
Extending the DEVS Formalism with Initialization Information

Yentl Van Tendeloo∗ Hans Vangheluwe∗†‡

{Yentl.VanTendeloo,Hans.Vangheluwe}@uantwerpen.be

DEVS is a popular formalism to model system behaviour using a discrete-event abstraction. The main ad-
vantages of DEVS are its rigourous and precise specification, as well as its support for modular, hierarchical
construction of models. DEVS frequently serves as a simulation “assembly language” to which models in other
formalisms are translated, either giving meaning to new (domain-specific) languages, or reproducing semantics of
existing languages. Despite this rigourous definition of its syntax and semantics, initialization of DEVS models is
left unspecified in both the Classic and Parallel DEVS formalism definition. In this paper, we extend the DEVS
formalism by including an initial total state. Extensions to syntax as well as denotational (closure under coupling)
and operational semantics (abstract simulator) are presented. The extension is applicable to both main variants
of the DEVS formalism. Our extension is such that it adds to, but does not alter the original specification. All
changes are illustrated by means of a traffic light example.

Keywords: Classic DEVS, Parallel DEVS, Experimentation, Initialization

1 Introduction
DEVS [19] is a popular formalism to model system behaviour using a discrete-event abstraction. With this abstrac-
tion, only a finite number of pertinent events can occur during any bounded time interval. In reaction to events, the
model’s state variable values change instantaneously. The state remains unaltered between event occurrences. The
main advantages of DEVS are its rigourous and precise specification, as well as its support for modular, hierarchi-
cal model construction. DEVS frequently serves as a simulation “assembly language” to which models in other
formalisms are translated, either giving meaning to new (domain-specific) languages, or reproducing semantics of
existing languages [17]. Models in different formalisms can hence be meaningfully combined by mapping them
onto DEVS.

Despite the rigour of its syntax and semantics, the initialization of models is unspecified in both Classic [19]
and Parallel DEVS [3, 4]. Initialization is important for several reasons. First, it allows for unaltered reuse of
models, for example from a model library. A user should not have to know about, let alone modify, the various
internal states and configurations of a reused model. Second, initialization is required when restarting a simulation
run after it was interrupted, e.g., for fault tolerance reasons. The state has to be re-initialized to the last know state,
from which simulation can subsequently resume as if it was never interrupted. Third, initialization is required
for dynamic structure and hybrid systems, where the simulation is interrupted due to some system condition, the
model is altered, re-initialized to a consistent state, and the simulation resumed.

As it is not part of the specification of the DEVS formalism, different implementations have widely varying
ways of supporting initialization, impeding model reuse across simulator implementations. Additionally, realistic
initial conditions can often not be expressed without adding artificial initialization behaviour to a model. In this
paper, a traffic light example is used to illustrate the need for adding initialization to the DEVS formalism. The
effects of the extension on both denotational (closure under coupling, or flattening) and operational semantics
(the abstract simulator) are described and demonstrated using the running example. Note that this extension
only specifies initialization, leaving all other aspects of DEVS untouched. Our extension is implemented in the
PythonPDEVS [14] simulation tool, which is capable of simulating both Classic and Parallel DEVS. As the
addition to both is similar, only Classic DEVS is described in detail in this paper.

The remainder of this section presents our motivating example at a conceptual level. Section 2 briefly re-
caps the Classic DEVS formalisms, without initialization, and models the example in it. Section 3 presents our
∗University of Antwerp, Belgium
†Flanders Make, Belgium
‡McGill University, Montréal, Canada

1



working
ta=360

break
ta=120

!toManual

!toAuto

going
auto
ta=0

going
manual
ta=0

manual
ta=∞

yellow
ta=3

red
ta=60

green
ta=57

?toManual

?toAuto

?toManual

?toManual

!turn_off

!show_green

!show_red

!show_yellow

police1 light1

system

Figure 1: Visual representation of the traffic light model.

extension to the formalism, the initial total state, and describes its influence on the specification and both of its
semantics definitions. Changes are demonstrated on the running example. Section 4 presents related work, mainly
referring to current methods of initialization and tool support. Section 5 concludes the paper.

