
Modelling the DEVS-formalism

Yentl Van Tendeloo
University of Antwerp

Yentl.VanTendeloo@student.ua.ac.be

Abstract

We propose a three-step approach to allow (efficient) simulation of DEVS
models, written in a graphical environment (built in AToM3). Our ap-
proach is simulator and language independent as it uses Modelica as an
intermediate neutral language. To show that this approach works, we apply
it to a basic example that will be simulated in the PythonDEVS simulator.

Keywords: DEVS, AToM3, PythonDEVS, Modelica, µModelica,
Symbolic flattening

1. Introduction

The Discrete EVent system Specification formalism is widely used in
modelling and simulation and is supported by many simulators. The for-
malism only presents an abstract simulator, so the models can be written
in many different (programming) languages. This presents a problem, as
it causes many different models, all of which are written for a different
simulator. Depending on which simulator is used, an other programming
language and API has to be used. This prevents portability and compar-
isons between simulators. Furthermore, the performance of the simulation
is highly dependent on the used simulator, restricting the choice between
simulators for many high-performance simulations.
From another side, models must be specified textually in most popular
DEVS simulators (PythonDEVS, VLE, DEVS-Suite, CD++, X-S-Y, adevs,
...) which reduces understandability of the specified model and therefore
introducing difficult to spot bugs. Though some simulators incorporate vi-
sual modelling to a certain extent, like VLE which allows the user to model
the coupled model graphically. However, the atomic model still has to be
hand-coded textually. Even if one such simulator would allow graphical
modelling, it would likely be in a format tailored to that specific simulator,
Preprint submitted to Elsevier January 11, 2013

as is the case in VLE. This would aggrevate the issues presented previously
concerning portability, as the complete model will have to be rewritten. Tex-
tual models are still somewhat reusable to some extent (e.g. only change
the used API or some language constructs), while this is not the case for
graphical languages.
It is mentionable that DEVS simulators should not really have to focus on
how the modelling is done. So it might be interesting to shift the modelling
part out of the simulator program and make a seperate graphical modelling
environment which can export it’s graphical model as a textual model, com-
pliant to the specified simulator’s API and programming language. As these
components are now split up, we can create a simulator-independent graph-
ical modelling environment which generates an intermediate model that can
optionally be optimized symbolically.
We will therefore use a three-step approach:

1. Model the DEVS model conform to a metamodel in AToM3, to pro-
vide a user-friendly and (mostly) graphical modelling environment
that generates Modelica code and is simulator independent

2. Flatten the generated Modelica code, to offer (possibly) increased per-
formance

3. Compile the flattened Modelica code for a certain simulator

The rest of this paper is organized as follows: Section 2 quickly describes the
relevant parts of the DEVS formalism, section 3 describes ways to use Mod-
elica for DEVS models. In section 4 we will give a more global overview of
where this approach fits in to the modelling process. Section 5 will present
the first step of our approach and present the meta-model for the DEVS
formalism in AToM3. Section 6 presents the second part, which is the flat-
tening phase. Section 7 describes the compilation phase to PythonDEVS.
In section 8, a small example of a simple queueing system will be given.
The performance difference of the flattening phase will be shown in section
9. Finally, section 10 gives related work, section 11 presents some possible
future work and section 12 concludes.

2. DEVS Formalism

For those unfamiliar to the DEVS formalism, we refer to Bernard P. Zei-
gler and Kim (2000). We will mainly be using the closure under coupling
proof, which proves that every coupled model can be rewritten as a be-
haviourally equivalent atomic model. The proof shows a way to encode all

2

actions that have to be done by the coupled model - like message passing,
searching the next model to transition, ... - in the form of an atomic model
and thus showing that every coupled model can be rewritten as an atomic
one.
This method can be applied recursively to remove the limitation that each
submodel of a coupled model must be an atomic one, because if it were a
coupled one, we could rewrite it to an atomic.
This proof goes as follows:
We wish to transform a coupled model

CM =< Xself , Yself , D, {Mi}, {Ii}, {Zi,j}, select >

to the atomic model

AM =< X, Y, S, δint, δext, λ, ta >

So we have to define all of the variables of the atomic model in function of
the given coupled model. The input and output variables X and Y are easy,
since they stay the same.
The state S now encompasses all the states from the submodels, including
their elapsed times:

S = ×i∈DQi

with Qi defined as:

Qi = {(si, ei)|si ∈ Si, 0 ≤ ei ≤ tai(si)},∀i ∈ D

The time advance function ta is constructed using these values and calcu-
lates the remaining time for each submodel.

ta(s) = min{σi = tai(si)− ei|i ∈ D}

We define the component to transition with the select function, which selects
a component i∗ from the set of imminent children IMM defined as:

IMM(s) = {i ∈ D|σi = ta(s)}
i∗ = select(IMM(s))

The output function λ can be defined as follows:

λ(s) =

{
Zi∗,self (λ∗i (s

∗
i)) if self ∈ Ii∗

φ otherwise
3

The internal transition function is defined for each part of the new state
seperately:

δint(s) = (. . . , (s′j, e
′
j), . . .)

With three possibilities:

(s′j, e
′
j) =

(δint,j(sj), 0) for j = i∗,
(δext,j(sj, ej + ta(s), Zi∗,j(λi∗(si∗))), 0) for j ∈ Ii∗ ,
(sj, ej + ta(s)) otherwise

This internal transition function also has to include parts of the submod-
els external transition function, since this is a direct result of the internal
transition. Note that the resultant external transition function will only
be called for input external to the coupled model and no longer for every
submodel. Therefore, we have to call the external transition function im-
mediately.
The external transition function is similar to the internal transition func-
tion:

δext(s, e, x) = (. . . , (s′i, e
′
i), . . .)

Now with two possibilities:

(s′i, e
′
i) =

{
(δext,i(si, ei + e, Zself,i(x)), 0) for i ∈ Iself
(si, ei + e) otherwise

3. Modelica

Modelica was chosen as an intermediate language for 4 main reasons:

1. Modelica is a relatively mature language

2. Modelica has language features that are suitable for describing both
continuous and discrete models

3. Modelica has a standard library for special constructs: the Modelica
Standard Library

4. Some Modelica constructs can be used to increase the re-usability of
DEVS models

As we will only use Modelica as an intermediate language to implement our
DEVS models, we will only explain the relevant constructs.
It is relatively easy to construct DEVS models in Modelica. A simple ex-
ample is a generator: it will periodically poke an integer on its output port.
This can be defined as follows (comments inline):

4

class Generator
// Show that i t i s an Atomic model
extends AtomicDEVS ;

// Def ine the output por t s
output DevsPort p out ;

// Def ine the output func t i on
function outputFnc

// Def ine v a r i a b l e s here
algorithm

// Poke 1 on the p out port
poke (p out , 1) ;

end outputFnc ;

function timeAdvance
// Output the value f o r the time advance
output I n t e g e r timespan ;
// Def ine v a r i a b l e s here

algorithm
// Set to 1
timespan := 1 ;
// A return happens automat i ca l l y

end timeAdvance ;
end Generator ;

A more complete example can be found in section 8.
Since it is only an intermediate language, the users that follow the complete
procedure defined here, will never have to use any Modelica code. Note that
it is possible to alter the generated Modelica code before compiling and thus
it is possible to include user defined Modelica models.

4. Global Overview

We will start by explaining the different steps mentioned in figure 1. This
report will be mainly concerned with the first two parts, namely Modelling
and Verification. We will subdivide the verification part in two distinct
parts, where we will flatten the model in the first step and compile the
model in the second step.

