
社団法人 電子情報通信学会
THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報
TECHNICAL REPORT OF IEICE.

ポリシー規則と振る舞い仕様の分離への書き換え論理アプローチ

シャオシ ドン† 中島 震†

† 国立情報学研究所 〒 101–8430 東京都千代田区一ツ橋 2–1–2

E-mail: †nkjm@nii.ac.jp

あらまし オープンなシステムの開発では、利用者の振る舞いに仮定を置くことで、システム要件を簡単化できるこ

とがある。利用者は予め決められた運用規則（ポリシー規則と呼ぶ）に従うことが期待される。これに反する振る舞

いによってシステム全体が不具合に陥るかもしれない。また、システム運用開始後にポリシー規則が変更される可能

性もあり、その場合に対してもシステム要件は堅固であるか開発上流工程で知っておきたい。本稿では、システム機

能、利用者の振る舞いに加えて、ポリシー規則を明示的に分離する方法を提案する。また、書き換え論理の方法に基

づいて分離の一般的なフレームワークを論じる。

キーワード システム要件、ポリシー規則、妥当性確認、ラピッドプロトタイピング

Rewriting Logic Approach to Separating Policy Rules from Behavioral

Specification

Xiaoxi DONG† and Shin NAKAJIMA†

† National Institute of Informatics 2–1–2 Hitotsubashi, Chiyoda-ku, Tokyo, 101–8430 Japan

E-mail: †nkjm@nii.ac.jp

Abstract Requirements of open systems involve constraints not only on system functionalities but also on client

behavior. Ideally, clients are supposed to follow the policy rules derived from such constraints. However, when this

assumption is not true, the system might fall into abnormal status. Furthermore, policy rules may be changed even

after service-in, and knowing before-hand whether the system is robust or not in accordance with such changes is

desirable. This paper proposes a framework for system description in which client behavior and policy rules are

explicitly separated, which is encoded in rewriting logic proposed by J. Meseguer.

Key words System Requirements, Policy Rules, Validation, Rapid Prototyping

1. Introduction

Defining precisely the environment in which computing

systems are used is important at early stages of system de-

velopment [4]. It is especially true for systems to involve

users. Unfortunately thoroughly anticipating user behavior

is a hard task. Some users may be careless, and a few might

even try to cheat the system or obstruct other users. These

behavior could result in undesired consequences. The system

can be equipped with fancy gadgets to detect the anomalous

situations on-the-fly. This approach, however, may result in

an over-engineered system with exceeding budget. Alterna-

tively, the system assumes the users to follow a certain set

of policy rules without showing bad behavior. With such

assumptions, the system design can be less complicated.

Currently, the system requirements are studied together

with proper policy rules constraining users behavior. It, how-

ever, may happen that such policy rules are changed after

the system has been completed or even after coming into

operation. Policy rules are constraints on the user behav-

ior. Their changes do not seem to incur further development

cost, which is not true. The system had been developed un-

der certain assumptions which were assembled into a set of

policy rules. Therefore, a slight change in policy rules may

have much impact on the system behavior. It is desirable

to check before-hand whether the system is robust to such

changes. In a word, representing the policy rules explicitly

is mandatory for a long-term system evolution.

This paper discusses how the policy rules play an essen-

tial role in open systems that involves users. It proposes a

— 1 —

1

0 2

3

4

5

6

1 Location User

Outside Waiting Room Work Room

sensor

図 1 Guiding System Example

framework for system description in which user behavior and

policy rules are explicitly separated. Furthermore, an exam-

ple case following the proposed idea is encoded in Meseguer’s

rewriting logic [2] so that various analysis, such as validation

and property checking, is possible.

2. Guiding System : A Motivating Exam-

ple

In this paper, we use a Guiding System so as to illustrate

our idea (Figure 1). The Guiding System is a user-navigation

system for clients to access particular resources. Clients ar-

riving at the system check firstly if they have been registered.

They then wait in a waiting room until receiving a notice to

allow them to exclusively use the resource. The system keeps

track of the status information of resource usage and the

waiting queue of clients. When a resource is free, the system

will call a particular client in the waiting room. The client

moves to the work room where he can access the resource.

Except the above regular scenarios, a lot of cases could

happen. A client might try to go to the work room even if

he was not the one to be called. A client might walk around

in the waiting room disturbing others by blocking the door

to the work room. Some might be absent even if he is called,

and he would not use the resource at all.

The Guiding System might detect some of the anomalous

situations if certain fancy gadgets are available. For exam-

ple, all the clients locations can be monitored if they have a

remote badge that can be sensed by using wireless communi-

cations. It, however, will result in an over-engineered system

with exceeding budget.