1.1 Motivating Example
To illustrate the lack of initialization, and the ensuing problems, a minimal example is used throughout this paper.
This running example consists of a simple traffic light which can run autonomously (i.e., alternate between red,
yellow, and green) or be interrupted (i.e., be turned off). This traffic light interacts with a policeman, who alternates
between “working” (while the traffic light is turned off) and “taking break” (while the traffic light is working
autonomously). For the sake of readability of the behaviour traces, artificifial timings were chosen in the model
shown in Figure 1. A full Classic DEVS specification is given in Section 2.

From the visual representation of the model, there is no indication in which state a simulation starts. For
example, should the traffic light start autonomously or should it be turned off? And what about the policeman?
This is the first problem: there is no initial state specified in the DEVS formalism.

Assuming that some initial sequential state is given, a simulation can be performed, leading to the behaviour
traces shown in Figure 21. There is however no flexibility in when the policeman can trigger an event. Without
altering the delays in the policeman model, it is impossible for the policeman to interrupt the trafficlight at an
arbitrary point in time: it must be at time 120 or 360, as these are the time delays in the policaman model. In
both cases, however, this coincides with the time at which the light changes from red to green: it is impossible
to interrupt at any other time with this model. To allow for arbitrary times, the model needs to be modified,
adding artificial states, thereby introducing accidental and unnecessary complexity. This is an indication that the
formalism in its current form lacks expressiveness (or in this case, is under-specified). Furthermore, the model
remains incompletely initialized for as long as even a single atomic model is still in its initialization state. Ideally,
it should be possible to shift behaviour traces of component models independently with respect to one another,
such that the same models can be reused unchanged, but that for example the policeman starts in between two state
changes, as shown in Figure 3. The initial state of the policeman can thus be set such that the interrupt happens at
any desired point in time. This is in essence the elapsed time of the atomic model: how long it has been since the
last transition. This is therefore the second problem: the time that was already spent in the initial state at the start
of a simulation cannot be set.

1For the sake of readability, none of the figures are to scale.

2



Slight1

Spolice1

57 60 120

0

0

break

working

green

yellow

red

going
manual

manual

ta(break)

ta(green)

57 60 120

Figure 2: Initialized model without specified initial elapsed
times for the component models.

Slight1

Spolice1

47 48.50

break

working

green

yellow

red

going
manual

manual

ta(break) - 71.5

ta(green) - 10

47 48.50

Figure 3: Initialized model with specified ini-
tial elapsed times: start of component mod-
els’ behaviours are shifted in time.

2 Background
In this section, the Classic DEVS formalism is briefly presented to provide the necessary background for our
extension to the formalism. The running traffic light example is subsequently specified in DEVS. Only Classic
DEVS is presented here as our extension is applicable to both Classic and Parallel DEVS.

For a more detailed explanation of the Classic DEVS formalism, we refer the reader to the main DEVS
reference work [19] (including Parallel DEVS) or our Classic DEVS tutorial [15]. Further details of Parallel
DEVS can be found in the literature as well [3, 4].

2.1 Classic DEVS
Classic DEVS comprises two types of models: Atomic DEVS models, defining behaviour, and Coupled DEVS
models, defining structure.

An Atomic DEVS model is the basic building block. Its structure is shown in Specification 1.

AM = 〈X ,Y,S,δint ,δext ,λ , ta〉 (1)

X set of input events

Y set of output events

S set of sequential states

δint : S→ S internal transition function

δext : Q×X → S external transition function

Q = {(s,e)|s ∈ S,0≤ e≤ ta(s) set of total states

λ : S→ Y ∪{φ} output function, with φ the null (nothing happens) event

ta : S→ R+
0,+∞

time advance

3



Intuitively, the behavioural semantics are as follows. The system enters a sequential state s ∈ S and schedules
an “internal” transition to state δint(s) after ta(s). Before undergoing the transition, λ (s) is invoked to generate an
output event y ∈Y . If before the scheduled internal transition occurs, an external input event x ∈ X is received, the
scheduled output generation and subsequent transition do not occur. Instead, an “external” transition is made to
δext((s,e),x). Here, e is the elapsed time, the time that has passed in the state s since the last transition, until the
event was received. No output is generated in this case. Upon arrival in the new state, either through δint or δext ,
the algorithm repeats.

A Coupled DEVS model is the structuring concept of DEVS, and allows various Atomic and Coupled DEVS
models to be combined through parallel composition. Its structure is shown in Specification 2.