4.1. Modelling

The modelling part is concerned with the graphical modelling of the
desired DEVS model. This is done using the DEVS metamodel (presented in
section 5). This graphical model can be modelled using AToM3, which will

5

Figure 1: An overview of the translation from graphical model to simulation trace, as
presented by Song (2006)

6

guarantee compliance to the metamodel due to the use of syntax-directed
editing.
The visual modelling environment has several features:

� The enviroment is automatically generated
The complete environment is modelled, from the properties and con-
straints of the models, to the possible operations on them. This min-
imizes the potential for misoperation by the user and aids in main-
taining model consistency.

� Translated to an neutral intermediate language
As was already previously mentioned, it would be wasteful to gener-
ate target code immediately, as the visual environment would then
be bound to one simulator. When using a neutral intermediate lan-
guage, we allow this visual environment to be used for many different
simulators.

� The environment can be easily updated
Since the environment is automatically generated, based on a DEVS
metamodel (using ER diagrams) and a DEVS component manipu-
lation model (using Statecharts), the environment is not hard-coded
and can be easily updated should changes happen.

The output of this phase will be a model written in Modelica, which is
generated from the model provided by the user.

4.2. Verification

Verification is possible by compiling the model and performing some
checks on the Abstract Syntax Tree (AST). Some frequently done checks
are presented by Labiche and Wainer (2005), like checking if ports are con-
nected, their types match, no negative time advance is returned, ... Note
that these are not currently present in our version, though there is some
kind of syntax checking due to the compilation of the model. Also, due to
the simulator-independent language, it is impossible to use simulator spe-
cific constructs which circumvent the DEVS formalism.
This phase will output a model written in Python that is compatible with
the PythonDEVS simulator that we will be using.

7

4.3. Simulation

Simulation is concerned with using the models that were compiled in a
previous step, to run a simulation. In our case, this is done with Python-
DEVS (Bolduc and Vangheluwe (2001)). The simulation will generate a
trace file, which can be used in the next step to visualise the simulation.
Currently, PythonDEVS supports three different trace outputs: text, XML
and VCD.
In this situation, XML (using a DTD) is the most versatile trace format.
This is because text output is mainly concerned with being human readable,
while VCD has several limitations which make it difficult to use for general
trace output.
Again, the use of XML has several interesting benefits:

1. Clear interface between simulator and analysis
A simulator should just be concerned with the simulation of the pro-
vided model and possibly generating trace files. Should the two be
merged together, it would prevent correct comparison between the re-
sults of different simulators. Currently, the only way to compare the
simulation trace of different simulators, is to manually insert output
statements which is a tedious work that is prone to errors. If this trace
outputting is done in the simulator itself in a standard format, both
simulators can generate such a trace file which can both be compared
using another tool.

2. The XML file can be checked according to the DTD
XML files allow the specification of a DTD, which can be used to
check the validity of a specified XML file. This functionality is not
present in manual text output.

3. XML is a standard way for data representation
XML files are widely used for data representation and many tools
exist to perform operations on them. This makes it more easy to
comprehend the information specified in the trace file and additionally
allows the use of all these previously defined tools. This would not be
possible with a proprietary way of data representation. On the other
side, XML files tend to become relatively large in huge simulations.

The output of this phase will be a trace file written in XML as described
by Song (2006), which is the result of simulating the provided model.

8

4.4. Validation

Validation means that a check will be performed to analyse whether or
not a specified model meets the goal it was created for. This can be done
in different ways, as it would also be possible to analyze the textual trace
output. However, a visual trace is clearly more intuitive and comprehensi-
ble than wading through thousands of lines of text.
The validation phase will use the XML trace file generated in the previ-
ous phase, to make a plot of the behaviour of the system, allowing easy
(graphical) validation. In our case, we will use the TracePlotter tool pro-
vided by Song (2006). This tool has two different levels of user interface:
a simple user interface to quickly browse the simulation trace, and a more
complex user interface, which allows the user to reparse the raw model state
information and generated filtered traces.

4.5. Features of the overall architecture

The global architecture offers several interesting features:

1. Multiple levels of model reuse
Due to the use of different languages which are gradually converted,
it is possible to include models from a model repository defined in
different languages. The first level allows inclusion of graphical models
(defined in AToM3), while the second level allows the inclusion of
textual models (defined in Modelica). Even at the Python-level it
is possible to include previously defined models, as long as they are
compliant with PythonDEVS.

2. Clear boundaries between different steps
The boundaries between the different phases (the dashed lines in figure
1) are clearly defined, making a strict seperation possible. Each tool
is specialised in only one specific point.

3. Open structure
The structure is completely open and allows the different steps to be
created seperately. The files that are passed are mostly simulator and
language independent (except the input to the simulator of course).
This is also possible thanks to the clear boundaries between the dif-
ferent phases.

5. First phase: modelling in AToM3

The first step consists of drawing the atomic models in AToM3, together
with their desired behaviour. The atomic models still require some code to

9

encode the behaviour, but this is done in Modelica to provide a program-
ming language-independent environment. Coupled models are also easily
constructed by using previously defined atomic models (through instances
instead of the atomic model itself) and connecting their ports. A possibil-
ity to encode the state, message and experiment set-up is also provided, to
provide a completely simulator independent environment.
This graphical approach has some important drawbacks, like the inability
to define a select function, not being able to define connections using loops,
some limitations on the next sequential state in case of an external transi-
tion and so on.
As mentioned by Song (2006), it is possible to generate Modelica code out
of these models, which can not yet be simulated by itself but needs to be
compiled using e.g. the µModelica compiler.
The metamodel of this graphical representation of the DEVS formalism can
be found in figure 2. Most of it is fairly straightforward as it reminds of state
machines and simple connections between ports. Notable is the instantia-
tion possibility. To improve reuse of atomic models, the atomic model itself
is simply a definition, while the instantiation is the actually used model.
This way, a model can be instantiated multiple times without the need to
completely redefine the model. Furthermore, it provides a clear seperation
between definition and use.

The metamodel itself was updated to give more accurate names to at-
tributes, the experiment was also re-added to the metamodel and some
serious bugs were fixed.

6. Second phase: flattening with µModelica

In this second phase, the generated Modelica code will be symbolically
flattened to create behaviourly equivalent Modelica code which defines only
a single atomic DEVS model. This work closely resembles the one presented
by Chen and Vangheluwe (2010), though our flattening takes a slightly
different direction. This flattening phase was rewritten from scratch, so it
represents the biggest chunk of this report and our main contribution.
It will scan the AST for all coupled models and their associated atomic
models. The following steps must happen while flattening:

1. Perform direct connection for all relevant models, which will create a
hierarchy with exactly 1 coupled model;

10

atomicDevsV2

Attributes:

 - name :: String

 - isVisible :: Boolean

 - classVariables :: List

 - parameters :: List

 - attributes :: List

 - init :: Text

 - extTransition :: Text

 - intTransition :: Text

 - outputFunc :: Text

 - timeAdvance :: Text

coupledDevsV2

Attributes:

 - name :: String

 - isVisible :: Boolean

 - classVariables :: List

 - parameters :: List

 - attributes :: List

 - init :: Text

 - isMainModel :: Boolean

portDevsV2

Attributes:

 - name :: String

 - portType :: Enum

stateDevsV2

Attributes:

 - name :: String

 - initial :: Boolean

 - timeAdvance :: Text

 - output :: Text

 - extAction :: Text

 - intAction :: Text

insDevsV2
Attributes:

 - name :: String

 - type :: String

 - parameters :: Text

 - isVisible :: Boolean

eventDevsV2

Attributes:

 - name :: String

 - classVariables :: List

 - parameters :: List

 - attributes :: List

 - init :: Text

 - str :: Text

 - otherFunc :: Text

DevsState

Attributes:

 - name :: String

 - attributes :: List

DevsExperiment

Attributes:

 - experimentName :: String

 - model :: String

 - package :: String

 - parameters :: Text

 - end_time :: Float

 - verbose :: Boolean

 - trace :: Boolean

containsPortV2

Actions:

 > connect

 < disconnect

containsStateV2

Actions:

