
A Short Report for NII Intern

During the NII intern, I work with Professor Shin Naka-
jima whose research is in the area of algebraic model check-
ing and program checking. I work on a project about sepa-
rating the open system involving users and the policy rules
that constraints the user behaviour. I need to implement
the model of a guiding system using Maude, a algebraic
specification environment and a workshop paper was sub-
mitted to a workshop in Kyoto. The technology used in this
project includes algebraic specification, rewriting logicand
state machine. In the rest of this short report, I will intro-
duce what I learn from the project.

1 Two Tiered System

Defining precisely the environment in which comput-
ing systems are used is important at early stages of system
development. It is especially true for systems to involve
users. Unfortunately thoroughly anticipating user behav-
ior is a hard task. Some users may be careless, and a few
might even try to cheat the system or obstruct other users.
These behavior could result in undesired consequences. The
system can be equipped with fancy gadgets to detect the
anomalous situations on-the-fly. This approach, however,
may result in an over-engineered system with exceeding
budget. Alternatively, the system assumes the users to fol-
low a certain set of policy rules without showingbad be-
havior. With such assumptions, the system design can be
less complicated.

Currently, the system requirements are studied together
with proper policy rules to constrain users behavior. It, how-
ever, may happen that such policy rules are changed after
the system has been completed or even after coming into
operation. Policy rules are constraints on the user behav-
ior. Their changes do not seem to incur further development
cost, which is not true. The system had been developed un-
der certain assumptions which were assembled into a set of
policy rules. Therefore, a slight change in policy rules may
have much impact on the system behavior. It is desirable
to check before-hand whether the system is robust to such
changes. In a word, representing the policy rules explicitly
is mandatory for a long-term system evolution.

2 Two-tiered Framework

Policy Rule monitors clients movement and enforces
them to do as anticipated. It keeps track of Location Trail,

System

Policy Rule

User

Figure 1. Two-tiered Framework

and it checks whether a client trial movement is admissible
or not. A Policy Rule takes the following form.

if filter(x,l) then action(x)

where x and l refer to a client and the location trail respec-
tively. Currently, three forms of actions are considered; (a)
permission rule to allow the user as he wants to do, (b) stop
rule to instruct the user not to take any action, and (c) coer-
cion rule to make the user to move as the policy rule calcu-
lates.

Policy enforcer is an executing entity who enforces a
given set of Policy Rules. A new architectural mechanism is
needed to monitor all the user behavior, which is Two-tiered
Framework. As seen in Figure 1, user behavior is concep-
tually intercepted and checked with Policy Rule, and then
its result is enforced. The policy enforcer is one level above
the system and the users. It is able to monitor everything in
the lower level. The user behavior is sent up to the policy
enforcer and it is sent back to lower level. As a result, the
enforcer look over the system and make sure user behavior
conform to the policy and the system is running properly.
Policy rules include,

• Stop rule - to stop malicious user behavior. Ignore the
incoming behavior and return nothing.

• Correction rule - to correct improper user behavior.
Modify the incoming behavior and return the modified
behavior.

• Allow rule - to allow proper user behavior. Return the
behavior.

An example case following the proposed idea is encoded
in Meseguer’s rewriting logic so that various analysis, such
as validation and property checking, is possible.

3 Maude, the environment for algebraic
specifications

Maude is a high-performance reflective language and
system. It has been influenced in important ways by the
OBJ3 language, which can be regarded as an equational
logic sublanguage. Maude can describe the models both
statistics and dynamics. In other words, it supports both
equational specification and programming and rewriting
logic computation.

Maude uses algebraic specification to represent mathe-
matical structures and functions. An algebraic specification
achieves this goal by means of defining a number of sorts
(data types, category of values) together with a collectionof
functions(operators) on them. The advantage of using Al-
gebraic specification is its simplicity and strictness. While
the disadvantage is it is relative hard to start with. In addi-
tion, the effect of modelling is not explicit. A module is a
set of sorts and functions. The module that only have the
structures and functions is called a ’Function Module’.

Rewriting logic is a logic of concurrent change that can
naturally deal with state and with concurrent computations.
It has good properties as a general semantic framework for
giving executable semantics to a wide range of languages
and models of concurrency. In particular, it supports very
well concurrent object-oriented computation. The same rea-
sons making rewriting logic a good semantic framework
make it also a good logical framework, that is, a metalogic
in which many other logics can be naturally represented and
executed. The module that include such dynamic informa-
tion is called a ’System Module’.

Besides the system and function module, Maude also
support object oriented module.

Maude system includes two parts, Core Maude and Full
Maude. Core Maude provides the basic functionality of
Maude, including functional module, system module and
some useful analysing tools. Full Maude extends Core
Maude to include various analysing tool and modules such
as object oriented module. Full Maude is written in Maude,
and is thus platform-independent.

3.1 Function Module

Function Module represents the static structural and
functions. It defines a number of sorts and functions, i.e.
operators. Sort represent a category of values. Maude use
’subsort’ keyword to specify the relation between sorts. The
operators can be either constructor, i.e. fundamental opera-
tion that defines the basics of the algebra, or additional func-
tions. Constant operations are usually constructors. Equa-
tions are used to represent the rule to simplify an expres-
sion. Expression with only constructors can not be sim-
plified. Thus it is important to define how to represent a
additional operator using constructors. Maude also support
conditional equation. In addition current version of Maude2
can use pattern-match as condition too.

We can import definitions from other modules. Maude
provide three types of importing.

• protecting - does not change the content of the im-
ported module

• extending - can add new constructors to the imported
module

• including - can add new constructors and redefining
existing terms

Here we show an example of a function module.

fmod MACHINE is
sort Machine MachineId .
protecting QID .
subsort Qid < MachineId .

op Terminate : -> Machine [ctor] .
op <_> : MachineId -> Machine [ctor] .
op id_ : Machine -> MachineId .

var X : MachineId .
var Y : Machine .
eq id < X > = X .
ceq < id Y > = Y .

endfm

This example firstly define the name of the module. Inside
MACHINE module, there are two sorts, Machine and Ma-
chineId. We define the relation with other module, which
is importing QID without changing the content of QID. We
also define the subsort relation between sorts. Besides sup-
porting equational specification and programming, Maude
also supports rewriting logic computation. In the second
half, we have several operators. Terminate is a constant. ¡¿
is the constructor and id is additional operator. The equa-
tions then represent how to simplify the expressions.

3.2 System Module

System module can include everything that is in a func-
tion module. In addition, it can also represent the transi-
tion that occurs within or between structures, i.e. rewriting
logic.

Rewriting laws and equations solve very different prob-
lems. Equations are better than rewrite laws at simplifica-
tion; while rewrite laws are better at expressing problems
with just one level of simplicity. Rewriting laws also can il-
lustrate constitutional changes that equations canft; though
an equation may simplify an expression, the expression is
still mathematically equal to its predecessor.

In the case of more than one rewriting rules share the
same left hand side, Maude need to decide which rule to be
executed. The selection can be either deterministic or non-
deterministic. The rewrite command is a default strategy
provided by Maude. It always choose the first rule. To use
other ordering strategies, Maude provide fair rewrite, which
guarantee using all the rules.

Conditional Rewrite Logic are supported too. Following
is an example of system module.

mod STATEMACHINE is
protecting MACHINE .
protecting EVENT .
including SOUP .

var X : MachineId .
var Y : EventId .
rl [rule1] : evt ’3’ (’0’) < ’0’ > => < ’1’ > .
crl [rule3] : evt Y (X) < X > => Terminate if X == Y .

endm

Besides the same information that shows in a function
module, system module STATEMACHINE also defines
two rewriting rules. The first one represents when both
evt’3’(’0’) and <’1’ > appears, they should transform to
<’1’ >. The second rule is a conditional rule, which means
when Y equals X, the next state will be Termination.