CM = 〈Xself,Yself,D,MS, IS,ZS,select〉 (2)

Xself set of input events

Yself set of output events

D set of model instance labels

MS = {Mi|i ∈ D} set of submodel specifications

Mi = {〈Xi,Yi,Si,δint,i,δext,i,λi, tai〉|i ∈ D} (atomic) submodel specification

IS = {Ii|i ∈ D∪{self}} influencee mapping (encoding connection topology)

Ii : i→ 2D∪{self}\{i} set of influencees’ labels of model with label i

ZS = {Zi, j|i ∈ D∪{self}, j ∈ Ii} translation mapping

Zself, j : Xself→ X j input-to-input translation

Zi, j : Yi→ X j output-to-input translation

Zi,self : Yi→ Yself output-to-output translation

select : 2D→ D select function

Intuitively, the semantics are given as follows. The coupled DEVS model instantiates all of its submodels,
which are all considered to be atomic DEVS models (as a coupled model can always be flattened to an atomic
model), and keeps their references (or labels) in D. The atomic DEVS submodels’ specifications are found in
MS. Submodels can be connected and the connection topology is encoded in the influencee set IS, which lists
for each subcomponent, all the other subcomponents that it influences (i.e., sends its output to). Upon forwarding
an event to another subcomponent, the event is translated by ZS, which can map input-to-input (for external
input coupling), output-to-input (for internal coupling), and output-to-output (for external output coupling). When
multiple internal events are scheduled at the same time, in different sub-models, the select function is invoked for
tie-breaking.

2.1.1 Running Example

The Classic DEVS specification of the full traffic light model is given below. Note that, as per the DEVS semantics,
the output function λ is invoked before the internal transition δint is taken. This explains why the produced
events are non-intuitive (e.g., raise show yellow for GREEN). The traffic light atomic DEVS model is shown in
Specification 3.

Light = 〈Xlight,Ylight,Slight,δint,light,δext,light,λlight, talight〉 (3)

4



Xlight = {toAuto, toManual}
Ylight = {show green,show yellow,show red, turn off}
Slight = {GREEN,YELLOW,RED,GOING MANUAL,GOING AUTO,MANUAL}

δint,light = {GREEN→ YELLOW,YELLOW→ RED,RED→ GREEN,

GOING MANUAL→ MANUAL,GOING AUTO→ RED}
δext,light = {(GREEN, , toManual)→ GOING MANUAL,(YELLOW, , toManual)→ GOING MANUAL,

(RED, , toManual)→ GOING MANUAL,(MANUAL, , toAuto)→ GOING AUTO}
λlight = {GREEN→ show yellow,YELLOW→ show red,

RED→ show green,GOING MANUAL→ turn off,GOING AUTO→ show red}
talight = {GREEN→ 57,YELLOW→ 3,RED→ 60,

MANUAL→+∞,GOING MANUAL→ 0,GOING AUTO→ 0}

The policeman’s behaviour is simpler and is shown in Specification 4.

Police = 〈Xpolice,Ypolice,Spolice,δint,police,δext,police,λpolice, tapolice〉 (4)

Xpolice = {}
Ypolice = {toAuto, toManual}
Spolice = {BREAK,WORKING}

δint,police = {BREAK→ WORKING,WORKING→ BREAK}
δext,police = {}

λpolice = {BREAK→ toManual,WORKING→ toAuto,

tapolice = {BREAK→ 120,WORKING→ 360}

Finally, the atomic models are composed in a coupled DEVS model, shown in Specification 5.

System = 〈Xself,Yself,D,MS, IS,ZS,select〉 (5)

Xself = {toAuto, toManual}
Yself = {show green,show yellow,show red, turn off}

D = {light1, police1}
MS = {Mlight1 = Light,Mpolice1 = Police}
IS = {light1→{sel f},sel f →{light1}, police1→{light1}}
ZS = {Zself,light1 = {toAuto→ toAuto, toManual→ toManual},

Zpolice1,light1 = {toAuto→ toAuto, toManual→ toManual},
Zlight1,self = {show green→ show green,show yellow→ show yellow,

show red→ show red, turn off→ turn off}}
select = {{light1, police1}→ police1,{ligth1}→ light1,{police1}→ police1}

From this complete DEVS specification example, it is clear that something is lacking: nowhere has been
specified what is the initial state, and how long the system has already been in that state.