Alternatively, the Guiding System is used with a certain

running policy, which poses some constraints on the client

behavior. In the real world, an officer works near the system

and he periodically checks to make sure all the clients behave

in a regular manner. For example, he will say to a client who

walks around in the waiting room, ”please sit down and wait

for the announcement.” The system can be defined without

being over-engineered since the clients are assumed to follow

mostly the regular scenarios. The implicit assumptions on

the client behavior are made explicit in the form of policy

rules.

3. Two-tiered Framework

The system, as discussed in Section 2., consists of many

entities executing concurrently. Some entities constitute the

Guiding System, and clients are autonomous to move in the

rooms. Furthermore, a hypothetical component to enforce

the policy rules executes independently from other entities.

Such observation leads us to adapting a modeling method of

using a set of communicating state-transition machines. Ad-

ditionally, we have introduced a notion of Location Graph to

reason about the clients movement. Below are some defini-

tions to constitute the model.

[Extended Mealy Machine] Extended Mealy Machine

(EMM) M is intuitively an object to have its own internal

attributes and to have its behavioral aspects specified by a

finite-state transition system. They communicate with each

other by sending and receiving events. M is defined as a

6-tuple

M = (Q, Σ, ρ, δ, q0, F)

Q is a finite set of states, Σ is a finite set of events, q0 is an

initial state, and F is a finite set of final states. A variable

map ρ takes a form of Q → 2V (a set of variables). A tran-

sition relation δ takes a form of Q × A × Q. The action A

has further structure to have the following functions defined;

in : A → Σ, guard : A → L, out : A → 2Σ where L is a set

of predicates.

Operationally, a transition fires at a source state q to cause

a state change to a destination p if and only if there is an

incoming event in(Aq) and guard(Aq) is true. In accordance

with the transition, possibly empty set of events out(Aq) are

generated. Furthermore, update function is defined on A,

which changes the attribute values stored in M .

[Configuration] Configuration constitutes a set of EMMs

and a communication buffer to store events (Σ) used for asyn-

chronous communication between EMMs.

[Run] Run of a EMMj (σj) is a sequence of states (Q)

which are obtained by a successive transitions from the ini-

tial state (q0) following the transition relation δ. A run of

Configuration is a possible interleaving of σj for all EMMs.

[Location Graph] Location Graph is a directed graph

(N , E). N is a set of locations, and a location is where

a client can occupy, that is, a client walks to move from a

location to another location. Since clients walk along the

edges between locations, nodes N are connected with edges

E, which together form a directed graph.

As seen in Figure 1, clients use doors to enter and leave a

room. Such doors correspond to particular edges that explic-

itly represent where clients can move from and to. Location

— 2 —

Policy Rules

User System

intercept
enforce

図 2 Two-tiered Framework

Graph, in this sense, represents the structure of the rooms

that the system works on.

Note that location in the graph does not correspond to

an actual place in the real world, but represents an abstract

place corresponding to a set of places. It is abstract in that

client behavior from any of the places in the set cannot be

distinguished.

[Location Projection] Location Projection ξ is a func-

tion to extract a pair of client Id and its Location from state

Q. Client is assumed here to be represented by an EMM;

ξ : Q → ClientId × N . Note that ξ can work only on Client

EMMs. It returns ϵ (null) for all the other EMMs.

[Location Trail] Location Trail is a sequence of location

projection, which is obtained from a (configuration) run to

be a sequence of ξ(σj).

[Policy Rule] Policy Rule monitors clients movement and

enforces them to do as anticipated. It keeps track of Loca-

tion Trail, and it checks whether a client trial movement is

admissible or not. A Policy Rule takes the following form.

if filter(x,l) then action(x)

where x and l refer to a client and the location trail respec-

tively. Currently, three forms of actions are considered; (a)

permission rule to allow the user as he wants to do, (b) stop

rule to instruct the user not to take any action, and (c) co-

ercion rule to make the user to move as the policy rule cal-

culates.

[Policy Enforcer] Policy Enforcer is an executing entity

who enforces a given set of Policy Rules. Policy Enforcer is

represented as a special kind of EMM. Since it uses Location

Trail and checks the clients trial, a new architectural mech-

anism is needed to monitor all the clients movement, Two-

tiered Framework. As seen in Figure 2, user movement trial

is conceptually intercepted and checked with Policy Rule,

and then its result is enforced.

4. Rewriting Logic Approach

4. 1 Overview of the Approach

Rewriting logic [2] is proposed by Jose Meseguer, which

follows the tradition of algebraic specification methods.