 > connect

 < disconnect

internalTransitionV2

Attributes:

 - condition :: Text

 - action :: Text

externalTransitionV2

Attributes:

 - condition :: Text

 - action :: Text

channelV2

Actions:

 > connect

 < disconnect

 < checkValidity

containModelV2

Actions:

 > connect

 < disconnect

hasState

Actions:

 > connect

 > disconnect

Figure 2: The metamodel of the DEVS formalism in AToM3, as defined by Song (2006)
but with minor modifications

2. All atomic models must have their functions renamed to prevent nam-
ing conflicts, as they will be included in the newly created atomic
model;

3. States have to be rewritten, as the original atomic model (of which it
references the sequential states) no longer exists;

4. A new atomic model must be generated with all required functions and
variables. These functions are written in Modelica and are parsed too,
so we can use this AST as a template;

5. The old atomic and coupled models must be removed, as they are no
longer required;

6. The modified AST must be dumped in Modelica syntax again.

It is clear that the first and fourth step are the most difficult and require
the most effort. Note that the first step is not completely mandatory, as
it would be possible to perform the flattening recursively from the bottom
up. This would be rather slow and would still require a lot of function calls
in the flattened model, resulting in a situation similar to message passing
between coupled models which we try to avoid.

11

6.1. Direct connection

Direct connection means that the connections between different atomic
models are done directly, without passing (possibly many) intermediate
coupled models. This will reduce the structure of the hierarchy to only
one coupled model and for the rest everything is just an atomic model.
An important result of direct connection is that the select and Z functions
will have to be rewritten, since all atomic models become the direct child of
the main coupled model. A possiblity for doing this is described by Chen
and Vangheluwe (2010) and performed at simulator-level in PythonDEVS,
though it isn’t implemented in this flattening phase. While this might seem
strange, it doesn’t really pose a problem as the previous step (modelling in
AToM3) will never generate a select or Z function due to the previously
mentioned limitations in the metamodel.

6.2. Implementation

In our implementation of the flattening phase, we introduced another
step in the devsmc.py script, which can be told to flatten the provided
Modelica code. Currently, it is only supported to either flatten or compile,
not both sequentially.
The flattening will first do direct connection on the complete AST, thus
rendering all coupled models except the root irrelevant. The root coupled
model is thus extended with all atomic models.
All of these atomic models will get renamed by searching for them in the
symbol table that is provided by the AST.
The new atomic model that is created, will be of a newly defined class,
which will have a method getASTElement() that returns the new AST el-
ement that should overwrite the coupled model. This atomic model will
contain all (renamed) functions and variables of all atomic models, together
with new DEVS related functions, which are based on templates that should
call all relevant atomic models.
Our templates are specified in the lib/flatten.mo Modelica file, which con-
tains all necessary functions that can be used. The relevant rules of code
will contain variables like instA, which are unspecified in the flatten.mo file,
but will become specified later one. These lines, or rather their AST repre-
sentation, will get deepcopied and get appended multiple times in the AST
though with different variables.
Should the flatten.mo file be modified, the flattening phase of the compiler
should also be modified, as it will contain a lot of references to these rules.

12

The flattening phase itself is defined in devs/DevsFlatten.py.

7. Third phase: PythonDEVS code generation with µModelica

The third and final phase will just compile Modelica code to Python-
DEVS code. Since the main contribution of this work is in the first and
(mainly) second phase, nearly no modifications are applied to this phase
except for some bugs that were fixed due to the slightly different structure
of the models that need to be translated. Furthermore, some of the AST
nodes did not have a textual representation when printed as DEVS or Mod-
elica code, so these were implemented too.
As previously mentioned, the generated Modelica code will use several non-
default classes making these files incomplete. Therefore, it is necessary to
import several DEVS library files which contain all these classes and some
extra functionality, like list and dict. These library files were slightly up-
dated, as the flattened structure needed some extra functions.
Also the code generation was slightly enhanced as the termination condition
was not completely modular.

8. Example and usage

To demonstrate our approach and show that it is feasible, we will create
a small model using AToM3, flatten it and compile it to PythonDEVS
code, which will ultimately be simulated. Since each phase needs to be
done seperately, we will also include the command that was executed to
obtain this output and some explanation.

8.1. Specification

Our model will be a very basic queue, which processes jobs in a time
equal to the size of the job, before passing it on to the next processor. We
also included a generator to make an autonomous model.
The generator will generate a new job with a fixed jobsize every second
(simulation time) and send it to the connected processor.
The processor will receive a job and send it on its output ports after a time
equal to the jobsize has passed. Should a new job arrive while the previous
job is still being processed, the old event will be deleted.

13

8.2. Model

The model is very clear due to its graphical representation as can be seen
in figure 3. The generator is always in the same state and just generates
a new Job every second. The processor has two different states, one where
it is idle and another one where it is processing. It can remain idle for
infinitely long and if it is processing, it takes as long as the size of the job
that was received.
It also includes an experiment to make simulation easier, as starting the
simulation is also simulator-dependent.

8.2.1. Usage

To create the graphical model, it is necessary to start the provided
AToM3 environment, which can be done by running the command

python atom3 . py

In AToM3, the required metamodel (DevsV2 META.py) must be loaded.
For instructions on how to use AToM3 itself, we refer to http://atom3.cs.

mcgill.ca/. Usage of the provided metamodel should be fairly straightfor-
ward, as it is quite graphical.

8.3. Modelica code

Only the most important snippets are shown due to the massive amount
of generated Modelica code.

package t e s t
import devs . * ;
import e x t e r n a l f u n c t i o n s . * ;
import s i m u l a t o r . * ;

class GeneratorState
Generator .SeqState s s eqState (s t a r t=

Ge ne ra t o r . S e qS ta t e s . g ene r a t i ng) ;
end GeneratorState ;

class Generator
extends AtomicDEVS ;
parameter St r ing name ;
output DevsPort p out ;
GeneratorState s t a t e () ;
type SeqStates = enumeration (gene ra t ing) ;

14

Generator

Processor

Root

CoupledProcessor

p_out

p_in

p_out

p_in

p_out

p_outp_in
p_in p_out

p_in

p_out

p_outp_in

p_out
p_out

generating

timespan := 1;

TimeAdvance:

Output:evt := Job(0.3);

poke(p_out, evt);

idle

timespan := INFINITY;

TimeAdvance:

Output:

processing

timespan := event.jobSize;

TimeAdvance:

Output:
poke(p_out, event);

ins_2

Processor:

ins_3

Processor:

ins_4

Processor:

ins_6

CoupledProcessor:ins_7

Generator:

Job

jobSize type=Float init.value=3.5

Parameters:

Attributes:

Model:

Parameters:

End time:

Verbose:

Trace:

Package:

Root

100.0

True

False

ExperimentExperiment:

Figure 3: The model of the queue in AToM3

function i n t T r a n s i t i o n
algorithm

i f (s t a t e . s e q S t a t e == S e q S t a t e s . g e n e r a t i n g) then
// Use Modelica syntax
s t a t e . s e q S t a t e := S e q S t a t e s . g e n e r a t i n g ;

end i f ;
end i n t T r a n s i t i o n ;

function outputFnc
DevsEvent evt = n u l l ;

algorithm
i f (s t a t e . s e q S t a t e == S e q S t a t e s . g e n e r a t i n g) then

evt := Job (0 . 3) ;
poke (p out , evt) ;

end i f ;
end outputFnc ;

function timeAdvance
output I n t e g e r timespan ;

algorithm
i f (s t a t e . s e q S t a t e == S e q S t a t e s . g e n e r a t i n g) then

timespan := 1 ;

15

end i f ;
end timeAdvance ;

end Generator ;

class Proce s so rS ta t e
P r o c e s s o r . S e q S t a t e s s eqState (s t a r t=P r o c e s s o r . S e q S t a t e s . i d l e