3 Initial Total State
After the above brief recap of the Classic DEVS formalism and the presentation of our running example in this
specification, it has become clear that this model cannot be simulated as-is. Indeed, a simulator for this model has

5



no way of knowing from which total state to start the simulation. To alleviate this problem, we propose to add an
initial total state to the DEVS specification. While a minimal extension, this has repercussions on both syntax and
semantics of the DEVS formalism.

3.1 Atomic DEVS Specification
In the Atomic DEVS specification, the total initial state qinit ∈ Q is added. Q was previously described as being
the set of total states {(s,e)|s ∈ S,0 ≤ e ≤ ta(s)}, as used by the external transition function δext. This alters the
atomic DEVS specification to the following.

AM = 〈X ,Y,S,qinit,δint,δext,λ , ta〉

The initial total state comprises the initial state sinit and the initial elepased time einit.
The initial state sinit ∈ S specifies the system state in which the simulation commences. Its addition is logical,

and has up to now been implemented in different simulation tools, as an implicit ad-hoc extension to the formalism.
In the case of our running example, we may specify that the traffic light starts in the GREEN state and the policeman
in the BREAK state.

The initial elapsed time einit specifies how long the system has been in this state, without a transition being
observed. This is a less obvious addition to the initialization phase, and is ignored by several simulation tools.
Nonetheless, we argue for its importance in providing flexibility to the DEVS modeller.

If only an sinit is present in the specification, but not einit, it is possible to specify GREEN and BREAK as the
initial state for the traffic light and policeman, respectively, but one is restricted to their time advances. Indeed,
without einit, the initial elapsed time would be implicitly equal to 0, as was shown in Figure 2. This schedules the
first internal transition of the policeman at time 120. The traffic light will have internal transitions at times 57 (to
YELLOW), 60 (to RED), and 120 (to GREEN). Following this sequence, the policeman will always send its interrupt
at the exact same point in time, namely when a switch is made from RED to GREEN. Therefore, it is impossible
for the modeller to reproduce the real-world scenario where, for example, the policeman interrupts after the light
has been in the YELLOW state for 1.5 time units. To do this, the model itself would have to be drastically modified
(e.g., adding an artificial “initialization” state to the policeman model). This severely impedes modular re-use of
submodels.

What we wish to achieve is shown in Figure 4, which includes the “negative” simulation time (i.e., what
hypothetically happened before simulation, given the specified model). While this figure includes the state trace
from before the start of the simulation, we can only go back until the last transition, as we have no knowledge
about how we ended up in that state (e.g., before time −10 for police1). To remain consistent with the DEVS
specification, it is required to alter the duration since the last event for each atomic model individually. By doing
this, each individual atomic DEVS model can be shifted relatively to all others. For example, Figure 5 presents
two different initial elapsed time configurations, with their effect on the simulation. Note that these additions can
easily be taken over to Parallel DEVS as well, without any changes.

In our running example, we augment the models with the following initial total states. For the sake of the
closure under coupling, we set the initial elapsed time of the traffic light to 10. Therefore, the light will enter
YELLOW at time 47. To ensure that the policeman sends the external interrupt after the light has been in state
YELLOW for 1.5, the transition has to happen at time 48.5. To achieve this, we compute its desired initial elapsed
time as einit,police1 = 120− 48.5 = 71.5. Thus, the policeman will have already spent 71.5 time units in BREAK,
and will transition after 48.5 time units, at which point the light will have been in YELLOW for 1.5 time units, as
desired. Various configurations exist to achieve the same result, such as having the traffic light start at a different
state or with a different elapsed time.

qinit,light1 =(GREEN,10) qinit,police1 =(BREAK,71.5)

3.2 Closure Under Coupling
The atomic DEVS specification extension has its repercussions on closure under coupling, where several atomic
DEVS models are flattened to a single atomic DEVS model. Indeed, the qinit of each submodel, has to be conserved
in the flattened atomic model. While several approaches exist, we have opted for a non-invasive approach, which
only affects qinit.

A definition for qinit in terms of the qinit,i (i being a submodel label) is presented which leaves the closure under
coupling untouched. As qinit ∈ Q, it consists of two parts: the initial state sinit and the initial elapsed time einit.