The logic extends order-sorted algebra to provide means

to describe state changes. Languages such as Maude and

CafeOBJ, based on Rewriting logic, are powerful enough

to describe concurrent, non-deterministic systems. Such

systems can be symbolically represented with appropriate

level of abstractions in the languages. Furthermore, Maude

tool provides advanced means to analyzing properties of the

systems with various state-space search methods such as

bounded reachability and LTL model-checking.

With Maude, the artifacts that we are interested in are

modeled as a collection of entities executing concurrently.

Their functional behavior is encoded with rewriting rules.

As shown in Figure 2, the proposed framework achieves sep-

arating policy rules and behaviors of both the user and sys-

tem. A bottom-line feature of the framework is to intercept

the events occurred at the bottom layer, and the policy rules

which will generate further events to enforce ”policies” on the

user. Since all of them can be represented as concurrently

executing entities, the framework is ready to be encoded in

Maude.

In this section we will show the example of using the al-

gebraic logic approach to describe the guiding system. The

following subsections explain the design and its Maude im-

plementation in detail. We breakdown the guiding system

as introduced in Section 2.. The foundation is the Location

Graph and Extended Mealy Machine. Each entity in the

guiding system acts as a state machine. Building on top of

them is the guiding system.

4. 2 Location Graph

Location graph creates an abstract image of the physical

location and the user machine can navigate through it. Fig-

ure 3 is an instance of location graph to represent an abstract

view of the example in Figure 1. Users start from Location

0 and move along the arrows. At each location, Users may

take some actions and they proceed to the next location if

prescribed conditions are satisfied.

1

0

2 3

4

56

図 3 Using Directed Graph to Represent Guiding System

In encoding the location graph in Maude, we define sev-

eral key Maude modules. Their importing relationships are

shown in Figure 4. Each location has a maximum number of

users to occupy it (Capacity). As users move around, their

locations are changed, which should always be kept track of.

We have defined Memory in addition to the location graph

instance (ROOM1) that represents the static graph structure

as shown in Figure 3.

— 3 —

Capacity

LocGraph

Memory

SensorRoom1(map)

Loc

Int

import import

import

import
import

import

import

図 4 Modules for Location Graph

4. 3 Extended Mealy Machine

Extended Mealy Machine provides means to express dy-

namic behavior. We have followed the standard recipe, the

Soup approach, to represent state-machines in Maude [2].

Figure 5 presents the modules to encode the machine. Soup

is a general structural entity to have Machines and Events

as components.

Each machine has a unique Id, the name of its type, and

a set of attribute-value pairs. The values can be integer,

unique Id, list of machine Ids or locations. The change of

machine states is triggered by events that contain its Id as

the receiver and satisfy specified conditions.

SOUP

UniqueId

Value

AttriValue

Attributes Loc

User Machine Wrapped Event

Machine Event

Attri

MIdList

import

import

import

import

import

import

import

import

extend extend

import

図 5 Modules for Extended Mealy Machine

As discussed in Section 2., some of the user behavior needs

to be monitored by the policy before being processed by the

system. As can be seen in Figure 2, some of the events

generated by the user, which may represent the monitored

behavior, is intercepted and dealt with by Policy Rules. A

certain tag is needed to mark these event to show that they

are monitored. We define the Wrapped Event module to

serve this purpose.

When a machine representing the user (User Machine in

Figure 5) generates a monitored event, it takes a form of a

Wrapped Event. This wrapped event does not trigger state

changes as others do, but is interpreted by the Policy. Then,

Policy, by applying policy rules, decides what to do. In nor-

mal cases, the unwapped event is delegated to the machine

that was supposed to receive it (Figure 6).

User Machine Policy
Wrapped

Event

Event

図 6 User Machine and Policy

4. 4 Guiding System

The last but not the least, it comes the module of the guid-

ing system. We import both the Location Graph and Mealy

Machine modules. There are six different types of modules in

the guiding system and each of them is considered a EMM.

Figure 7 shows the components and their interactions in the

guiding system. The system includes components such as

Door, GSys, CardReaders for either waiting or work room

(Figure 1), and Plugins deciding different user behaviours.

The instances of these components interact with each other

and change its own internal states. The CardReader1 can

access to DataBase to hold the profiles of all the registered

users, examine user identities and unlock the door of wait-

ing room. The CardReader2 extends CardReader1 so as to

match a particular user to enter the work room. The GSys

is the central controller of system state. It also takes care of

notifying users to proceed. Plugins are adjacent to the GSys.