3.3 Analyse The Models

There are three tools to analyse the rewriting, rewriting,
search and model checking. Rewriting executes the model
in the depth first order. It trace a specific execution path
until no more rules fits. Search executes in width first order.
It searches all the possible paths start from current state and
looking for a match to the destination state. Maude’s model
checking uses LTL. It also uses pattern matching.

4 Model a Guiding System use algebraic
specifications

4.1 Introduction to the Guiding System

The Guiding System is a user-navigation system for
clients to access particular resources privately. The guiding
system consists of three areas, outside, waiting room and
workrooms. The waiting room only allows clients who is
registered customer of the system while one workroom only
allows the property owner to enter. Clients arriving at the
system check at the waiting room door firstly. Those pass
the check enter and then wait in the waiting room. They
wait until being notified enter the workroom and use their
property. The clients leave the system afterwards.

1

0 2

3

4

5

6

1 Location User

Outside Waiting Room Work Room

sensor

Figure 2. A Guiding System Example

As in Figure2, the numbers represent areas, such as out-
side, in front of a card reader, in front of the door, so on and
so forth. The clients can move in the direction of the arrow.

Besides the above regular scenario, many unexpected
cases could happen. For example, a client might try to go
to the work room before he is called, a client might walk
around in the waiting room disturbing others by blocking
the door to the work room and some might be absent when
he is called and would not use the resource at all. The guid-
ing system could suffer from unexpected user behaviour. It
needs a set of rules to regulate clients behaviour. For this
reason, the guiding system serves a good example for the
two-tiered framework.

The Guiding System might detect some of the anoma-
lous situations if certain fancy gadgets are available. For
example, all the clients locations can be monitored if they
have a remote badge that can be sensed by wireless commu-
nications. It, however, would results in an over-engineered
system with exceeding budget.

Alternatively, the Guiding System is used with a certain
running policy, which poses some constraints on the client
behaviour. In the real world, an officer works near the sys-
tem and he periodically checks to make sure all the clients
behave in a regular manner. For example, he will say, to
a client who walks around in the waiting room, ”please sit
down and wait for the announcement.” In such design, the
system can be defined without being over-engineered since
the clients are assumed to follow the regular scenarios. The
implicit assumptions on the client behaviour are made ex-
plicit in the form of policy rules.

The second method is used in this project. The policy
rules are considered as a separate layer of a user involved
system. The user behaviours are sent to undergo the policy
check to enforce the legibility.

4.2 Breakdown the guiding system

We breakdown the guiding system as the Location
Graph. Extended Mealy Machine and system modules
building on top of them is the guiding system. Each entity
in the guiding system acts as a state machine.

4.2.1 Location Graph

Location graph creates an abstract image of the physical lo-
cation. the user machine can navigate through it.

1

0

2 3

4

56

Figure 3. Using Directed Graph to Represent
Guiding System

Figure 17 is an instance of location graph to represent an
abstract view of the example in Figure 2. Users start from
Location 0 and move along the arrows. At each location,

Users may take some actions and they proceed to the next
location if prescribed conditions are satisfied.

Capacity

LocGraph

Memory

SensorRoom1(map)

Loc

Int

import import

import

import
import

import

import

Figure 4. Modules for Location Graph

In encoding the location graph in Maude, we define sev-
eral modules. Their importing relationships are shown in
Figure 4. Each location has a unique Id (Qid) a maximum
number of users it can holds (Capacity). LocGraph de-
fines operators that navigates the locations. As users move
around, their locations are changed. The system must al-
ways be aware of user location. We have defined Memory
to store the status of the graph. In addition, ROOM1 ex-
tends Memory and LocGraph. It stores the connectivity and
the capacity of the locations.

4.2.2 Extended Mealy Machine

The guiding system is comprised of many entities which in-
teract with each other. In the system a user autonomous to
move between locations. We also need a hypothetical com-
ponent to enforce the policy rules executes independently.
Such observation leads us to adapting a modeling method
of using a set of communicating state-transition machines.

Extended Mealy Machine (EMM)M is intuitively an ob-
ject to have its own internal attributes and to have its be-
havioral aspects specified by a finite-state transition system.
They communicate with each other by sending and receiv-
ing events.M is defined as a 6-tuple

M = (Q, Σ, ρ, δ, q0, F)
Q is a finite set of states,Σ is a finite set of events,q0 is an
initial state, andF is a finite set of final states. A variable
mapρ takes a form ofQ → 2V (a set of variables). A tran-
sition relationδ takes a form ofQ × A × Q. The action
A has further structure to have the following functions de-
fined;in : A → Σ, guard : A → L, out : A → 2Σ whereL

is a set of predicates.
Operationally, a transition fires at a source stateq to

cause a state change to a destinationp if and only if there
is an incoming eventin(Aq) andguard(Aq) is true. In ac-
cordance with the transition, possibly empty set of events
out(Aq) are generated. Furthermore,update function is de-
fined onA, which changes the attribute values stored inM .

[Configuration] Configuration constitutes a set of
EMMs and a communication buffer to store events (Σ) used
for asynchronous communication between EMMs.

[Run] Run of aEMMj (σj) is a sequence of states (Q)
which are obtained by a successive transitions from the ini-
tial state (q0) following the transition relationδ. A run of
Configuration is a possible interleaving ofσj for all EMMs.

SOUP

UniqueId

Value

AttriValue

Attributes Loc

User Machine Wrapped Event

Machine Event

Attri

MIdList

import

import

import

import

import

import

import

import

extend extend

import

Figure 5. Modules for Extended Mealy Ma-
chine

Figure 5 presents the modules to encode the machine.
Each machine has a unique Id, the name of its type, and a
set of attribute-value pairs. The values of an attribute can
be integer, unique Id, list of machine Ids or locations. The
change of machine states is triggered by events that contain
its Id as the receiver and satisfy specified conditions. Soup
is a general structural entity to have Machines and Events
components. We also include two more components in the
SOUP, which is User Machine and Wrapped Event.

We have defined the User Machine in addition to normal
Machine. Here we take advantage of the Maude features for
pattern matching. Having a separate property for location is
faster to match than having it in the attributes. As we can
see, the content of the two modules are as following:

Machine
< MachineId : TypeId|StateId; Attributes >

vs
User Machine

< MachineId : TypeId|Loc; StateId; Attributes >

In the favor of the speed, we introduced the User Ma-
chine.

As discussed in the first Section, some of the user behav-
ior needs to be monitored by the policy before being pro-
cessed by the system. As can be seen in Figure 1, some of
the events generated by the user, which represent the mon-
itored behavior, are intercepted and dealt with by Policy
Rules. A tag is needed to mark these event to show that
they are monitored. We define the Wrapped Event in addi-
tion to Extended Mealy Machine to serve this purpose.

When a machine representing the user (User Machine in
Figure5) generates a monitored event, it takes the form of a
Wrapped Event. This wrapped event does not trigger state
changes as others do, but is interpreted by the Policy.

Then, Policy, by applying policy rules, decides what to
do. In normal cases, the unwapped event is delegated to the
machine that was supposed to receive it.

4.2.3 Guiding System

The last but not the least, it comes the module of the guiding
system. We import both the Location Graph and Mealy Ma-
chine modules. There are six different types of modules in
the guiding system and each of them is considered a EMM.