) ;
end Proce s so rS ta t e ;

class Proces sor
extends AtomicDEVS ;
parameter St r ing name ;
input DevsPort p in ;
output DevsPort p out ;
Proce s so rS ta t e s t a t e () ;
type SeqStates = enumeration (i d l e , s t a t e 2) ;

function ex tTrans i t i on
algorithm

i f (s t a t e . s e q S t a t e == S e q S t a t e s . i d l e) then
// Use Modelica syntax
s t a t e . s e q S t a t e := S e q S t a t e s . s t a t e 2 ;

s t a t e . e v e n t := peek (p in) ;
end i f ;

end ex tTrans i t i on ;

function i n t T r a n s i t i o n
algorithm

// Use Modelica syntax
i f (s t a t e . s e q S t a t e == S e q S t a t e s . s t a t e 2) then

// Use Modelica syntax
s t a t e . s e q S t a t e := S e q S t a t e s . i d l e ;

end i f ;
end i n t T r a n s i t i o n ;

function outputFnc
DevsEvent evt = n u l l ;

algorithm
i f (s t a t e . s e q S t a t e == S e q S t a t e s . s t a t e 2) then

poke (p out , s t a t e . e v e n t) ;
end i f ;

end outputFnc ;

function timeAdvance
output I n t e g e r timespan ;

16

algorithm
i f (s t a t e . s e q S t a t e == S e q S t a t e s . i d l e) then

timespan := INFINITY ;
end i f ;
i f (s t a t e . s e q S t a t e == S e q S t a t e s . s t a t e 2) then

timespan := s t a t e . e v e n t . j o b S i z e ;
end i f ;

end timeAdvance ;

end Proces sor ;

class Root
extends CoupledDEVS ;
parameter St r ing name ;
Generator i n s 0 () ;
Proces sor i n s 1 () ;
Proces sor i n s 2 () ;

equation
connect (i n s 0 . p o u t , i n s 1 . p i n) ;
connect (i n s 1 . p o u t , i n s 2 . p i n) ;

end Root ;

class Job
extends DevsEvent ;
parameter Real j o b S i z e ;

end Job ;

class Experiment
extends DevsExperiment ;
Root rootModel () ;
S imulator sim (simModel=rootModel) ;
Boolean verbose = True ;
Boolean t ra c e = False ;
Real end time = 100 . 0 ;

end Experiment ;

end t e s t ;

8.3.1. Usage

After the graphical model is constructed in AToM3, it can be exported
as Modelica code using the GEN button in the toolbar. The generated files
should contain all of the required Modelica code. Note that this code does
several imports of some standard DEVS Modelica code (like the definition of
the DEVSPort, AtomicDEVS, ... classes) and several small details. Though
these files are not generated and are provided with the µModelica compiler,

17

which will be used in the next step.

8.4. Flattened Modelica code

Only the most important snippets are shown due to the massive amount
of generated Modelica code.

package t e s t
import devs . * ;
import e x t e r n a l f u n c t i o n s . * ;
import s i m u l a t o r . * ;
class Proce s so rS ta t e

type Proce s so r SeqSta t e s
EnumType value ;
parameter StringType quant i ty=”” ;
parameter EnumType min=i d l e , max=s t a t e 2 ;
parameter EnumType s t a r t=i d l e ;
parameter BooleanType f i x e d=fa l se ;
parameter BooleanType enable=true ;
constant EnumType i d l e ;
constant EnumType s t a t e 2 ;

end Proce s so r SeqSta t e s ;
Proce s so r SeqSta t e s s eqState (s t a r t=i d l e) ;

end Proce s so rS ta t e ;
class Root

extends AtomicDEVS ;
d i c t X=d i c t () ;
d i c t Y=d i c t () ;
l i s t t imeLe f t s ;
Real e l apsed=0 ;
GeneratorState i n s 0 s t a t e=GeneratorState () ;
Real i n s 0 t o t a l W a i t=timeAdvance Generator (i n s 0 s t a t e) ;
Real i n s 0 t i m e L e f t=i n s 0 t o t a l W a i t ;
Proce s so rS ta t e i n s 2 s t a t e=Proce s so rS ta t e () ;
Real i n s 2 t o t a l W a i t=timeAdvance Processor (i n s 2 s t a t e) ;
Real i n s 2 t i m e L e f t=i n s 2 t o t a l W a i t ;
Proce s so rS ta t e i n s 1 s t a t e=Proce s so rS ta t e () ;
Real i n s 1 t o t a l W a i t=timeAdvance Processor (i n s 1 s t a t e) ;
Real i n s 1 t i m e L e f t=i n s 1 t o t a l W a i t ;
function e x t T r a n s i t i o n P r o c e s s o r

input Proce s so rS ta t e s t a t e ;
input d i c t X;
input I n t e g e r e lapsed ;

algorithm
i f s t a t e . s e q S t a t e == P r o c e s s o r S t a t e . i d l e then

s t a t e . s e q S t a t e := P r o c e s s o r S t a t e . s t a t e 2 ;

18

s t a t e . e v e n t := X.get (” p in ” , None) ;
end i f ;

end e x t T r a n s i t i o n P r o c e s s o r ;
function i n t T r a n s i t i o n P r o c e s s o r

input Proce s so rS ta t e s t a t e ;
algorithm

i f s t a t e . s e q S t a t e == P r o c e s s o r S t a t e . s t a t e 2 then
s t a t e . s e q S t a t e := P r o c e s s o r S t a t e . i d l e ;

end i f ;
end i n t T r a n s i t i o n P r o c e s s o r ;
function outputFnc Processor

DevsEvent evt=n u l l ;
input Proce s so rS ta t e s t a t e ;
output d i c t Y=d i c t () ;

algorithm
i f s t a t e . s e q S t a t e == P r o c e s s o r S t a t e . s t a t e 2 then

Y[” p out ”] := s t a t e . e v e n t ;
end i f ;

end outputFnc Processor ;
function t imeAdvance Processor

output I n t e g e r timespan ;
input Proce s so rS ta t e s t a t e ;

algorithm
i f s t a t e . s e q S t a t e == P r o c e s s o r S t a t e . i d l e then

timespan := INFINITY ;
end i f ;
i f s t a t e . s e q S t a t e == P r o c e s s o r S t a t e . s t a t e 2 then

timespan := s t a t e . e v e n t . j o b S i z e ;
end i f ;

end t imeAdvance Processor ;
function i n t T r a n s i t i o n

I n t e g e r counter=0 ;
l i s t new=l i s t () ;
l i s t t r a n s i t i o n e d=l i s t () ;
l i s t f i r s t=l i s t () ;
l i s t elems=l i s t () ;
Real ta=0 . 0 ;
d i c t Y ins t=d i c t () ;
l i s t dStar ;

algorithm
new := l i s t () ;
counter := 0 ;
i n s 0 t i m e L e f t := i n s 0 t i m e L e f t−e lapsed ;
i n s 2 t i m e L e f t := i n s 2 t i m e L e f t−e lapsed ;
i n s 1 t i m e L e f t := i n s 1 t i m e L e f t−e lapsed ;
i f i n s 0 t i m e L e f t < 1e−10 then

19

elems.append (i n s 0 s t a t e) ;
end i f ;
i f i n s 2 t i m e L e f t < 1e−10 then

elems.append (i n s 2 s t a t e) ;
end i f ;
i f i n s 1 t i m e L e f t < 1e−10 then

elems.append (i n s 1 s t a t e) ;
end i f ;
i f l en (elems) > 1 then

dStar := s e l e c t (elems) ;
else

dStar := elems [0] ;
end i f ;
i f dStar == i n s 0 s t a t e then

Y := outputFnc Generator (i n s 0 s t a t e) ;
i n s 0 s t a t e := in tTrans i t i on Gene ra to r (i n s 0 s t a t e) ;
Y := renamePorts (Y, ” i n s 0 ”) ;
Y := mapConnections (Y) ;
i n s 0 t i m e L e f t := timeAdvance Generator (i n s 0 s t a t e) ;
Y ins t := g e t I n s t a n c e s (Y, ” i n s 1 ”) ;
e l apsed := i n s 1 t o t a l W a i t− i n s 1 t i m e L e f t ;
i n s 1 s t a t e := e x t T r a n s i t i o n P r o c e s s o r (i n s 1 s t a t e ,