They translate simple signal events into complex events such

as user entering, exiting and arriving.

Plugin1

Guide System

Plugin2

Door

CardReader2CardReader1

enter exit arrive

open
close

unlock
push

pushinside

swipe

announce

ack

ack

topqueue

update

open
close

unlock

swipe ack

図 7 Guiding System Components and Their Interactions

One important part in this example is to design the GSys,

— 4 —

the controller of the system. This module maintains the

waiting list, sending proceed signal to the users and monitor-

ing the entire system. The maintenance of the waiting list is

interesting as we can use only three events to maintain the

waiting queue and status of the work room which are,

• arrive: a user entering the waiting room from the out-

side which adds the user to the waiting list;

• enter: entering the work room from the waiting room

which removes the user from waiting list and set the occupied

sign true;

• exit: leaving the work room which releases the occu-

pied sign.

<0,Y>

<0.N>

<Q.Y> <Q,N>
arrive

arrive

exit

arrive

enter\

if [Q>0]

enter\ if [Q=0]

exit

/annc,

announce,

topqueue
temp

arrive

図 8 State Transition Diagram of GSys

The state changes are as shown in Figure 8. The user is

put in the waiting queue when he arrives, and removed from

the queue when he enters the work room. The work room is

released when he exits.

However, these user events are not detectable for the sys-

tem. What the system can detect directly is only the in-

formation such as card readers being swiped, door being

pushed, door status and sensor readings. We have to use

these primitive events to infer the three events mentioned

above. To do this we add PlugIn to the GSys. Figure 9

shows the plug-in that generates the enter and exit events.

2'

4'

3'

annc

pass'

1'

at all other events the state goes
back to 'idle'

2''

idle

pushin

open
3''

/exit

open

close

close /enter(u)

1''

図 9 State Transition Diagram of Plugin for Work Room

4. 5 Encoding in Details

After the design of modules, we show a few examples of

how to encode the modules in the Maude.

The Machine module is a functional module (fmod) that

provides a basic syntax for all the entities in the guiding

system. We use the following code for a machine.

fmod MACHINE is

sort Machine .

sort StateId . sort TypeId . protecting QID .

protecting MID . protecting ATTRIBUTES .

subsort Qid < StateId . subsort Qid < TypeId .

op <_:_|_;_> : MachineId TypeId StateId

Attributes -> Machine [ctor] .

endfm

The module MACHINE defines the sort Machine and im-

ports the sorts of Qid (a built-in Maude module for the

unique Id) and Attributes. It has a constructor which in-

cludes unique Id for the instance, the type of this instance,

the state and the attributes. Here is a simple example of

Machine, a DOOR.

extending SOUP .

op makeDoor : MachineId -> Machine [ctor] .

var D : MachineId .

eq makeDoor(D) = < D : ’Door1 | ’lock ; null > .

The constructor makeDoor is meant to have an initialized

instance of Door Machine. Their dynamic behavior, namely

state changes, is described in terms of a set of rewriting rules.

The rewriting rules represent the dynamic behavior as de-

picted by Figure 10.

push/ack(no)

lock unlock

open

unlock

push

/open,

doorAck(yes)

/refresh, update, close

pushinside

/open, doorAck(yes)

1

1

1

図 10 State Transition Diagram of Door

The state-transition diagram in Figure 10 shows its sim-

ple behavior, which is encoded by the rewriting rules below.

Each rewriting rule corresponds to a transition in the dia-

gram.

vars U : MachineId .

rl [1] : push(D, U) < D : ’Door1 | ’lock ; null >

=> < D : ’Door1 | ’lock ; null >

doorAck(U, false) .

rl [2] : unlock(D) < D : ’Door1 | ’lock ; null >

=> < D : ’Door1 | ’unlock ; null > .

rl [3] : push(D, U) < D : ’Door1 | ’unlock ; null >

=> < D : ’Door1 | ’open ; null >

open(’Plugin, D) doorAck(U, true) .

To open a door the user needs to send a ’push’ event. If the

— 5 —

door is locked, the rule [1] applies. The door remains shut

and send a ack(fail) event to the user. Rule [2] implies the

door can be unlocked by the card reader. When the door is

in ’unlock’ state, the state of Door is changed from unlocked

to open if the door receives a ’push’ (push from inside) event

from the user.

4. 6 Validation in Maude

Tha Maude description developed so far is composed of 32

modules in about 800 lines of codes. About 60 % of codes

are responsible for dynamic behavior, namely rewriting rules.

Below present some results of analysis conducted in Maude

2.4 running on Panasonic CF-W7 under Windows/XP.