Plugin1

Guide System

Plugin2

Door

CardReader2CardReader1

enter exit arrive

open
close

unlock
push

pushinside

swipe

announce

ack

ack

topqueue

update

open
close

unlock

swipe ack

Figure 6. Guiding System Components and
Their Interactions

Figure 6 shows the components and their interactions in
the guiding system. Controller and Plugins are in control
of the system. The components such as Door, CardReaders
which are responsible for interacting with User machine and
sending basic signals to the Controller and its Plugins.

4.2.4 Card Readers and Door

This sections shows the design of the state transition dia-
gram for each components.

push/doorAck(no)

lock unlock

open

unlock

push

/open,

doorAck(yes)

/close

pushinside

/open, doorAck(yes)

Figure 7. State Transition Diagram of Door

The initial state of a door islock, in this state, the user
can not open the door from outside, but they can open the
door from inside. If the user passes the id check, the card
reader sends aunlock event to the door, so that the door is
unlocked. At this time, the user canpush the door and enter.
Then the door closes automatically. During the process, the
door will send aopen and aclose event to the corresponding
plugin. The door also sends acknowledgement signal to the
users as feedback.

idel

busy
swipe/validate

validate/unlock,ack(pass),pass'(U)

validate/ack(fail)

idel

busy
swipe/validate

validate/unlock

ack(true) pass'(U)

validate/ack(fail)

hold

topqueue(U)

Figure 8. State Transition Diagram of
CardReaders

The CardReader1 hold the profiles of all the registered
users, examine user identities and let the register clientsen-
ter. The CardReader2 extends CardReader1 so as to match
a particular user to enter the specified work room. Both
readers(Figure8) are inidle status initially. Card Reader
2 will receive the customer id fromtopqueue event and
change tohold state. Aswipe event will make both transit to
busy state and begin validating the request. The card readers
send feedbacks to the user. Card readers send apass event
to the corresponding plugin if the user passes the check as
well as the event to unlock the corresponding door.

4.2.5 Guiding System and its plugins

The Controller is the central controller of system state. It
maintains the wait list and keep track of work room status.
It notifies the users on top of the wait list to proceed. The
maintenance of the wait list is interesting as we are able to
use three events to maintain the wait list and status of the
work room, which are,

• arrive: a user entering the waiting room from the out-
side which adds the user to the wait list;

• enter: entering the work room from the waiting room
which removes the user from wait list and set the oc-
cupied sign true;

• exit: leaving the work room which releases the occu-
pied sign.

<0,Y>

<0,N>

<Q,Y> <Q,N>
arrive

arrive

exit

arrive

enter\enable

if [Q>0]

enter\enable if [Q=0]

exit

enable

/annc,

disable,

announce,

topqueue

temp

arrive/enable

Figure 9. State Transition Diagram of Con-
troller

The state changes are as shown in Figure 9. The user is
put in the wait list when hearrives, and removed from the
queue when heenters the work room. The work room is
released when heexits.

However, we still have a problem. The three user events
are not detectable for the system. What the system can de-
tect directly is only the information such as card readers
being swiped, door being pushed and door status. We have
to use these primitive events to infer the three events men-
tioned above. To do this we add Plugin modules. Plugins
are adjacent to the Controller. They translate simple signal
events into complex events such as user entering, exiting
and arriving. The following figures shows what happens in
the system should these complex event occur.

Card

Reader1
Door

unlock

swipe

GSys
with plugins

open

close

fail

pass
yes
no

pass'(usr)

Plugin1

arrive

push

Figure 10. Arrival Event

An arrival event is happened when pass from waiting
room door card reader, open from waiting room door and
close from waiting room door happens successively.

Card

Reader2
Door

GSys
with plugins

swipe

unlock

push

enter

announce

pass'(usr)

open

close

fail

pass yes
no

Plugin2

annc

Figure 11. Enter Event

An arrival event is happened when annc from Controller,
pass from work room door card reader, open from work
room door and close from work room door happens suc-
cessively.

Door
GSys

with plugins

pushin

exit

open

close

yes
no

Plugin2

pushin'

Figure 12. Exit Event

An exist event is happened when pushin from work room
door, open from work room door and close from work room
door happens successively.

2

idle

pass'

open
3

/arrive

close

1

Figure 13. State Transition Diagram of Plugin
for Work Room

2'

4'

3'

annc

pass'

1'

2''

idle

pushin

open
3''

/exit

open

close

close /enter(u)

1''

Figure 14. State Transition Diagram of Plugin
for Work Room

Figure 13 and Figure 14 show the plug-in state transition
diagram that generates the enter and exit events.

4.2.6 User Machine

The User Machine is the generator of user events. It allows
the system to execute autonomous.

The events that generated by the users trigger changes
of entity status. push change the door state from unlock to
open; pushin change the door state from lock to open; swipe
changes card reader state from idle to work.

mov/look(L', L'')

doorAck(t)/mov^(L', L'') if L'=L1,L3,L5,L6

announce(U)/mov^(L', L'') if L'=L2

doorAck(f)/mov^(L', L'') if L'=L1,L3,L5,L6

/mov^(L', L'') if L'=L0,L4

readerAck(t)/push(L', L'')

if L'=L1,L3

/pushin(L', L'') if L'=L5,L6

doorAck(f)/push(L', L'') if L'=L1,L3

doorAck(f)/pushin(L', L'') if L'=L5,L6

look(L,L')/takeoff(L,L') if !occupied(L')look(L,L')/takeoff(L,L')

if !occupied(L')

takeoff(L,L')/swipe(L') if L'=L1,L3

takeoff(L,L')/ if L'=L2,L4,L5,L6,L0

takeoff(L,L')/look(L,L')

if L'=L0-L6

Query Ready

At

Position
temp

Figure 15. State Transition Diagram User Ma-
chine

Except the event to interact with system components.
There are basic events that allow the User Machine move
autonomous in the location graph.

• look to start checking the availability of next location;

• takeoff to get prepared to move;

• step represents the user movement. It is wrapped and
sent to the PolicyEnforcer The user has some basic be-
haviours such as,

As shown in Figure.??, the User Machine starts from at-
Position. At a position, the user machine can carry out some
actions. Then the user machine intend to move to the next
location, so he sends a step event which is wrapped and ex-
amined by the Policy enforcer. If the policy enforcer agrees
with it. The step event is unwrapped and the user machine
goes to look if the next location is available. If so, he take
off and prepare to move. Once he move to the next location,
he is in atPosition state again. During the process, the user
can also choose to not follow the normal procedure. He
can choose to stay at the current position instead of mov-
ing forward, and he can also choose keep checking the next
location status instead of moving.

4.2.7 Policy Enforcer and Exceptional Behaviour

As in our example, the system only care about the user be-
haviours that affects the system status, that is the number of
clients in each node in the location graph. The policy mod-
ule is designed to monitor the events that changes the sys-
tem status, instead of all the user generated events. There-
fore the user behaviour such as swipe and push are not in-
teresting, and only the action ofstep to the next location in
the graph is wrapped and sent to the Policy Enforcer. Pol-
icyEnforcer monitors the status of the system and decide if
UserMachine’s wrapped step event is appropriate. As we
discussed in the previous section, the Policy Enforcer ex-
amine the user wrapped event and return proper event. But
how should Policy work?