Y inst , e l apsed) ;
i n s 1 t i m e L e f t := timeAdvance Processor (i n s 1 s t a t e) ;
i n s 1 t o t a l W a i t := i n s 1 t i m e L e f t ;

end i f ;
i f dStar == i n s 2 s t a t e then

Y := outputFnc Processor (i n s 2 s t a t e) ;
i n s 2 s t a t e := i n t T r a n s i t i o n P r o c e s s o r (i n s 2 s t a t e) ;
Y := renamePorts (Y, ” i n s 2 ”) ;
Y := mapConnections (Y) ;
i n s 2 t i m e L e f t := timeAdvance Processor (i n s 2 s t a t e) ;

end i f ;
i f dStar == i n s 1 s t a t e then

Y := outputFnc Processor (i n s 1 s t a t e) ;
i n s 1 s t a t e := i n t T r a n s i t i o n P r o c e s s o r (i n s 1 s t a t e) ;
Y := renamePorts (Y, ” i n s 1 ”) ;
Y := mapConnections (Y) ;
i n s 1 t i m e L e f t := timeAdvance Processor (i n s 1 s t a t e) ;
Y ins t := g e t I n s t a n c e s (Y, ” i n s 2 ”) ;
e l apsed := i n s 2 t o t a l W a i t− i n s 2 t i m e L e f t ;
i n s 2 s t a t e := e x t T r a n s i t i o n P r o c e s s o r (i n s 2 s t a t e ,

Y inst , e l apsed) ;
i n s 2 t i m e L e f t := timeAdvance Processor (i n s 2 s t a t e) ;
i n s 2 t o t a l W a i t := i n s 2 t i m e L e f t ;

end i f ;

20

end i n t T r a n s i t i o n ;
function ex tTrans i t i on

input d i c t X;
input Real e l apsed ;
d i c t Y=d i c t () ;
l i s t keys=l i s t () ;
d i c t Y ins t=d i c t () ;

algorithm
Y := mapConnections (X) ;
keys := Y.keys () ;
i f k e y s . c o n t a i n s (” i n s 0 ”) then

Y inst := g e t I n s t a n c e s (Y, ” i n s 0 ”) ;
e l apsed := i n s 0 t o t a l W a i t− i n s 0 t i m e L e f t ;
i n s 0 s t a t e := extTrans i t i on Genera to r (i n s 0 s t a t e ,

Y inst , e l apsed) ;
i n s 0 t i m e L e f t := timeAdvance Generator (i n s 0 s t a t e) ;
i n s 0 t o t a l W a i t := i n s 0 t i m e L e f t ;

end i f ;
i f k e y s . c o n t a i n s (” i n s 2 ”) then

Y inst := g e t I n s t a n c e s (Y, ” i n s 2 ”) ;
e l apsed := i n s 2 t o t a l W a i t− i n s 2 t i m e L e f t ;
i n s 2 s t a t e := e x t T r a n s i t i o n P r o c e s s o r (i n s 2 s t a t e ,

Y inst , e l apsed) ;
i n s 2 t i m e L e f t := timeAdvance Processor (i n s 2 s t a t e) ;
i n s 2 t o t a l W a i t := i n s 2 t i m e L e f t ;

end i f ;
i f k e y s . c o n t a i n s (” i n s 1 ”) then

Y inst := g e t I n s t a n c e s (Y, ” i n s 1 ”) ;
e l apsed := i n s 1 t o t a l W a i t− i n s 1 t i m e L e f t ;
i n s 1 s t a t e := e x t T r a n s i t i o n P r o c e s s o r (i n s 1 s t a t e ,

Y inst , e l apsed) ;
i n s 1 t i m e L e f t := timeAdvance Processor (i n s 1 s t a t e) ;
i n s 1 t o t a l W a i t := i n s 1 t i m e L e f t ;

end i f ;
end ex tTrans i t i on ;
function timeAdvance

output Real timeSpan ;
algorithm

t imeLe f t s := l i s t () ;
t imeLef t s .append (i n s 0 t i m e L e f t) ;
t imeLef t s .append (i n s 2 t i m e L e f t) ;
t imeLef t s .append (i n s 1 t i m e L e f t) ;
timeSpan := min (t imeLe f t s) ;

end timeAdvance ;
function outputFnc

output d i c t Y=d i c t () ;

21

algorithm
Y := mapConnections (X) ;
X := d i c t () ;

end outputFnc ;
function mapConnections

input d i c t X;
output d i c t Y;

algorithm
Y := d i c t () ;
i f X . c o n t a i n s (” i n s 0 p o u t ”) then

Y[” i n s 1 p i n ”] := X[” i n s 0 p o u t ”] ;
end i f ;
i f X . c o n t a i n s (” i n s 1 p o u t ”) then

Y[” i n s 2 p i n ”] := X[” i n s 1 p o u t ”] ;
end i f ;

end mapConnections ;
function g e t I n s t a n c e s

input d i c t X;
input St r ing name ;
output d i c t Y;
l i s t keys ;
I n t e g e r counter ;
S t r ing key ;
S t r ing new key ;
S t r ing searchname ;
I n t e g e r l ength ;

algorithm
Y := d i c t () ;
keys := X.keys () ;
counter := 0 ;
l ength := k e y s . l e n () ;
while counter<l ength loop

key := keys [counter] ;
i f k e y . c o n t a i n s (name) then

searchname := name+” ” ;
new key := k e y . s p l i t (searchname) ;
new key := new key [1] ;
Y[new key] := X[key] ;

end i f ;
counter := counter+1 ;

end while ;
end g e t I n s t a n c e s ;
function renamePorts

input d i c t X;
input St r ing name ;
output d i c t Y=d i c t () ;

22

l i s t keys=l i s t () ;
S t r ing newname=”” ;
S t r ing key=”” ;
I n t e g e r counter=0 ;
I n t e g e r l ength=0 ;

algorithm
keys := X.keys () ;
counter := 0 ;
l ength := k e y s . l e n () ;
while counter<l ength loop

key := keys [counter] ;
newname := name+” ”+key ;
Y[newname] := X[key] ;
counter := counter+1 ;

end while ;
end renamePorts ;
function s e l e c t

input l i s t immChildren ;
output l i s t c h i l d ;

algorithm
c h i l d := immChildren [0] ;

end s e l e c t ;
end Root ;
class Job

extends DevsEvent ;
parameter Real j o b S i z e ;

end Job ;
class Experiment

extends DevsExperiment ;
Root rootModel () ;
S imulator sim (simModel=rootModel) ;
Boolean verbose=True ;
Boolean t ra c e=False ;
Real end time=100 . 0 ;

end Experiment ;
end t e s t ;

8.4.1. Usage

An important step before using the µModelica compiler, is to set several
PATH environment variables first. These are needed to do proper imports
and otherwise the compiler will crash. To set these variabeles, it suffices to
use the setPATH file.
To flatten code and set the environment variables, the following command
must be executed

23

source setPATH
python devsmc . py −f t e s t .mo

This command will have generated a flattened model with extension .flat.mo,
which is Modelica code too.