Firstly, the initial state of the Guiding System shown in

Figure 1 is constructed. Secondly, some appropriate User(s)

together with Policy Enforcer are added to the initial state.

Here, we define the User so that it can initiate its action by

receiving an initial event start(u1). Furthermore, the Pol-

icy Enforcer is assumed to force the users to follow regular

behavior; a user leaves Location 0 and returns to the same

place after working in the Work Room. Such policy rules

are easy to write because all the trials of movement are in-

tercepted and are changed to regular behavior if abnormal.

Below, the execution results are represented as traces of a

tuple consisting of User and Location, (U, L).

The first example shows a trace for two users, u1 and u2.

The initial state includes two initial events start(u1) and

start(u2). Here is one possible trace taken from the result of

rewriting run in Maude.

(’u1, ’L1), (’u1, ’L2), (’u2, ’L1), (’u1, ’L3),

(’u2, ’L2), (’u1, ’L4), (’u1, ’L5), (’u1, ’L6),

(’u2, ’L3), (’u1, ’L0), (’u2, ’L4), (’u2, ’L5),

(’u2, ’L6), (’u2, ’L0)

As the trace shows, u2 moves to L1 after u1 goes to L2 since

L1 is a place to use Card Reader1 and only one user can

occupy the location at a time. It also shows that u2 stays at

L2 until u1 moves to L6.

The second example consists of a regular user u2 and an-

other user v1. V1, initially at L2, disturbs other users by

moving between L2 and L3 repeatedly. Since L3 is a place

to allow only one user, no other users can move to L3 while

v1 occupies the place. Here is a trace.

(’u2, ’L1), (’v1, ’L3), (’v1, ’L2), (’v1, ’L3),

(’u2, ’L2), (’v1, ’L2), (’v1, ’L3), (’v1, ’L2),

(’u2, ’L3), (’u2, ’L4), (’v1, ’L3), (’v1, ’L2),

(’u2, ’L5), (’v1, ’L3), (’v1, ’L2), (’v1, ’L3),

(’u2, ’L6), (’v1, ’L2), (’u2, ’L0)

Regardless of v1 behavior, the user u2 can move to L2 be-

cause more than one users can share the location. U2, how-

ever, has to wait before going to L3. The user v1 moves

between L2 and L3, and only occasionally L3 becomes avail-

able.

Furthermore, search command can be used to check if

there are execution paths from the initial state to target

states with specified conditions. The following ensures that

an execution path exists for u2 to enter the work room where

all refers to the initial state of the Guiding System with a

particular Policy Enforcer.

search all start(u2) =>* (REST:Soup)

< ’u2 : ’User | ’L4 ; ’InWork ; (R1:Attributes) >

< ’ichi : ’GSystem | ’busy ; (R:Attributes) >

5. Discussions and Conclusion

This paper first discussed the importance of separating

policy rules from behavioral specifications of both the system

and users. Then a two-tiered framework was proposed for

such separation, and a way of encoding it in Maude, a spec-

ification language based on rewriting logic [2]. The method

introduced a special tag to events that are to be intercepted

by the Policy. An alternative encoding method may be pos-

sible where the notion of reflection in Maude is used.

Clear distinction between the system and its external en-

vironment has been recognized important [3]. It, however,

does not consider separating the policy from the user, which

together constitute the environment. Relationship between

policy and system requirements is studied in security area [1].

As for the runtime enforcement of policies, Schneider [6] pro-

poses security automata, a variant of Buchi automata. This

paper uses policy rules which takes a form discussed in Sec-

tion 3.. The rules basically look at an execution history as

in the case of runtime monitoring [5].

文 献
[1] A.I. Anton, J.B. Earp, and R.A. Carter. Precluding Incon-

gruous Behavior by Aligning Software Requirements with

Security and Privacy Policies. Information and Software

Technology, Vol. 45 (14), pages 967-977, 2003.

[2] M. Clavel et al. All About Maude – A High-Performance

Logical Framework. Springer 2007.

[3] M. Jackson. Software Requirements & Specifications.

Addison-Wesley 1995.

[4] M. Jackson. The Role of Formalism in Method. In Proc.

FM’99, pages 56, 1999.

[5] S. Nakajima, K. Imai, and T. Tamai. Runtime Monitoring

of Behavioral Specifications (in Japanese). IEICE SIGSS,

October 2009.

[6] F.B. Schneider. Enforceable Security Policies. ACM Trans-

actions on Information and System Security, Vol. 3, No.1,

pages 30-50, 2000.

— 6 —