Let’s consider some exceptional behaviours in this sec-
tion. For example, UserMachine moves constantly between

two locations 2 and 3 in the location graph(Figure??) after
he is notified. He is on top of the wait list and the system
can not remove him from the list until he enters the work-
room. Therefore every user behind him has to wait and the
system is blocked. A live lock occurs in the system. If User-
Machine generates such events, Policy Enforcer need ’stop’
it.

In this situation, the policy enforcer detects the problem
when the counter exceeds the limit. Then the policy en-
forcer try to resolve it. The solution to a guiding system
will be: Notify system manager(physically) and Remove
the User from the queue(electronically).

4.3 Encoding in Maude

After the design of modules, we show a few examples of
how to encode the modules in the Maude. Please refer to
the Appendix for the full code.

The Machine module is a functional module (fmod) that
provides a basic syntax for all the entities in the guiding
system. We use the following code for a machine.

fmod MACHINE is
sort Machine .
sort StateId . sort TypeId . protecting QID .
protecting MID . protecting ATTRIBUTES .
subsort Qid < StateId . subsort Qid < TypeId .
op <_:_|_;_> : MachineId TypeId StateId

Attributes -> Machine [ctor] .
endfm

The module MACHINE defines the sort Machine and
imports the sorts of Qid (a built-in Maude module for the
unique Id) and Attributes. It has a constructor which in-
cludes unique Id for the instance, the type of this instance,
the state and the attributes. Here is a simple example of
Machine, a DOOR.

extending SOUP .
op makeDoor : MachineId -> Machine [ctor] .
var D : MachineId .
eq makeDoor(D) = < D : ’Door1 | ’lock ; null > .

The constructor makeDoor is meant to have an initialized
instance of Door Machine. Their dynamic behavior, namely
state changes, is described in terms of a set of rewriting
rules. The rewriting rules represent the dynamic behavior
as depicted by Figure 7.

The state-transition diagram in Figure 7 shows its simple
behavior, which is encoded by the rewriting rules below.
Each rewriting rule corresponds to a transition in the dia-
gram.

vars U : MachineId .
rl [1] : push(D, U) < D : ’Door1 | ’lock ; null >

=> < D : ’Door1 | ’lock ; null >
doorAck(U, false) .

rl [2] : unlock(D) < D : ’Door1 | ’lock ; null >
=> < D : ’Door1 | ’unlock ; null > .

rl [3] : push(D, U) < D : ’Door1 | ’unlock ; null >

1

Outside Waiting Room

Work Room

u1

u2

1
0

2 3

4

567

Figure 16. A Guiding System Experiment

=> < D : ’Door1 | ’open ; null >
open(’Plugin, D) doorAck(U, true) .

To open a door the user needs to send a’push’ event. If the
door islocked, the rule[1] applies. The door remains shut
and send aack(fail) event to the user. Rule[2] implies the
door can be unlocked by the card reader. When the door is
in ’unlock’ state, the state of Door is changed from unlocked
to open if the door receives a’push’(push from inside) event
from the user.

The system allows some degree of uncertainty to illus-
trate the situations in the real world. The non-deterministic
rules, for example in the user machine, is expressed in two
rules with same left hand side and conditions but different
right hand side. To enable the non-deterministic, instead
of using rewrite command which always execute the rules
with highest priority, we use Maude fair rewrite command
to make sure all the rules are executed.

rl [r31] :
takeoff(M,X’) < M : ’User | X ; ’ready ; R > W
=> < M : ’User | X’ ; ’query ; R > .
crl [r32] :
takeoff(M,X’) < M : ’User | X ; ’ready ; R > W
=> < M : ’User | X’ ; ’atPosition ; R >

if X’ =/= ’L1 and X’ =/= ’L3 .

For the other parts of the code, please refer to the ap-
pendix.

5 Result and Conclusion

Having a complete system, we can carry out some exper-
iments to show how the system works. More test cases can
be found in setup.maude. Here we show one of the experi-
ment.

Test27 =
makeUser(’u2) makeUser(’u1) makeUser(’u3) makeUser(’u7)
makeUser(’u4) makeUser(’u6) makeUser(’u5) m(inc(inc
(inc(inc(inc(inc(inc(nobody, L(’L0)), L(’L0)), L(’L0)) ,

Figure 17. A Guiding System Experiment Re-
sult Screenshot

L(’L0)), L(’L0)), L(’L0)), L(’L0)))
makeDoor(’L1) makeCardReaderW1(’L1, (’u1 ’u2 ’u3 ’u4
’u5 ’u6 ’u7)) makeDoor(’L3) makeCardReaderW2(’L3)
makePlugin1(’Plugin1, ’Gsys, ’L1)
makePlugin2(’Plugin2, ’Gsys, ’L3)
makeGSys(’Gsys) tog(false)
makePolicy(’p) H *

This setup consists of 1 waiting room, 1 work room, corre-
sponding doors and card readers and the controller. There
are 7 users queuing to use the work room. We use fair
rewrite command to analyse the model. H* is used to trace
the route of each user.

The result is as such,

6 Future Work

The project discusses how the policy rules play an es-
sential role in open systems that involves users. It proposes
a framework for system description in which user behavior
and policy rules are explicitly separated. We also implement
an guiding system example to demonstrate this idea. As this
is the initial step of the research, there are many things can
be done in the future.

Investigate the policy for different application

The systems involving users are widely used in the mod-
ern world. They are used different domain, serve different
purpose and have different emphasis. The example we use
in this project, the guiding system is just the top of an ice-
berg. Therefore, it is interesting to discover more about the
policies for different domain. It is also interesting to opti-
mise the number of rules and their effects.

Develop the current example

Develop the current project to simulate more complex,
more real situations would be an interesting choice too. It
includes adding more non-deterministic and constructing
system with more locations and more complex edges.

Make use more Maude analysis functionality

We haven’t use the search and model checking technique
provided by Maude yet. Using these technology will help
us to find more interesting situation.

Follow Up Researches in Software Engineering

This project is the initial step of the research in software
engineering. The idea of using stand alone policies, despite
using the example of a real world application, could inspire
software engineering technology. For example, the policy
we used in this example to monitor the number of repeat
movement can, for sure, be used to resolve live lock.

It is worthy to note that the policy in this project is sim-
ilar to the concerns in aspect oriented design, whereas this
project accomplishes it in a different way.

Appendix: Maude code

--- LocGraph.maude
--- Basic Definitions for Location Graph
--- either static or dynamic, the latter being a kind of cache

fmod LOCATION is
sort Loc .
protecting QID .
op L : Qid -> Loc [ctor] .

endfm

view Loc from TRIV to LOCATION is ---We use views to specify ho w a particular target module or theory is claimed to satisfy
sort Elt to Loc .

endv

fmod CAPACITY is
sort Capacity .
protecting INT .
op c : Int -> Capacity [ctor] .
op many : -> Capacity [ctor] .
op _>_ : Capacity Int -> Bool .

vars N, M : Int . var C : Capacity .
eq many > M = true .
eq c(N) > M = N > M .

endfm

fmod LOC-GRAPH is
protecting LIST{Loc} .
protecting CAPACITY .
op next : Loc -> List{Loc} .
op max : Loc -> Capacity .
op allowed : Loc Int -> Bool .
op choose : List{Loc} -> Loc .

var X : Loc . var N : Int .
eq allowed(X,N) = max(X) > N .
op D : Qid -> Qid .
var XL : List{Loc} .
eq choose(X) = X .
eq choose(X XL) = X .

endfm

--- owise: acts like a conditional equation whose condition
---is the exact opposite of the first equation.

fmod MEMORY is
sort Memory . --- should be a subsort of Soup
protecting LOC-GRAPH .
protecting ARRAY{Loc, Int0} .

