method. The original set of DAEs will then be converted into a set
of purely algebraic equations. With this technique, a compiler is able to generate more efficient
simulation run-time code.

Continuous-time systems can essentially be represented as state-space models through a set of
ODEs:

der(x) = f(x, t); x(t0) = x0 (7.3)

whereder() denotes the time derivative,x is the vector of state variables,t denotes time, andf is a
set of assignment statements specifying how the derivatives ofx are computed, assuming the state
variablesx are known.

Solving (7.3) by any explicit integration method is straightforward. In the forward Euler method,
the derivative of the state vectorx is approximated by:

der(x(tn)) = der(xn) =
xn+1−xn

h
(7.4)

wherexn+1 = x(tn+1) is the unknown value ofx at the new time instanttn+1 = tn + h, xn = x(tn)
is the known value ofx at the previous time instanttn, andh is the time increment. Substituting
der(x) in (7.4) by (7.3) leads to the following recursive formula:

xn+1 = xn +h∗ f(xn, tn); x0 = x(t0) (7.5)

This formula can be used to solve the ODE, and it works well for non-stiff systems.

But unfortunately, explicit integration methods are not well suited for stiff systems or systems
which contain algebraic loops. Implicit integration methods are more appropriate in such cases
[12]. Using the backward Euler method, the derivative of the state vectorx is approximated by:

der(xn+1) =
xn+1−xn

h
(7.6)

Substitutingder(xn+1) in (7.6) by (7.3) leads to

xn+1 = xn +h∗ f(xn+1, tn+1) (7.7)

wherexn+1 is the unknown to be solved, givenxn andtn+1. Equation (7.7) can be rewritten as :

x = old(x)+h∗der(x) (7.8)

In general, (7.8) is a non-linear equation forxn+1, and usually it will be solved by numerical
methods.

Adding equation (7.5) (for non-stiff systems), or (7.8) (for stiff systems or systems containing
algebraic loops) to the original model represented by (7.3) will transform the the system to a set
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of purely algebraic equations, assuming that bothder(x) andx are unknowns. Given the following
sets of equations: 

AC v = sin(time)
C i = R1 v∗R1 r−1.0

R2 v = R2 r ∗C i
R2 p v = R2 v+(−1.0)∗C v

R1 v = AC v+(−1.0)∗R2 p v
der(C v) = C i ∗C c−1.0 .

adding (7.8) leads to the following system:

AC v = sin(time)
C i = R1 v∗R1 r−1.0

R2 v = R2 r ∗C i
R2 p v = R2 v+(−1.0)∗C v

R1 v = AC v+(−1.0)∗R2 p v
der(C v) = C i ∗C c−1.0

C v = h∗der(C v)+old(C v) .

where bothder(C v) andC v are treated as algebraic variables. This set of equations need to be
sorted again and checked for algebraic loops. To solve the system, a simulator no longer needs to
have an integrator. It only needs a solver for algebraic loops.

In many cases a model contains algebraic loops, and implicit inline integration method may intro-
duce extra algebraic loops. The tearing technique can be combined with inline integration to solve
the algebraic loop problem elegantly. It allows the automated transformation of model equations
to their discretized form in a simple way. Assuming the model is specified in ODE form by (7.3),
tearing provides an elegant formulation:

der(x) = f(x, t) (7.9)

x = old(x)+h∗der(x)+ res(x) (7.10)

In this discretized model, the original equations are not changed, while additional discretization
equations are added. Here bothx andder(x) are considered as unknowns.x is selected as tearing
variables. The solver will give an estimate forx, thender(x) is computed by the state equation (7.9).
Finally, the residuals are computed via equation (7.10) and returned to the solver. This process is
iterated until converged.

A general algorithm that transforms a DAE down to a suitable discretized form in an automatic
manner has been developed in [12]. A system of DAE is represented as

0 = f(der(x),x,w, t); x(t0) = x0 (7.11)

wherex is, as mentioned before, the vector of unknown variables that appear in the model in
differentiated form, whereasw is the vector of unknown purely algebraic variables. The algorithm
includes the following steps to perform inline integration of a DAE system:

1. Transform the system to casual form, sort the equations, and check if there exist algebraic
loops, assuming thatx is known, and thatw and der(x) are unknown.

2. For everyxi that can be solved explicitly in the partitioned equations, add the following
equation

xi = h∗der(xi)+old(xi)+ res(xi) (7.12)

For all otherx j , add the same equation but without the termres(x j).
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3. If the assigned equation ofder(x j) orwk appears in an algebraic loop, add the termres(der(x j))
or res(wk) to the corresponding model equation.

4. Repeat the first step whilew, der(x) andx are all treated as unknown variables, thereby utiliz-
ing the tearing information. As a result, nonlinear, discretized model equations are produced.