6



Slight1

Spolice1

47 48.50

break

working

green

yellow

red

going
manual

manual

ta(break) - 71.5

ta(green) - 10

-71.5 -10

71.5

10

ta(break)

ta(green)

47 48.50-71.5 -10

?
Figure 4: Simulation trace including hypothetical negative simulation time (grayed out).

Spolice2

break

working

ta(break) - 100

200

100

ta(break)

Spolice3

break

working

ta(break) - 20

1000

20

ta(break)

(break, 0) (break, 100) (break, ta(break))

(break, 0) (break, 20) (break, ta(break))

-100

-20

Figure 5: Various options for shifting the police model.

First, we tackle the initial elapsed time einit. As closure under coupling combines all subcomponents, every
independent state change of a subcomponent results in a state change of the flattened model. As a logical conse-
quence, the initial elapsed time of the overall system is the time since the last transition of all its subcomponents,
i.e., the minimum of all the subcomponents’ elapsed times.

einit = mini∈D{einit,i}

Second, we tackle the initial state sinit. As mentioned earlier, closure under coupling combines the states of the
various subcomponents into a single state. To capture the individual elapsed times, required for the δext and δint
functions, the flattened atomic DEVS model not only encodes the combination of all subcomponents’ states, but
includes for each subcomponent, the current elapsed time: S is defined as ×i∈DQi. Intuitively, one would define
sinit as the combination of the qinit,i values of all the subcomponents, i.e., sinit = ×i∈Dqinit , but this is incorrect.
Due to the definition of einit, the minimal elapsed time is already taken into account, as shown in Figure 6. Indeed,
it has been einit time units since the last transition (to sinit), and therefore sinit should not contain the elapsed times
at initialization, but rather those upon reaching the initial state (i.e., einit time units ago). This can be done by
subtracting from each einit,i in sinit, the globally minimum value einit. Therefore, we define sinit as follows.

sinit = (...,(sinit,i,einit,i− einit), ...)

7



Slight1

Spolice1

47 48.50

break

working

green

yellow

red

going
manual

manual

ta(break) - 71.5

ta(green) - 10

-71.5 -10

71.5

10

ta(break)

ta(green)

Scombined

((break, 61.5), (green, 0))

((break, 108.5), (yellow, 0))

((working, 0),
(going_manual, 0))

((working, 0), (manual, 0))

((break, 0), (?, ?))

(((break, 61.5),
(green, 0)), 0)

(((break, 61.5),
(green, 0)), 10)

(((break, 61.5),
(green, 0)), 57)

47 48.50-71.5 -10

47 48.50-71.5 -10

?
Figure 6: qinit in the flattened model.

An alternative would be to set einit to 0 and define sinit as the combination of all qinit,i values, but this is less
intuitive for two reasons. First, the combination of qinit,i is never actually “materialized” in simulators, as discrete
event simulators jump from one transition time to the next, ignoring all intermediate times (this is the essence
of discrete-event simulation). In many cases, no transition happens at simulation time zero, and therefore the
state would never have materialized anyway. The option of altering this behaviour for the initialization seems
non-intuitive. Second, to keep the definition of elapsed time consistent with that used by the simulator “in regime
operation”, it must be the time since the last transition of the atomic DEVS model. Setting it to 0 it implies that
the system made a transition upon initialization, which is incorrect, unless of course in some rare cases where this
occurs in the system being modelled.

For our running example, using the same parameters as before, this results in the following initial total state of
the flattened atomic DEVS model.

qinit = (((GREEN,0),(BREAK,61.5)),10)

Note that these additions can easily be taken over to Parallel DEVS as well, without any changes.

3.3 Abstract Simulator
The abstract simulator is simpler to alter, as there is already a notion of initialization message, often termed i. At
the start of the simulation, the root coordinator first sends out the message (i,0.0). Each coordinator or simulator
responds to this message with (done, tn), where tn represents the earliest internal event it has scheduled. As in
our extended DEVS specification, the atomic models already have the necessary initialization information stored
locally, they can set the state and elapsed time upon receiving the i message. Depending on these newly set values,
the initial ta(s) is computed, which is then sent to the parent simulator. No further changes are required.

8



4 Related Work
The initialization of DEVS models has up to now been done either by the experimental frame [19, 12], or hard
coded in tools.