op m : Array{Loc, Int0} -> Memory [ctor] .
op nobody : -> Array{Loc, Int0} [ctor] .
op get : Memory Loc -> Int .
op inc : Array{Loc,Int0} Loc -> Array{Loc,Int0} .
op dec : Array{Loc,Int0} Loc -> Array{Loc,Int0} .
op move : Memory Loc Loc -> Memory .
op space? : Memory Loc -> Bool .

var M : Array{Loc,Int0} . vars X Y : Loc .
eq get(m(M),X) = (M)[X] .
eq inc(M,X) = insert(X,(M)[X] + 1, M) .
eq dec(M,X) = insert(X,(M)[X] - 1, M) .

eq move(m(M),X,Y) = m(inc(dec(M,X),Y)) .

eq space?(m(M),X) = allowed(X,(M)[X]) .
endfm

fmod SENSOR is
sort Sensor .
protecting MEMORY .
op SensorB : Qid Memory -> Bool .
op SensorI : Qid Memory -> Int .

var X : Qid . var M : Memory .
eq SensorB(X,M) = SensorI(X,M) > 0 .

endfm

--- Concrete Data

fmod ROOM1 is
including LOC-GRAPH .
including MEMORY .
including SENSOR .

eq next(L(’L0)) = L(’L1) .
eq next(L(’L1)) = L(’L2) .
eq next(L(’L2)) = L(’L3) .
eq next(L(’L3)) = L(’L4) .
eq next(L(’L4)) = L(’L5) .
eq next(L(’L5)) = L(’L6) .
eq next(L(’L6)) = L(’L7) .

---eq L(’L7) = L(’L0) .
eq next(L(’L2)) = L(’L6) .
eq next(L(’L3)) = L(’L2) .

eq max(L(’L0)) = many .
eq max(L(’L1)) = c(1) .
eq max(L(’L2)) = many .
eq max(L(’L3)) = c(1) .
eq max(L(’L4)) = c(1) .
eq max(L(’L5)) = c(1) .
eq max(L(’L6)) = many .
eq max(L(’L7)) = many .

eq D(’L5) = ’L3 .
eq D(’L6) = ’L1 .

eq nobody = L(’L0) |-> 0 .

var M : Memory .
eq SensorI(’Waiting,M) = get(M,L(’L2)) + get(M,L(’L3)) + g et(M,L(’L6)) .
eq SensorI(’Work1,M) = get(M,L(’L4)) + get(M,L(’L5)) . --- work room No1.

--- here the sensor id should conform to the map and
--- the id of rooms doors and sensors in statemachine.maude

endfm

--- State Machine ====

fmod MID is
sort MachineId .
protecting QID . subsort Qid < MachineId .

endfm

view MachineId from TRIV to MID is
sort Elt to MachineId .

endv

fmod MID-LIST is

sort MIdList .
protecting LIST{MachineId} .
subsort List{MachineId} < MIdList .

endfm

fmod VALUE is
sort Value .
protecting QID . protecting INT . protecting LOC-GRAPH . pro tecting MID-LIST .
subsorts Qid Int Loc MIdList < Value .

endfm

fmod EVENT is
sort Event .
protecting MID . protecting VALUE .

--- send to door
ops push pushin : MachineId MachineId -> Event .
op unlock : MachineId -> Event .

---- send to card reader waiting room
op swipe : MachineId MachineId -> Event .

--- send to card reader workroom
op topqueue : MachineId MachineId -> Event .

----send to Plugin
op annc : MachineId MachineId -> Event .
ops open close : MachineId MachineId -> Event .
---op update : MachineId MachineId -> Event .
op pass’ : MachineId MachineId MachineId -> Event .
op pushin’ : MachineId MachineId -> Event .

---send to Gsys
ops arrive enter : MachineId MachineId MachineId -> Event .
op exit : MachineId MachineId -> Event .

---send to user
op announce : MachineId MachineId -> Event .
ops readerAck doorAck : MachineId Bool -> Event .

--- interesting user event
op step : MachineId StateId Attributes Loc Loc -> Event .

endfm

fmod WRAPPER is
sort WREvent .
extending EVENT . subsort WREvent < Event .
op ˆ_(_) : Event MachineId -> WREvent [ctor] .
op ˆ_ : Event -> WREvent [ctor] .
op unwrap : WREvent -> Event .

var E : Event . var M : MachineId .
eq unwrap(ˆ(E)(M)) = E .
eq unwrap(ˆ(E)) = E .

endfm

fmod ATTRIBUTE is
sort Attributes .
protecting VALUE .
sort AttrId . subsort Qid < AttrId .
sort AttrValue . subsort AttrValue < Attributes .

op null : -> AttrValue [ctor] .

op _=_ : AttrId Value -> AttrValue [ctor prec 20] .
op _,_ : Attributes Attributes -> Attributes [ctor assoc com m id: null prec 25] .

--- the precedence of , and = need to be resolved. before that p lease use brakets ()
endfm

fmod MACHINE is
sort Machine .
sort StateId . sort TypeId . protecting QID .
protecting MID . protecting ATTRIBUTE . subsort Qid < StateI d . subsort Qid < TypeId .
op <_:_|_;_> : MachineId TypeId StateId Attributes -> Machi ne [ctor] .

endfm

fmod USER-MACHINE is
including MACHINE .
sort User . subsort User < Machine .
op <_:_|_;_;_> : MachineId TypeId Loc StateId Attributes -> User [ctor] .

endfm

mod SOUP is
sort Soup .
protecting WRAPPER .
protecting USER-MACHINE . protecting MEMORY . protecting H ISTORY .
subsorts History Memory Machine Event < Soup .
op empty : -> Soup [ctor] .
op __ : Soup Soup -> Soup [ctor assoc comm id: empty] .

endm

---- Guiding System
--- in LocGraph.maude
--- in StateMachine.maude

mod DOOR1 is
extending SOUP .

op makeDoor : MachineId -> Machine [ctor] .
var D : MachineId .
eq makeDoor(D) = < D : ’Door1 | ’lock ; null > . --- S = ’Waiting or ’Work

--- could MachineId be removed since the event is to outside w orld but not to another module

--- states: ’lock, ’unlock, ’open

vars U : MachineId . --- Bool : true/false

--- the priority of the rules matters. be careful. how to set p riority?
--- when push and unlock at the same time, it seems the push alw ays gets the advantage.

rl [close] : < D : ’Door1 | ’open ; null >
=> < D : ’Door1 | ’lock ; null > close(’Plugin, D) .
--- The id of the door and corresponding sensor and the room sh ould be the same

rl [pushinside] : pushin(D, U) < D : ’Door1 | ’lock ; null >
=> < D : ’Door1 | ’open ; null > open(’Plugin, D) doorAck(U, tru e)

pushin’(’Plugin, D) .

rl [unlock] : unlock(D) < D : ’Door1 | ’lock ; null >
=> < D : ’Door1 | ’unlock ; null > .

rl [pushopen] : push(D, U) < D : ’Door1 | ’unlock ; null >
=> < D : ’Door1 | ’open ; null > open(’Plugin, D) doorAck(U, tru e) .
--- should the Gsys MachineId be presented using a var instea d of constant?

rl [pushno] : push(D, U) < D : ’Door1 | ’lock ; null >
=> < D : ’Door1 | ’lock ; null > doorAck(U, false) .

endm

mod CARDREADERW1 is
extending SOUP .
op makeCardReaderW1 : MachineId MachineId -> Machine [ctor] .
var C : MachineId . var DB : MIdList .
eq makeCardReaderW1(C, DB) = < C : ’CardReaderW1 | ’idle ; ’db = DB > . --- C = ’Waiting or ’Work

--- internal events
op validate : MachineId MachineId -> Event . --- itself id, us er id
--- ops pass fail : MachineId MachineId -> Event . --- itself i d, user id

--- states: ’idle and ’busy

var U : MachineId . var R : Attributes .

rl [swipeact] : swipe(C, U) < C : ’CardReaderW1 | ’idle ; R >
=> validate(C, U) < C : ’CardReaderW1 | ’busy ; R > .