7.2.4 Higher Index Problem

Mathematical non-causal modeling of physical systems may result inhigher indexDAEs. However,
there are no general purpose solvers for higher index DAEs. These systems are usually solved in
terms of index reduction as described by Pantelides [21]. This topic is beyond the scope this thesis.
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A
Grammar

A.1 Stored definition
stored_definition:

[ within [ name ] ";" ]
{ [ final ] class\_definition ";" }

A.2 Class Definition
class_definition :

[ encapsulated ]
[ partial ]
( class | model | record | block | connector | type | package | function )

IDENT class_specifier

class_specifier :
string_comment composition end IDENT
| "=" base_prefix name [ array_subscripts ] [ class_modification ] comment
| "=" enumeration "(" [enum_list] ")" comment

base_prefix :
type_prefix

enum_list : enumeration_literal { "," enumeration_literal}
enumeration_literal : IDENT comment

composition :
element_list
{ public element_list |
protected element_list |
equation_clause |
algorithm_clause
}
[ external [ language_specification ]

[ external_function_call ] ";" [ annotation ";" ] ]

language_specification :
STRING
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external_function_call :
[ component_reference "=" ]
IDENT "(" [ expression { "," expression } ] ")"

element_list :
{ element ";" | annotation ";" }

element :
import_clause |
extends_clause |
[ final ]
[ inner | outer ]
( ( class_definition | component_clause) |
replaceable ( class_definition | component_clause)
[constraining_clause comment])

import_clause :
import ( IDENT "=" name | name ["." "*"] ) comment

A.3 Extends
extends_clause :

extends name [ class_modification ]

constraining_clause :
extends_clause

A.4 Component Clause
component_clause:

type_prefix type_specifier [ array_subscripts ] component_list

type_prefix :
[ flow ] [ discrete | parameter | constant ] [ input | output ]

type_specifier :
name

component_list :
component_declaration { "," component_declaration }

component_declaration :
declaration comment

declaration :
IDENT [ array_subscripts ] [ modification ]
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A.5 Modification
modification :

class_modification [ "=" expression ]
| "=" expression
| ":=" expression

class_modification :
"(" [ argument_list ] ")"

argument_list :
argument { "," argument }

argument :
element_modification
| element_redeclaration

element_modification :
[ each ] [ final ] component_reference modification string_comment

element_redeclaration :
redeclare [ each ] [ final ]
( ( class_definition | component_clause1) |
replaceable ( class_definition | component_clause1)
[constraining_clause])

component_clause1 :
type_prefix type_specifier component_declaration

A.6 Equations
equation_clause :

[ initial ] equation { equation ";" | annotation ";" }

algorithm_clause :
[ initial ] algorithm { algorithm ";" | annotation ";" }

equation :
( simple_expression "=" expression
| conditional_equation_e
| for_clause_e
| connect_clause
| when_clause_e
| IDENT function_call )
comment

algorithm :
( component_reference ( ":=" expression | function_call )
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| "(" expression_list ")" ":=" component_reference function_call
| conditional_equation_a
| for_clause_a
| while_clause
| when_clause_a )
comment

conditional_equation_e :
if expression then
{ equation ";" }

{ elseif expression then
{ equation ";" }

}
[ else
{ equation ";" }

]
end if

conditional_equation_a :
if expression then
{ algorithm ";" }

{ elseif expression then
{ algorithm ";" }

}
[ else
{ algorithm ";" }

]
end if

for_clause_e :
for for_indices loop
{ equation ";" }

end for

for_clause_a :
for for_indices loop
{ algorithm ";" }

end for

for_indices :
for_index {"," for_index}

for_index:
IDENT [ in expression ]

while_clause :
while expression loop
{ algorithm ";" }
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end while

when_clause_e :
when expression then
{ equation ";" }

{ elsewhen expression then
{ equation ";" } }

end when

when_clause_a :
when expression then
{ algorithm ";" }

{ elsewhen expression then
{ algorithm ";" } }

end when

connect_clause :
connect "(" connector_ref "," connector_ref ")"

connector_ref :
IDENT [ array_subscripts ] [ "." IDENT [ array_subscripts ] ]

A.7 Expression
expression :

simple_expression
| if expression then expression { elseif expression then expression } else
expression

simple_expression :
logical_expression [ ":" logical_expression [ ":" logical_expression ] ]

logical_expression :
logical_term { or logical_term }

logical_term :
logical_factor { and logical_factor }

logical_factor :
[ not ] relation

relation :
arithmetic_expression [ rel_op arithmetic_expression ]

rel_op :
"<" | "<=" | ">" | ">=" | "==" | "<>"

arithmetic_expression :
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[ add_op ] term { add_op term }

add_op :
"+" | "-"

term :
factor { mul_op factor }

mul_op :
"*" | "/"

factor :
primary [ "ˆ" primary ]

primary :
UNSIGNED_NUMBER
| STRING
| false
| true
| component_reference [ function_call ]
| "(" expression_list ")"
| "[" expression_list { ";" expression_list } "]"
| "{" function_arguments "}"
| end

name :
IDENT [ "." name ]

component_reference :
IDENT [ array_subscripts ] [ "." component_reference ]

function_call :
"(" [ function_arguments ] ")"

function_arguments :
expression [ "," function_arguments | for for_indices ]
| named_arguments

named_arguments:
named_argument [ "," named_arguments ]

named_argument:
IDENT "=" expression

expression_list :
expression { "," expression }

array_subscripts :
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"[" subscript { "," subscript } "]"

subscript :
":" | expression

comment :
string_comment [ annotation ]

string_comment :
[ STRING { "+" STRING } ]

annotation :
annotation class_modification
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