In the experimental frame approach, the initial total state can be considered as a type of input. The initial total
state is thus defined in the experimental frame, and is merely passed along to the DEVS model during initialization.
While this approach allows the environment to configure the model as desired, thereby offering flexibility, it is not
formalized in the DEVS specification. Indeed, the DEVS semantics, whether it be denotationally using closure
under coupling or operationally using the abstract simulator, don’t mention anything related to the initial total state.
Most of the time, it is a logical decision to have the model itself define what is a consistent state for initialization.

Initialization is often left to tools, which implement this independent of the formalim. We consider several
popular DEVS simulation tools, discussed in an earlier survey [16].

Adevs [8] considers all attributes of an atomic model to be part of the state. Therefore, the constructor is
responsible for setting all attributes. The initial elapsed time cannot be set.

CD++ [18] similarly considers all attributes to be part of the state, but provides a specific function called
initFunction. This function is called upon initialization and sets the initial state and the remaining time in
this state (σ ). While this is functionally equivalent to the elapsed time, as e = ta(s)−σ , it diverges from the
DEVS specification, as it is possible to be in an initial state which would have ordinarily been impossible to reach
(e.g., qinit = (YELLOW,100) for our running example). Indeed, it might be that σ > ta(s), which will remain
undetected. In contrast, if the elapsed time is given, the definition of Q ensures that 0≤ e≤ ta(s), rendering such
inconsistencies impossible.

DEVS-Suite [6] similarly has an initialize function which initializes the state and sets the first timeout to
use, similar to CD++. As its approach is the same as that of CD++, it shares the same problems.

MS4Me [11] again uses the same approach, but requires the syntax to start hold in S INIT for time

REMAINING INIT! to achieve the same result. Again, the same problems occur.
PowerDEVS [2] has the same approach, where the function is called init. Again, the function initializes the

state and returns the remaining time until the first internal transition.
PythonPDEVS [13], our Classic and Parallel DEVS simulator, supports the definition of an initial total state

as presented in this paper. Like all tools, it is required to specify the initial state (assign to self.state), but
additionally, the elapsed time can be set (assign to self.elapsed). By specifying the elapsed time, instead of the
remaining time, the timings are guaranteed to be consistent.

VLE [9] uses the constructor to initialize the state, as in adevs, and similarly does not present an option to
specify the initial elapsed or remaining time.

X-S-Y [5] assigns the initial state to the self.phase attribute, but does not allow for either the elapsed or
remaining time to be set.

While several tools have addressed the missing initialization in the DEVS specification, they do so in widely
varying ways. Syntactical differences are found among all tools, as there is no agreed upon name or method of
adding initialization information. More importantly, semantical differences exist as well: tools such as adevs, vle,
and X-S-Y can not specify the initial time, and are therefore restricted in their (model reuse) flexibility. Other tools,
such as CD++, DEVS-Suite, MS4Me, and PowerDEVS, allow the remaining time to be specified, though this
potentially results in inconsistent situations, as there is no formal constraint on this value. Finally, PythonPDEVS
implements the initial total state using the elapsed time, thereby performing consistency checking: the elapsed
time e is immediately compared to the time advance ta. In the light of DEVS standardization efforts [10, 1], it is
problematic that various tools implement different methods of initialization. On this topic, a “DEVS compliance
checklist” was previously introduced [7], and later slightly extended [16], to which we believe the initial total state
should now be added.

5 Conclusion
DEVS has since long been acclaimed for its rigourous and precise specification for models with a discrete event
abstraction. Despite its rigour being one of its main advantages, model initialization is left unspecified, leading
to various implementations. This paper has presented an addition to the DEVS specification, the initial total state
qinit , which formalizes model initialization. The influence of this addition on the specification and closure under
coupling was presented in detail, both at the level of the specification, and using a traffic light example. Classic
DEVS was used to present our contribution, though the addition can be applied to Parallel DEVS as well.

9



References
[1] Khaldoon Al-Zoubi and Gabriel Wainer. Interfacing and coordination for a DEVS simulation protocol stan-

dard. In Proceedings of the 2008 12th IEEE/ACM International Symposium on Distributed Simulation and
Real-Time Applications, pages 300–307, 2008.