--- how to define fail or pass? now it is un derterministic. Th is must be resolved.
crl [validatef] : validate(C, U) < C : ’CardReaderW1 | ’busy ; ’db = DB , R >

=> readerAck(U, false) < C : ’CardReaderW1 | ’idle ; ’db = DB ,R >
if occurs(U, DB) == false .

crl [validatep] : validate(C, U) < C : ’CardReaderW1 | ’busy ; ’db = DB , R >
=> readerAck(U, true) < C : ’CardReaderW1 | ’idle ; ’db = DB , R >
pass’(’Plugin, U, C) unlock(C) if occurs(U, DB) == true .

endm

mod CARDREADERW2 is
extending SOUP .
extending CARDREADERW1 .
op makeCardReaderW2 : MachineId -> Machine [ctor] .
var C : MachineId .
eq makeCardReaderW2(C) = < C : ’CardReaderW2 | ’idle ; ’user = ’ > . --- C = ’Waiting or ’Work

--- states: ’idle, ’await and ’busy

var U U’ : MachineId .

rl [sysact] : topqueue(C, U) < C : ’CardReaderW2 | ’idle ; ’use r = ’ >
=> < C : ’CardReaderW2 | ’await ; ’user = U > .

rl [swipeact] : swipe(C, U’) < C : ’CardReaderW2 | ’await ; ’us er = U >
=> validate(C, U’) < C : ’CardReaderW2 | ’busy ; ’user = U > .

--- how to define fail or pass? now it is un derterministic. Th is must be resolved.
crl [validatef] : validate(C, U’) < C : ’CardReaderW2 | ’busy ; ’user = U >

=> readerAck(U’, false) < C : ’CardReaderW2 | ’idle ; ’user = ’ > if U =/= U’ .

crl [validatep] : validate(C, U’) < C : ’CardReaderW2 | ’busy ; ’user = U >
=> readerAck(U, true) < C : ’CardReaderW2 | ’idle ; ’user = ’ >

pass’(’Plugin, U, C) unlock(C) if U == U’ .
endm

mod PLUGIN1 is
extending SOUP .

op makePlugin1 : MachineId MachineId MachineId -> Machine [ctor] .

vars P G D : MachineId .
eq makePlugin1(P, G, D) = < P : ’Plugin1 | ’idle ; ’gsys = G , ’doo r = D, ’usr = qid("") > .

--- states: ’idle, ’a1, ’a2, ’a3, ’b1, ’b2, ’b3, ’b4, ’c1, ’c2 and ’c3

vars D1 U C : MachineId .
var R : Attributes .
var E : Event .

crl [a1] : < P : ’Plugin1 | ’idle ; R , ’door = D, ’usr = ’ > pass’(’P lugin, U, D)
=> < P : ’Plugin1 | ’a1 ; R , ’door = D, ’usr = U > if D == ’L1 .

---&&

rl [a2] : < P : ’Plugin1 | ’a1 ; R , ’door = D > open(’Plugin, D)
=> < P : ’Plugin1 | ’a2 ; R , ’door = D > .

rl [a3] : < P : ’Plugin1 | ’a2 ; R , ’door = D > close(’Plugin, D)
=> < P : ’Plugin1 | ’a3 ; R , ’door = D > .

rl [a0] : < P : ’Plugin1 | ’a3 ; R , ’door = D , ’gsys = G , ’usr = U >
=> < P : ’Plugin1 | ’idle ; R, ’door = D , ’gsys = G , ’usr = ’ > arrive (G, D, U) .

crl [c1] : < P : ’Plugin1 | ’idle ; ’door = D , R > pushin’(’Plugin , D)

=> < P : ’Plugin1 | ’c1 ; ’door = D , R > if D == ’L1 .

rl [c2] : < P : ’Plugin1 | ’c1 ; R , ’door = D > open(’Plugin, D)
=> < P : ’Plugin1 | ’c2 ; R , ’door = D > .

rl [c3] : < P : ’Plugin1 | ’c2 ; R , ’door = D > close(’Plugin, D)
=> < P : ’Plugin1 | ’c3 ; R , ’door = D > .

rl [c0] : < P : ’Plugin1 | ’c3 ; ’gsys = G , ’door = D, R >
=> < P : ’Plugin1 | ’idle ; ’gsys = G , ’door = D , R > .

endm

mod PLUGIN2 is
extending SOUP .

op makePlugin2 : MachineId MachineId MachineId -> Machine [ctor] .

vars P G D : MachineId .
eq makePlugin2(P, G, D) = < P : ’Plugin2 | ’idle ; ’gsys = G , ’doo r = D, ’usr = qid("") > .

--- states: ’idle, ’b1, ’b2, ’b3, ’b4, ’c1, ’c2 and ’c3

vars D1 U C : MachineId .
var R : Attributes .
var E : Event .

crl [b1] : < P : ’Plugin2 | ’idle ; R , ’door = D, ’usr = ’ > annc(’Pl ugin, D)
=> < P : ’Plugin2 | ’b1 ; R , ’door = D, ’usr = ’ > if D == ’L3 .

rl [b2] : < P : ’Plugin2 | ’b1 ; R , ’door = D , ’usr = ’ > pass’(’Plug in, U, D)
=> < P : ’Plugin2 | ’b2 ; R , ’door = D, ’usr = U > .

rl [b3] : < P : ’Plugin2 | ’b2 ; R , ’door = D > open(’Plugin, D)
=> < P : ’Plugin2 | ’b3 ; R , ’door = D > .

rl [b4] : < P : ’Plugin2 | ’b3 ; R , ’door = D > close(’Plugin, D)
=> < P : ’Plugin2 | ’b4 ; R , ’door = D > .

rl [b0] : < P : ’Plugin2 | ’b4 ; ’door = D, ’gsys = G , ’usr = U , R >
=> < P : ’Plugin2 | ’idle ; ’door = D , ’gsys = G , ’usr = ’ > enter(G, D, U) .

crl [c1] : < P : ’Plugin2 | ’idle ; ’door = D , R > pushin’(’Plugin , D)
=> < P : ’Plugin2 | ’c1 ; ’door = D , R > if D == ’L3 .

rl [c2] : < P : ’Plugin2 | ’c1 ; R , ’door = D > open(’Plugin, D)
=> < P : ’Plugin2 | ’c2 ; R , ’door = D > .

rl [c3] : < P : ’Plugin2 | ’c2 ; R , ’door = D > close(’Plugin, D)
=> < P : ’Plugin2 | ’c3 ; R , ’door = D > .

rl [c0] : < P : ’Plugin2 | ’c3 ; ’gsys = G , ’door = D, R >
=> < P : ’Plugin2 | ’idle ; ’gsys = G , ’door = D , R > exit(G, D) .

endm

mod GUIDESYSTEM1 is
extending SOUP .
protecting MID-LIST .

op makeGSys : MachineId -> Machine [ctor] .
var G : MachineId .
--- Because there is only one gsys in this system, the MId is se t to constatn ’Gsys
eq makeGSys(G) = < G : ’GuideSys | ’0_N ; ’queue = nil , ’isbusy = 0 , ’qlen = 0 > .

op tog : Bool -> Event .