8.5. PythonDEVS code

Only the most important snippets are shown due to the massive amount
of generated PythonDEVS code.

c l a s s Proce s so rS ta t e :
i d l e = ' i d l e '

s t a t e 2 = ' s t a t e 2 '

de f i n i t (s e l f) :
s e l f . s eqState = s e l f . i d l e

c l a s s Root (AtomicDEVS) :
de f i n i t (s e l f) :

AtomicDEVS . i n i t (s e l f)
s e l f .X = d i c t ()
s e l f .Y = d i c t ()
s e l f . t imeLe f t s = None
s e l f . e l apsed = 0
s e l f . i n s 0 s t a t e = GeneratorState ()
s e l f . i n s 0 t o t a l W a i t = s e l f . t imeAdvance Generator (s e l f .

i n s 0 s t a t e)
s e l f . i n s 0 t i m e L e f t = s e l f . i n s 0 t o t a l W a i t
s e l f . i n s 2 s t a t e = Proce s so rS ta t e ()
s e l f . i n s 2 t o t a l W a i t = s e l f . t imeAdvance Processor (s e l f .

i n s 2 s t a t e)
s e l f . i n s 2 t i m e L e f t = s e l f . i n s 2 t o t a l W a i t
s e l f . i n s 1 s t a t e = Proce s so rS ta t e ()
s e l f . i n s 1 t o t a l W a i t = s e l f . t imeAdvance Processor (s e l f .

i n s 1 s t a t e)
s e l f . i n s 1 t i m e L e f t = s e l f . i n s 1 t o t a l W a i t

de f i n tTrans i t i on Gene ra to r (s e l f , s t a t e) :
i f (s t a t e . s eqState == GeneratorState . g ene ra t ing) :

s t a t e . s eqState = GeneratorState . g ene ra t ing
return s t a t e

de f outputFnc Generator (s e l f , s t a t e) :
Y=d i c t ()
evt = None
i f (s t a t e . s eqState == GeneratorState . g ene ra t ing) :

evt = Job (0 . 3)
Y[” p out ”] = evt

24

re turn Y
def timeAdvance Generator (s e l f , s t a t e) :

i f (s t a t e . s eqState == GeneratorState . g ene ra t ing) :
timespan = 1

return timespan
de f e x t T r a n s i t i o n P r o c e s s o r (s e l f , s ta te , X, e l apsed) :

i f (s t a t e . s eqState == Proce s so rS ta t e . i d l e) :
s t a t e . s eqState = Proce s so rS ta t e . s t a t e 2
s t a t e . event = X. get (” p in ” , None)

re turn s t a t e
de f i n t T r a n s i t i o n P r o c e s s o r (s e l f , s t a t e) :

i f (s t a t e . s eqState == Proce s so rS ta t e . s t a t e 2) :
s t a t e . s eqState = Proce s so rS ta t e . i d l e

re turn s t a t e
de f outputFnc Processor (s e l f , s t a t e) :

Y=d i c t ()
evt = None
i f (s t a t e . s eqState == Proce s so rS ta t e . s t a t e 2) :

Y[” p out ”] = s t a t e . event
re turn Y

def t imeAdvance Processor (s e l f , s t a t e) :
i f (s t a t e . s eqState == Proce s so rS ta t e . i d l e) :

timespan = INFINITY
i f (s t a t e . s eqState == Proce s so rS ta t e . s t a t e 2) :

timespan = s t a t e . event . j o b S i z e
re turn timespan

de f i n t T r a n s i t i o n (s e l f) :
counter = 0
new = l i s t ()
t r a n s i t i o n e d = l i s t ()
f i r s t = l i s t ()
elems = l i s t ()
ta = 0 .0
Y inst = d i c t ()
dStar = None
new = l i s t ()
counter = 0
s e l f . i n s 0 t i m e L e f t = s e l f . i n s 0 t i m e L e f t − s e l f . e l apsed
s e l f . i n s 2 t i m e L e f t = s e l f . i n s 2 t i m e L e f t − s e l f . e l apsed
s e l f . i n s 1 t i m e L e f t = s e l f . i n s 1 t i m e L e f t − s e l f . e l apsed
i f (s e l f . i n s 0 t i m e L e f t < 1e−10) :

elems . append (s e l f . i n s 0 s t a t e)
i f (s e l f . i n s 2 t i m e L e f t < 1e−10) :

elems . append (s e l f . i n s 2 s t a t e)
i f (s e l f . i n s 1 t i m e L e f t < 1e−10) :

elems . append (s e l f . i n s 1 s t a t e)

25

i f (l en (elems) > 1) :
dStar = s e l f . s e l e c t (elems)

e l s e :
dStar = elems [0]

i f (dStar == s e l f . i n s 0 s t a t e) :
s e l f .Y = s e l f . outputFnc Generator (s e l f . i n s 0 s t a t e)
s e l f . i n s 0 s t a t e = s e l f . i n tTrans i t i on Gene ra to r (s e l f .

i n s 0 s t a t e)
s e l f .Y = s e l f . renamePorts (s e l f .Y, ” i n s 0 ”)
s e l f .Y = s e l f . mapConnections (s e l f .Y)
s e l f . i n s 0 t i m e L e f t = s e l f . t imeAdvance Generator (s e l f .

i n s 0 s t a t e)
Y ins t = s e l f . g e t I n s t a n c e s (s e l f .Y, ” i n s 1 ”)
s e l f . e l apsed = s e l f . i n s 1 t o t a l W a i t − s e l f . i n s 1 t i m e L e f t
s e l f . i n s 1 s t a t e = s e l f . e x t T r a n s i t i o n P r o c e s s o r (s e l f .

i n s 1 s t a t e , Y inst , s e l f . e l apsed)
s e l f . i n s 1 t i m e L e f t = s e l f . t imeAdvance Processor (s e l f .

i n s 1 s t a t e)
s e l f . i n s 1 t o t a l W a i t = s e l f . i n s 1 t i m e L e f t

i f (dStar == s e l f . i n s 2 s t a t e) :
s e l f .Y = s e l f . outputFnc Processor (s e l f . i n s 2 s t a t e)
s e l f . i n s 2 s t a t e = s e l f . i n t T r a n s i t i o n P r o c e s s o r (s e l f .

i n s 2 s t a t e)
s e l f .Y = s e l f . renamePorts (s e l f .Y, ” i n s 2 ”)
s e l f .Y = s e l f . mapConnections (s e l f .Y)
s e l f . i n s 2 t i m e L e f t = s e l f . t imeAdvance Processor (s e l f .

i n s 2 s t a t e)
i f (dStar == s e l f . i n s 1 s t a t e) :

s e l f .Y = s e l f . outputFnc Processor (s e l f . i n s 1 s t a t e)
s e l f . i n s 1 s t a t e = s e l f . i n t T r a n s i t i o n P r o c e s s o r (s e l f .

i n s 1 s t a t e)
s e l f .Y = s e l f . renamePorts (s e l f .Y, ” i n s 1 ”)
s e l f .Y = s e l f . mapConnections (s e l f .Y)
s e l f . i n s 1 t i m e L e f t = s e l f . t imeAdvance Processor (s e l f .

i n s 1 s t a t e)
Y ins t = s e l f . g e t I n s t a n c e s (s e l f .Y, ” i n s 2 ”)
s e l f . e l apsed = s e l f . i n s 2 t o t a l W a i t − s e l f . i n s 2 t i m e L e f t
s e l f . i n s 2 s t a t e = s e l f . e x t T r a n s i t i o n P r o c e s s o r (s e l f .

i n s 2 s t a t e , Y inst , s e l f . e l apsed)
s e l f . i n s 2 t i m e L e f t = s e l f . t imeAdvance Processor (s e l f .

i n s 2 s t a t e)
s e l f . i n s 2 t o t a l W a i t = s e l f . i n s 2 t i m e L e f t

re turn s e l f . s t a t e
de f ex tTrans i t i on (s e l f , X, e l apsed) :

Y = d i c t ()
keys = l i s t ()

26

Y inst = d i c t ()
Y = s e l f . mapConnections (X)
keys = s e l f .Y. keys ()
i f (keys . conta in s (” i n s 0 ”)) :

