

Introduction to Maude

Xiaoxi Dong
March, 2010

Maude: A reflective language and
system

Maude is a high-performance reflective language
and system.
Maude supports equational specification and
programming and rewriting logic computation in a
systematic and efficient way
Some of the most interesting applications of
Maude are metalanguage applications, in which
Maude is used to create executable
environments for different logics, theorem provers,
languages, and models of computation.

Developed by UIUC, US

Maude System
● Module

● 1 functional module:
● 2 System module:
● 3 Oo module

● Maude
● Core Maude:

– 1 2
● Full Maude:

– 3

Maude
● Key concepts

● Module: a set of definitions
● Algebra: a set of sets and the operations on them
● Import: protecting, including, extending
● Sort: a category of values
● Subsort: further specific groups all belonging to the

same sort.
● Variable: an indefinite value of a sort. Only a

placeholder used in equations **be never used as
constants. Never have a definite value assign to
them. Cannot carry from one operation to another,

● Kind:super sort. Maude automatically defins a kind
when a sort is defined. Include all the connected
components. Important in error handling.

Maude
● Key concepts

● Operation: pathway between the sorts. Operator
overloading

● Constructor: ctor, fundamental operation that
defines the basics of the algebra. Bare minimum.
constant operation is usually a constructor.
*Maude constants are functions with no
independent variable.

● Flags of equational attributes: assoc comm id
(idem) on binary operators, iter for unbinary
repeated operators (sssss0=s_^5(0))

Maude
● Sorts and operations are the core foundation of

Maude.
● Common Supplied Modules

● Library : Nat , QID, STING

Functional Module
● Creating and Mapping out structures
● Equation: rules to simplifies an expression.

Same to normal mathematical equations.
● Expression with only constructors can not be simplified.
● Canonical form
● Non-termination problem of idempotency and identity in

recursion
● Conditional equation: ceq

● build-in Bool is lack of comparison operations, aka need an
extra NAT-BOOL module to define these operations.

● Maude2 can use pattern-match as condition
● := is used as pattern transformation, or say assignment

Function Module, contd.
● Membership axiom,membership logic, not

simplification
● Conditional membership axiom
● Importing and building on other modules
● matching condition: used in conditional membership axioms.

● Operator and Statement Attributes
● Equations can carry flags, or attributes → should it be only

ops can but not eqs??
● memo: memorization table, quicker reduce, useful when the

same expression appears many times
● prec + a number: precedence
● Gather + (key symbol): declare gathering pattern for same

precedence but not associative operators.
● owise/otherwise: for negtive pattern

Importing
● Junk, confusion: allowed but not nice (voilation).
● Junk is to new ground terms, ie ctor and constants
● Confusion is to redefining the already extant terms

● Protecting
● Maude compiler does not accept either junk or

confusion
● Extending

● Accept junk but not confusion
● Including

● Accept both

Operator overloading
● Subsort overloading
● Ad-hoc overloading: No, it is not a good idea.

kind
● Error term vs non-error term vs kind

● Reduce error term to non error

● Kind allows us to ignore error expressions
sometimes. It might prove constructive in some
situations.

System Module
● Transition that occurs within or between

structures
● Rewriting logic rl: state, transition
● Rewriting laws vs equations: p40
● States are constructors
● Order of operations:

● Deterministic and non-deterministic
● The rewrite command is a default strategy provided by

Maude.
● Other ordering strategies: fair rewrite,

● Conditional Rewrite Logic crl

Maude Environment
● Fmod

● set trace on .
● reduce in MODULE : expr .

● Mod
● rewrite/rew
● frewrite/frew: fair rewrite, pick up which rewrite laws

to apply such that no law goes ignored.
● continue x: continue current law for x more rewrites
● search: the path of laws from the beginning to the

end states. =>+ solution involve at least one laws,
=>! terminal state, M:State, show path x,

A Simple State Machine
● A Machine

fmod MACHINE is
sort Machine MachineId .
protecting QID .
subsort Qid < MachineId .

op Terminate : -> Machine .
op Start : -> Machine .
op <_> : MachineId -> Machine [ctor] .
op id_ : Machine -> MachineId [ctor] .

var X : MachineId .
var Y : Machine .
eq id < X > = X .
eq < id Y > = Y .

endfm

● An Event
fmod EVENT is
sort Event EventId .
protecting QID .
subsort Qid < EventId .

op None : -> Event[ctor] .
op evt_(_) : EventId Qid -> Event [ctor] .
op id_ : Event -> EventId [ctor] .
op e_ : EventId -> Event .

var X : EventId .
var Z : Qid .
eq id evt X (Z) = X .

endfm

A Simple State Machine
● The Soup of events and states

mod SOUP is
sort Soup .
protecting EVENT .
protecting MACHINE .
subsort Event Machine < Soup .

op null : -> Soup .
op __ : Soup Soup -> Soup [assoc comm id: null] .

endm

A Simple State Machine
● The State Machine

mod STATEMACHINE is
including SOUP .
var X : MachineId .
var Y : EventId .
op fire : Soup -> Soup [ctor]

rl [rule1] : evt '3' ('0') < '0' > => < '1' > .
rl [rule2] : evt '2' ('1') < '1' > => < '0' > .

rl [rule4] : evt '1' ('0') < '0' > => < '2' > .

crl [rule3] : evt Y (X) < X > => Terminate if X == Y .

endm

View
● Theories are used to declare module interfaces.
● Eg: Functional theory TRIV -->membership

equational logic theories
● The theory TRIV is used very often, for instance

in the definition of data structures.
● We use views to specify how a particular target

module or theory is claimed to satisfy a source
theory

● There can be many different views, each
specifying aparticular interpretation of the
source theory in the target

● Set of proof obligations -1----1> view
declaration

● View : name, the source theory, the target
module or theory, and the mapping of each sort
and operator in the source theory.

Analyzing the Model
● Rewriting: depth first
● Search: width first
● LTL: model checking

Object Oriented Modules
● It is part of the Full Maude: omod

– *Warning: Expertise and finesse required. It complicates.
The programmers may break the safe zone and crash
the Maude.

● Declare an object is to declare all the attributes of
the Class.

● To use the object, use the symbol
“<obj# : Sort | attribute, attributes >”

● Objects are above all data structures.
● Inheritance is implemented through class and

subclasses. Keyword 'subclass'
● Message: operation, the message act on or be

sent to an the object. One feed sort, instead of
class into a message. msg sit next to the object
they affect. Eg. sit@(A)

● Keyword msg for message, Msg is a built-in sort.

Meta-Programming
● It is a standard library module.
● It is not a part of either Core or Full Maude
● META-LEVEL module, the metamodel of fmod

and mod
● Full Maude does not have meta representation

in the standard library
● META-TERM META-MODULE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