--- states: ’0_N, ’1_N, ’0_Y, ’Q_Y, ’Q_N
var R : Attributes .
vars U S D C : MachineId .
var Q : MIdList .
var L : Int .

---- the design changed..

--- here we need to resolve the machine ids. What will happen i f htere is more than one
--- safe. the gsys need to keep one queue for each room. annc P f or 1 plugin but D are
--- different Doors

rl [arr1] : < G : ’GuideSys | ’0_N ; ’queue = nil , ’qlen = 0, R > arr ive(G, D, U)
=> < G : ’GuideSys | ’Q_N ; ’queue = (U) , ’qlen = 1 , R > .

rl [arr2] : < G : ’GuideSys | ’0_Y ; ’queue = Q , ’qlen = L , R > arriv e(G, D, U)
=> < G : ’GuideSys | ’Q_Y ; ’queue = (Q U) , ’qlen = (L + 1), R > .

rl [arr3] : < G : ’GuideSys | ’Q_N ; ’queue = Q , ’qlen = L , R > arriv e(G, D, U)
=> < G : ’GuideSys | ’Q_N ; ’queue = (Q U), ’qlen = (L + 1), R > .

rl [arr4] : < G : ’GuideSys | ’Q_Y ; ’queue = Q , ’qlen = L , R > arriv e(G, D, U)
=> < G : ’GuideSys | ’Q_Y ; ’queue = (Q U), ’qlen = (L + 1), R > .

rl [annc1] : < G : ’GuideSys | ’Q_N ; ’queue = Q , R > tog(false)
=> < G : ’GuideSys | ’Q_N_temp ; ’queue = Q, R > annc(’Plugin , ’L 3)
announce(head(Q), ’L3) topqueue(’L3, head(Q)) tog(true) .

------------ prelude.maude is modified in line1007 for hea d(List{X})

rl [exit1] : < G : ’GuideSys | ’Q_Y ; ’isbusy = 1, R > exit(G,D)
=> < G : ’GuideSys | ’Q_N ; ’isbusy = 0, R > .

rl [exit2] : exit(G, D) < G : ’GuideSys | ’0_Y ; ’qlen = 0, ’queue = nil , ’isbusy = 1 >
=> < G : ’GuideSys | ’0_N ; ’qlen = 0, ’queue = nil, ’isbusy = 0 > .

rl [ent1] : < G : ’GuideSys | ’Q_N_temp ; ’queue = Q , ’qlen = 1, ’i sbusy = 0 >
enter(G,D,U) tog(true)

=> < G : ’GuideSys | ’0_Y ; ’queue = nil , ’qlen = 0, ’isbusy = 1 >
tog(false) .

crl [ent2] : < G : ’GuideSys | ’Q_N_temp ; ’queue = Q , ’qlen = L , ’ isbusy = 0 >
enter(G,D,U) tog(true)

=>
< G : ’GuideSys | ’Q_Y ; ’queue = tail(Q) , ’qlen = (L + (- 1)) , ’is busy = 1 >
tog(false)

if L > 1 .

endm

--- Policy
mod POLICY1 is

extending SOUP .
protecting ROOM1 .
op makePolicy : MachineId -> Machine [ctor] .

var M : MachineId . var R : Attributes .
eq makePolicy(M) = < M : ’Policy | ’s0 ; null > .

var P : MachineId . vars X X’ : Loc . var E : Event . var S : StateId .
var W : Memory .

rl ˆ(step(M, S, R, X, X’)) < P : ’Policy | ’s0 ; null > => < P : ’Poli cy | ’s0 ; null > step(M, S, R, X, X’) .
endm

---- User

fmod ULPAIR is
protecting QID .
sort ULPair .
op _@_ : Qid Qid -> ULPair [ctor prec 29] .
op null : -> ULPair [ctor] .

endfm

fmod HISTORY is
sort History .
protecting ULPAIR .
subsort ULPair < History .
op H* : -> History [ctor] .
op _&_ : History History -> History [ctor assoc id: null prec 3 0] .

endfm

mod USER1 is
extending SOUP .
protecting ROOM1 .
protecting HISTORY .
op makeUser : MachineId -> User [ctor] .

op takeoff : MachineId Loc -> Event .
op look : MachineId Loc -> Event .
op mov : MachineId Loc Loc -> Event .
vars M U : MachineId . var R : Attributes .
eq makeUser(M) = < M : ’User | L(’L0) ; ’atPosition ; null > .

op updateM : Memory Loc Loc -> Event .

ops actcounter actcounter1 : MachineId -> Event .

vars X X’ : Qid . var XL : List{Loc} . var W : Memory .
var H : History .

eq updateM(W, L(X), L(X’)) = move(W, L(X), L(X’)) . --- op mov e in module MEMORY

--- calculat the next position

var S : StateId .

rl [step] : step(M, S, R, L(X),L(X’)) < M : ’User | L(X) ; ’temp ; R >
=> < M : ’User | L(X) ; ’query ; R > look(M, L(X’)) .

--- from initial state \AtPosition\ there are
crl [qr] : < M : ’User | L(X) ; ’atPosition ; R >

=> ˆ step(M,’atPosition, R, L(X), choose(next(L(X)))) < M : ’User | L(X) ; ’temp ; R >
if X == ’L0 or X == ’L4 .

--- query the intended position
crl [qry] : look(M, L(X’)) < M : ’User | L(X) ; ’query ; R > W

=> < M : ’User | L(X) ; ’ready ; R > W takeoff(M,L(X’)) if space?(W,L(X’)) == true .

crl [qrn] : look(M,L(X’)) < M : ’User | L(X) ; ’query ; R > W
=> < M : ’User | L(X) ; ’query ; R > look(M,L(X’)) W if space?(W,L (X’)) == false .

--- move to intended position
rl [mv2post] : takeoff(M,L(X’)) < M : ’User | L(X) ; ’ready ; R > W H

=> < M : ’User | L(X’) ; ’atPosition ; R > H & M @ X’
actcounter(M) updateM(W, L(X), L(X’)) .

---rl [staypost] : takeoff(M, L(X’)) < M : ’User | L(X) ; ’read y ; R >
--- => ˆ step(M, ’ready, R, L(X), choose(next(L(X))))
--- < M : ’User | L(X) ; ’temp ; R > .

--- some user actions at the position
crl [swipecard] : < M : ’User | L(X) ; ’atPosition ; R > actcount er(M)

=> < M : ’User | L(X) ; ’atPosition ; R > swipe(X, M)
if X == ’L1 or X == ’L3 .

crl [swipecard] : < M : ’User | L(X) ; ’atPosition ; R > actcount er(M)
=> < M : ’User | L(X) ; ’atPosition ; R >

if X =/= ’L1 or X =/= ’L3 .

crl [rdrprv] : < M : ’User | L(X) ; ’atPosition ; R > readerAck(M , true)
=> < M : ’User | L(X) ; ’atPosition ; R > actcounter1(M)

if X == ’L1 or X == ’L3 .

crl [push] : < M : ’User | L(X) ; ’atPosition ; R > actcounter1(M)
=> < M : ’User | L(X) ; ’inAction ; R > push(X, M)

if X == ’L1 or X == ’L3 .