Y ins t = s e l f . g e t I n s t a n c e s (Y, ” i n s 0 ”)
e lapsed = s e l f . i n s 0 t o t a l W a i t − s e l f . i n s 0 t i m e L e f t
s e l f . i n s 0 s t a t e = extTrans i t i on Generato r (s e l f .

i n s 0 s t a t e , Y inst , e l apsed)
s e l f . i n s 0 t i m e L e f t = s e l f . t imeAdvance Generator (s e l f .

i n s 0 s t a t e)
s e l f . i n s 0 t o t a l W a i t = s e l f . i n s 0 t i m e L e f t

i f (keys . conta in s (” i n s 2 ”)) :
Y ins t = s e l f . g e t I n s t a n c e s (Y, ” i n s 2 ”)
e lapsed = s e l f . i n s 2 t o t a l W a i t − s e l f . i n s 2 t i m e L e f t
s e l f . i n s 2 s t a t e = s e l f . e x t T r a n s i t i o n P r o c e s s o r (s e l f .

i n s 2 s t a t e , Y inst , e l apsed)
s e l f . i n s 2 t i m e L e f t = s e l f . t imeAdvance Processor (s e l f .

i n s 2 s t a t e)
s e l f . i n s 2 t o t a l W a i t = s e l f . i n s 2 t i m e L e f t

i f (keys . conta in s (” i n s 1 ”)) :
Y ins t = s e l f . g e t I n s t a n c e s (Y, ” i n s 1 ”)
e lapsed = s e l f . i n s 1 t o t a l W a i t − s e l f . i n s 1 t i m e L e f t
s e l f . i n s 1 s t a t e = s e l f . e x t T r a n s i t i o n P r o c e s s o r (s e l f .

i n s 1 s t a t e , Y inst , e l apsed)
s e l f . i n s 1 t i m e L e f t = s e l f . t imeAdvance Processor (s e l f .

i n s 1 s t a t e)
s e l f . i n s 1 t o t a l W a i t = s e l f . i n s 1 t i m e L e f t

re turn s e l f . s t a t e
de f timeAdvance (s e l f) :

s e l f . t imeLe f t s = l i s t ()
s e l f . t imeLe f t s . append (s e l f . i n s 0 t i m e L e f t)
s e l f . t imeLe f t s . append (s e l f . i n s 2 t i m e L e f t)
s e l f . t imeLe f t s . append (s e l f . i n s 1 t i m e L e f t)
timeSpan = min(s e l f . t imeLe f t s)
re turn timeSpan

de f outputFnc (s e l f) :
Y=d i c t ()
Y = s e l f . mapConnections (s e l f .X)
s e l f .X = d i c t ()
re turn Y

def mapConnections (s e l f , X) :
Y = d i c t ()
i f (X. c o n t a i n s (” i n s 0 p o u t ”)) :

Y[” i n s 1 p i n ”] = X[” i n s 0 p o u t ”]
i f (X. c o n t a i n s (” i n s 1 p o u t ”)) :

Y[” i n s 2 p i n ”] = X[” i n s 1 p o u t ”]

27

re turn Y
def g e t I n s t a n c e s (s e l f , X, name) :

keys = None
counter = 0
key = ””
new key = ””
searchname = ””
length = 0
Y = d i c t ()
keys = X. keys ()
counter = 0
length = keys . l e n ()
whi l e counter < l ength :

key = keys [counter]
i f (key . c o n t a i n s (name)) :

searchname = name + ” ”
new key = key . s p l i t (searchname)
new key = new key [1]
Y[new key] = X[key]

counter = counter + 1
return Y

def renamePorts (s e l f , X, name) :
Y=d i c t ()
keys = l i s t ()
newname = ””
key = ””
counter = 0
length = 0
keys = X. keys ()
counter = 0
length = keys . l e n ()
whi l e counter < l ength :

key = keys [counter]
newname = name + ” ” + key
Y[newname] = X[key]
counter = counter + 1

return Y
def s e l e c t (s e l f , immChildren) :

c h i l d = immChildren [0]
r e turn c h i l d

c l a s s Job (ob j e c t) :
de f i n i t (s e l f , j o b S i z e) :

s e l f . j o b S i z e = j o b S i z e

c l a s s Experiment (ob j e c t) :

28

de f i n i t (s e l f) :
s e l f . rootModel = Root ()
s e l f . sim = Simulator (model = s e l f . rootModel)
s e l f . verbose = True
s e l f . t r a c e = False
s e l f . end time = 100 .0

de f s imulate (s e l f) :
s e l f . sim . s imulate (t e r m i n a t i o n c o n d i t i o n=te rminate a t (s e l f .

end time) , verbose=s e l f . verbose , t r a c e=s e l f . t r a c e)
de f t e rminate a t (t) :

de f f (model , c l o ck) :
i f c l o ck >= t :

re turn True
e l s e :

r e turn Fal se
re turn f

i f name == ' main ' :
experiment = Experiment ()
experiment . s imulate ()

8.5.1. Usage

Compiling Modelica code to PythonDEVS code is similar to flattening,
only now the -f flag must be ommitted:

python devsmc . py t e s t . f l a t .mo

Which will generate the code in the file test.flat.py, though it requires some
slight modifications due to the way PythonDEVS models import the simu-
lator. So it is required to either put the pydevs folder in the same directory
as the models, or modify the import path in the model itself which should
now point to a non existing location.

8.6. Simulation

Only the most important snippets are shown due to the massive amount
of output. Note that the trace output will not be very clear, since the
complete structure was reduced to a single atomic model, which means that
the simulator will not be able to differentiate between the different atomic
models that are represented in this newly created atomic model. Should
approximately the same output be desired, it might be possible to define a
similar print function, though this would be relatively unmaintainable as it
should have the same format as the output of the simulator.

29

Current Time : 0 .00

INITIAL CONDITIONS in model <A1>
I n i t i a l State : None
Next scheduled i n t e r n a l t r a n s i t i o n at time 1

Current Time : 1 .00

INTERNAL TRANSITION in model <A1>
New State : None
Output Port Conf igurat ion :
Next scheduled i n t e r n a l t r a n s i t i o n at time 1 .3

Current Time : 1 .30

INTERNAL TRANSITION in model <A1>
New State : None
Output Port Conf igurat ion :
Next scheduled i n t e r n a l t r a n s i t i o n at time 1 .6

Current Time : 1 .60

INTERNAL TRANSITION in model <A1>
New State : None
Output Port Conf igurat ion :
Next scheduled i n t e r n a l t r a n s i t i o n at time 2 .0

Current Time : 2 .00

INTERNAL TRANSITION in model <A1>
New State : None
Output Port Conf igurat ion :
Next scheduled i n t e r n a l t r a n s i t i o n at time 2 .3

30

Current Time : 2 .30

INTERNAL TRANSITION in model <A1>
New State : None
Output Port Conf igurat ion :
Next scheduled i n t e r n a l t r a n s i t i o n at time

2.5999999999999996

8.6.1. Usage

Simulating the model itself is no longer part of our approach, but we
mention the command for completeness.

python t e s t . f l a t . py

9. Performance evaluation

Symbolic flattening is often mentioned as a way to achieve improved
performance. While this may be possible in case the simulator has a very
inefficient way to handle hierarchy, most performance oriented simulators
will have more efficient algorithms, which are often language dependent (e.g.
difference between the available function in the Python libraries and C++
standard libraries).
For example, the original PyDEVS simulator as described by Bolduc and
Vangheluwe (2001) will sort the event list to find the first element to tran-
sition. This is clearly O(n · log(n)), so our flattening will reduce this to an
O(n) algorithm, which should clearly be more efficient in big models. The
newer version of the PyDEVS simulator will do a lot more and will make
use of heaps, invalidation of elements, ... to achieve near O(log(n)) com-
plexity. While it would also be possible to implement this in our flattening
phase, it would be more difficult due to the fact that all this code will have
to be ported to Modelica and modifed to make sure that it can be used as
a template for our compiler.
Should our current flattening approach be used on performance oriented
simulators, we will therefor see a decrease in performance, as we disregard
all optimisations of the simulator. This can be seen in figure 4, the com-
plexities differ from those mentioned above, since the above only take into
account the searching for the imminent component, while the figure shows