[2] Federico Bergero and Ernesto Kofman. PowerDEVS: a tool for hybrid system modeling and real-time
simulation. Simulation, 87:113–132, 2011.

[3] Alex Chung Hen Chow and Bernard P. Zeigler. Parallel DEVS: a parallel, hierarchical, modular, modeling
formalism. In Proceedings of the 1994 Winter Simulation Multiconference, pages 716–722, 1994.

[4] Alex Chung Hen Chow, Bernard P. Zeigler, and Doo Hwan Kim. Abstract simulator for the parallel DEVS
formalism. In AI, Simulation, and Planning in High Autonomy Systems, pages 157–163, 1994.

[5] Moon Ho Hwang. X-S-Y. https://code.google.com/p/x-s-y/, 2012.

[6] Sungung Kim, Hessam S. Sarjoughian, and Vignesh Elamvazhuthi. DEVS-Suite: a simulator supporting
visual experimentation design and behavior monitoring. In Proceedings of the 2009 Spring Simulation
Multiconference, pages 161:1–161:7, 2009.

[7] Xiaobo Li, Hans Vangheluwe, Yonglin Lei, Hongyan Song, and Weiping Wang. A testing framework for
DEVS formalism implementations. In Proceedings of the 2011 Spring Simulation Multiconference, pages
183–188, 2011.

[8] James J. Nutaro. adevs. http://www.ornl.gov/~1qn/adevs/, 2015.

[9] Gauthier Quesnel, Raphaël Duboz, Éric Ramat, and Mamadou K. Traoré. VLE: a multimodeling and simu-
lation environment. In Proceedings of the 2007 Summer Simulation Multiconference, pages 367–374, 2007.

[10] Hessam S. Sarjoughian and Yu Chen. Standardizing DEVS models: an endogenous standpoint. In Proceed-
ings of the 2011 Spring Simulation Multiconference, pages 266–273, 2011.

[11] Chungman Seo, Bernard P. Zeigler, Robert Coop, and Doohwan Kim. DEVS modeling and simulation
methodology with MS4Me software. In Proceedings of the 2013 Spring Simulation Multiconference, pages
33:1–33:8, 2013.

[12] Mamadou K. Traoré and Alexandre Muzy. Capturing the dual relationship between simulation models and
their context. Simulation Modelling Practice and Theory, 14(2):126–142, 2006.

[13] Yentl Van Tendeloo and Hans Vangheluwe. The modular architecture of the Python(P)DEVS simulation
kernel. In Proceedings of the 2014 Spring Simulation Multiconference, pages 387–392, 2014.

[14] Yentl Van Tendeloo and Hans Vangheluwe. An overview of PythonPDEVS. In Collectif Workshop RED,
editor, JDF 2016 – Les Journées DEVS Francophones – Théorie et Applications, pages 59–66, 2016.

[15] Yentl Van Tendeloo and Hans Vangheluwe. Classic DEVS modelling and simulation. In Proceedings of the
2017 Winter Simulation Conference, WSC 2017, pages 644 – 656. IEEE, December 2017.

[16] Yentl Van Tendeloo and Hans Vangheluwe. An evaluation of DEVS simulation tools. SIMULATION,
93(2):103–121, 2017.

[17] Hans Vangheluwe. DEVS as a common denominator for multi-formalism hybrid systems modelling. In
IEEE International Symposium on Computer-Aided Control System Design, pages 129–134, 2000.

[18] Gabriel Wainer. CD++: a toolkit to develop DEVS models. Software: Practice and Experience,
32(13):1261–1306, 2002.

[19] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of Modeling and Simulation. Academic
Press, 2nd edition, 2000.

10

https://code.google.com/p/x-s-y/
http://www.ornl.gov/~1qn/adevs/


Acknowledgements
This work was partly funded by a PhD fellowship from the Research Foundation - Flanders (FWO). This research
was also partially supported by Flanders Make vzw, the Flemish strategic research centre for the manufactur-
ing industry. The authors wish to thank Joey De Pauw for pointing out an inconsistency between qinit and the
specification of δint in our lecture notes.

11


	Introduction
	Motivating Example

	Background
	Classic DEVS
	Running Example


	Initial Total State
	Atomic DEVS Specification
	Closure Under Coupling
	Abstract Simulator

	Related Work
	Conclusion