--- the user is already removed from the waiting listin the Gu ide System,
--- if he did not pass then send him home
--- crl [rdrnprv] : < M : ’User | L(X) ; ’atPosition ; R > W H
--- readerAck(M, false) => ˆ step(M, ’atPosition, R, L(’L6) , choose(next(L(’L6))))
--- < M : ’User | L(X) ; ’temp ; R >
--- updateM(W, L(X), L(’L6)) H & M @ X’ .

crl [pushfrin] : < M : ’User | L(X) ; ’atPosition ; R >
=> < M : ’User | L(X) ; ’inAction ; R > pushin(D(X), M)

if X == ’L5 or X == ’L6 .

--- rl [heisastone] : < M : ’User | L(X) ; ’atPosition ; R >
--- => ˆ step(M,’atPosition, R, L(X), choose(next(L(X))))
--- < M : ’User | L(X) ; ’temp ; R > .

crl [drpr] : < M : ’User | L(X) ; ’inAction ; R > doorAck(M, true)
=> ˆ step(M,’inAction, R, L(X), choose(next(L(X))))

< M : ’User | L(X) ; ’temp ; R >
if X == ’L1 or X == ’L3 or X == ’L5 or X == ’L6 .

crl [drnpr] : < M : ’User | L(X) ; ’inAction ; R > doorAck(M, fals e)
=> < M : ’User | L(X) ; ’atPosition ; R >

if X == ’L1 or X == ’L3 or X == ’L5 or X == ’L6 .

crl [annc] : < M : ’User | L(X) ; ’atPosition ; R > announce(M, X’)
=> ˆ step(M,’atPosition, R, L(X), L(X’))

< M : ’User | L(X) ; ’temp ; R >
if X == ’L2 and X’ == ’L3 .

--- crl [hehasawalk] : < M : ’User | L(X) ; ’atPosition ; R >
--- => ˆ step(M,’atPosition, R, L(X), choose(next(L(X))))
--- < M : ’User | L(X) ; ’temp ; R >
--- if X == ’L0 or X == ’L4 .

endm

--- setup environment and test

cd ../../Documents\ and\ Settings/root/My\ Documents/My \ Project/secsys

in LocGraph.maude
in StateMachine.maude
in UserPolicy.maude
in PolicyEnforcer.maude
in secsys.maude
--- set trace on .

mod test is
protecting DOOR1 .
protecting CARDREADERW1 .
protecting CARDREADERW2 .
protecting PLUGIN1 .
protecting PLUGIN2 .
protecting PLUGIN3 .
protecting GUIDESYSTEM1 .
protecting USER1 .
protecting POLICY1 .

protecting MEMORY .

ops test0 test1 test2 test3 test4 test5 test6 test7 test8 tes t9 : -> Soup .
ops test10 test11 test12 test13 test14 test15 test16 test17 test18 test19 : -> Soup .
ops test20 test21 test22 test23 test24 test25 test26 test27 test28 test29 : -> Soup .

eq test0 = m(inc(inc(nobody, L(’L0)), L(’L5))) .

eq test1 = m(inc(inc(nobody, L(’L0)), L(’L2))) .

eq test2 = makeDoor(’Waiting) pushin(’Waiting, ’me) .

eq test3 = test2 test1 .

eq test4 = swipe(’Waiting, ’me) makeCardReaderW1(’Waitin g, (’34 ’3 ’me)) .

eq test5 = swipe(’Waiting, ’me) makeCardReaderW1(’Waitin g, nil) makeDoor(’Waiting) .

eq test6 = topqueue(’Work1, ’me) swipe(’Work1, ’me) makeCa rdReaderW2(’Work1) .

eq test7 = makePlugin2(’Plugin1, ’L3, ’Gsys) pushin’(’Plu gin, ’L3) open(’Plugin, ’L3) close(’Plugin, ’L3) .

eq test8 = makePlugin1(’Plugin2, ’L3, ’Gsys) pass’(’Plugi n, ’u0, ’L1) close(’Plugin, ’L1) open(’Plugin, ’L1) .

eq test9 = makePlugin2(’Plugin3, ’L3, ’Gsys) annc(’Plugin , ’L3) pass’(’Plugin, ’u0, ’L3) open(’Plugin, ’L3) close(’ Plugin,

eq test10 = makeGSys(’d) arrive(’d, ’L1, ’U1) arrive(’d, ’L 1,’U2) arrive(’d, ’L1,’U3) tog(false) .

eq test11 = makeGSys(’d) arrive(’d, ’L1, ’U1) arrive(’d,’L 1, ’U2) arrive(’d, ’L1, ’U3) tog(false) enter(’d, ’L3, ’U1)

eq test12 = makeGSys(’d) arrive(’d, ’L1, ’U1) arrive(’d, ’L 1,’U2) tog(false) enter(’d, ’L3, ’U1) .

eq test13 = makeGSys(’d) arrive(’d, ’L1, ’U1) arrive(’d, ’L 1,’U2) tog(false) enter(’d, ’L3, ’U1) exit(’d, ’L3) .

eq test14 = makeGSys(’d) arrive(’d, ’L1, ’U1) tog(false) en ter(’d, ’L3, ’U1) exit(’d, ’L3) .

eq test15 = makeUser(’u1) m(inc(nobody, L(’L0))) .

eq test16 = makeUser(’u1) m(inc(nobody, L(’L0))) makePoli cy(’p) H * .

eq test17 = makeUser(’u1) m(inc(nobody, L(’L0))) readerAc k(’u1, true) makePolicy(’p) H * .

eq test19 = makeUser(’u1) makeUser(’u2) m(inc(inc(nobody , L(’L0)), L(’L0)))
readerAck(’u1, true) readerAck(’u2, true) doorAck(’u1, t rue)

makePolicy(’p) H * .

eq test25 = makeUser(’u1) m(inc(nobody, L(’L0)))
makeDoor(’L1) makeCardReaderW1(’L1, (’u1 ’u2 ’u3))

makeDoor(’L3) makeCardReaderW2(’L3)
makePlugin1(’Plugin1, ’Gsys, ’L1)
makePlugin2(’Plugin2, ’Gsys, ’L3)
makeGSys(’Gsys) tog(false)
makePolicy(’p) H * .
---make sure the plugin and the gsystem has the same id

eq test26 = makeUser(’u2) makeUser(’u1) m(inc(inc(nobody , L(’L0)), L(’L0)))
makeDoor(’L1) makeCardReaderW1(’L1, (’u1 ’u2 ’u3))

makeDoor(’L3) makeCardReaderW2(’L3)
makePlugin1(’Plugin1, ’Gsys, ’L1)
makePlugin2(’Plugin2, ’Gsys, ’L3)
makeGSys(’Gsys) tog(false)
makePolicy(’p) H * .
---make sure the plugin and the gsystem has the same id

eq test27 = makeUser(’u2) makeUser(’u1)
makeUser(’u3) makeUser(’u7)
makeUser(’u4) makeUser(’u6)
makeUser(’u5)

m(inc(inc(inc(inc(inc(inc(inc(nobody,
L(’L0)), L(’L0)), L(’L0)), L(’L0)), L(’L0)), L(’L0)), L(’ L0)))

makeDoor(’L1) makeCardReaderW1(’L1, (’u1 ’u2 ’u3 ’u4 ’u5 ’ u6 ’u7))
makeDoor(’L3) makeCardReaderW2(’L3)
makePlugin1(’Plugin1, ’Gsys, ’L1)
makePlugin2(’Plugin2, ’Gsys, ’L3)
makeGSys(’Gsys) tog(false)
makePolicy(’p) H * .
---make sure the plugin and the gsystem has the same id

endm

‘