31

the complete simulation. Note that in small cases, the flattened version is
still slightly faster, which is due to the lower initialisation time. However,
it is clear that the complexity of the simulation will get altered. In the old
version of the PyDEVS simulator, we achieve a slight improvement, as seen
in figure 5. Note that if the flattening phase would contain approximately
the same algorithms, it might be possible to come close in terms of perfor-
mance, with the added advantage that these algorithms could be ported to
every possible simulator, thus easing the task of simulator builders.
Even though both simulators simulate the same flattened model, which
avoids the use of high-complexity code for coupled models, there is still a
huge difference in execution times between the old and new PythonDEVS.
This indicates that symbolic flattening alone is not able to make every sim-
ulator perform with the same complexity and certainly not with the same
execution time. Which is actually quite logical, since a simulator contains
a lot more than only coupled model simulation code. On the other hand,
this code is often the one with the highest impact on simulation complexity
as can be seen in figure 4, where a flattened model is compared to a non-
flattened model.
For reference, we also included models that are overly hierarchical, with only
1 atomic model, which is nested in several coupled models. In this case, it
can be seen that there indeed is a significant performance increase, mainly
because in the flat version, the intermediate coupled models are removed at
compile time.
Of course, such a model is very artificial and is unlikely to happen in real
models. On the other hand, it nicely shows that the direct connection algo-
rithm can effectively reduce the complexity in hierarchical models, both at
compile-time (as in the flattened version) as at run-time (as is done in the
new version of PyDEVS). The slight increase in simulation time due to the
direct connection is often oughtweighted by the high performance increase
that can be noticed due to this optimisation. For more information on the
use of direct connection at run-time and the results in different situations,
we refer to Van Tendeloo (2013). For the flattened version, it is clear that
the execution time stays constant. The non-flattened version takes time
dependent on the depth. Even though the new version of PythonDEVS in-
cludes direct connection at run-time, this whole reconnection sequence does
take some time dependent on the depth, which is taken into account in the
performance timings. This is the only reason why there is a slight increase
in time due to the increasing depth.

32

The comparison in figure 6 seems to have a lot of jitter, though this is
mainly due to the fact that a very small time scale is used. For example in
the flattened model, the duration varies between 0.250 and 0.270. However,
it should be clear that the complexity is completely constant.

33

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

s
)

Width

Simulation time of Wide models using the New PyDEVS

Flattened
Quadratic

Non-Flattened
Linear

Figure 4: Performance comparison be-
tween a flattened and non-flattened
model in the newly modified Python-
DEVS simulator

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

s
)

Width

Simulation time of Wide models using the Old PyDEVS

Flattened
Quadratic

Non-Flattened
Quadratic

Figure 5: Performance comparison be-
tween a flattened and non-flattened
model in the original PythonDEVS sim-
ulator

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

s
)

Depth

Simulation time of Deep models using the New PyDEVS

Flattened
Linear

Non-Flattened
Constant

Figure 6: Performance comparison be-
tween a flattened and non-flattened hi-
erarchical model in the newly modified
PythonDEVS simulator

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
 (

s
)

Depth

Simulation time of Deep models using the Old PyDEVS

Flattened
Quadratic

Non-Flattened
Constant

Figure 7: Performance comparison be-
tween a flattened and non-flattened hi-
erarchical model in the original Python-
DEVS simulator

34

10. Related work

The three different phases were already done in different levels of com-
pleteness, so our main contribution lies in combining these steps and fixing
bugs or incompletenesses that arise while doing so. The main work was in
the symbolic flattening step, which was rewritten from scratch.
The first step, about graphically modelling the DEVS formalism, was done
by Song (2006) and Posse and Bolduc (2003). The symbolic flattening phase
was mentioned by Chen and Vangheluwe (2010), though a slightly different
approach was taken. Whereas their approach focusses on performance im-
provements, our approach focusses on fitting it in a more global overview
with performance being a secondary goal.
The final step, which compiles the Modelica code to PythonDEVS code,
is a combination of the original µModelica compiler by Xu (2005) and the
PythonDEVS extension to this compiler by Song (2006).

11. Future work

There are a lot of opportunities for future work, mainly to the µModelica
compiler. The most imporant work that could be done is concerned with
extending the compiler in several dimensions:

1. Implementing different code generators
Currently only PythonDEVS is supported, some possible extensions
might be ADEVS, VLE, CD++, ... This way the approach allows for
truely simulator independent modelling.

2. Implementing further verification possibilities
Currently nearly no verification is present that checks whether or not
the model is completely compliant to the DEVS formalism. Some pos-
sible directions for verifications are mentioned by Labiche and Wainer
(2005).

3. Implementing optimisations in the flattening phase
The flattening phase as we wrote here is still a prototype, as it closely
resembles the closure under coupling proof of Classic-DEVS. Most of
the optimisations that are possible for simulators can also be imple-
mented in the generated models, since the models will actually con-
tain parts of the simulation algorithm. This allows for an extremely
light-weight simulator, as most parts of the simulator are already im-
plemented in the model itself. Furthermore, these optimisations will

35

be kept in every different simulator as they happen at a simulator-
independent level.

4. Select and Z function
As previously mentioned, the select and Z functions are not yet sup-
ported. Implementing these two features would make the flattening
phase of the compiler completely conform to the DEVS formalism.

12. Conclusion

We have shown that it is possible to use a three-phase approach to a)
graphically model a DEVS model, b) generate a simulator-neutral, interme-
diate model out of it, c) perform several symbolic optimisations, d) compile
this intermediate model to simulator-specific code.
Furthermore, this has given us some insight in the performance improve-
ments that flattening might offer, but also in some simumlator parts that
cannot be accelerated using flattening.
Three different tools were combined to make this possible, allowing for max-
imum reuse and openness between each step.

References

Bernard P. Zeigler, H. P., Kim, T. G., 2000. Theory of Modeling and Simulation, 2nd
Edition. Academic Press.

Bolduc, J.-S., Vangheluwe, H., 2001. The modelling and simulation package pythondevs
for classical hierarchical devs. Tech. rep., MSDL Technical Report.

Chen, B., Vangheluwe, H., 2010. Symbolic flattening of devs models. In: 2010 Summer
Simulation Multiconference. SummerSim ’10. Society for Computer Simulation Inter-
national, San Diego, CA, USA, pp. 209–218.
URL http://dl.acm.org/citation.cfm?id=1999416.1999442

Labiche, Y., Wainer, G., 2005. Towards the verification and validation of devs models.
In: in Proceedings of 1st Open International Conference on Modeling & Simulation,
2005. pp. 295–305.

Posse, E., Bolduc, J.-S., 2003. Generation of devs modelling and simulation environments.
In: Summer Computer Simulation Conference. Student Workshop. pp. S139–S146.

Song, H., 2006. Infrastructure for devs modelling and experimentation. Master’s thesis,
McGill University.

Traoré, M. K., 2009. A graphical notation for devs. In: Proceedings of the 2009 Spring
Simulation Multiconference. SpringSim ’09. Society for Computer Simulation Interna-
tional, San Diego, CA, USA, pp. 162:1–162:7.
URL http://dl.acm.org/citation.cfm?id=1639809.1655391

Van Tendeloo, Y., 2013. Research internship 1: Optimizing pydevs. Tech. rep., MSDL.
Xu, W., 2005. The design and implementation of the modelica compiler. Master’s thesis,

McGill University.

36

