
Modelverse specification

Yentl Van Tendeloo
Bruno Barroca

Simon Van Mierlo
Hans Vangheluwe

August 31, 2016

Abstract

In this technical report, we present the specification of the Modelverse, a self-describable environment for multi-paradigm mod-
elling. This specification defines how all hardcoded aspects of the Modelverse are defined, necessary to create a compliant
Modelverse implementation. Apart from the core specification of the Modelverse, we also present the standardized API used
between the different components. We do not commit ourselves to a single language, as this specification can be implemented in
any language.

Contents

1 Introduction 4

2 Axioms 5
2.1 Axiom I: Forever Running . 5
2.2 Axiom II: Scalability . 5
2.3 Axiom III: Minimal Content . 6
2.4 Axiom IV: Model Everything . 6
2.5 Axiom V: Human Interaction . 6
2.6 Axiom VI: Test-Driven . 6
2.7 Axiom VII: Multi-View . 6
2.8 Axiom VIII: Multi-Formalism . 7
2.9 Axiom IX: Multi-Abstraction . 7
2.10 Axiom X: Multi-User . 7
2.11 Axiom XI: Interoperability . 7
2.12 Interconnections . 7

3 Modelverse State 9
3.1 Data representation . 9
3.2 CRUD interface . 11

4 Modelverse Kernel 16
4.1 Graph transformations . 16
4.2 Execution context . 19
4.3 Execution primitives . 20
4.4 Primitive operations . 35
4.5 Interface . 37

5 Network communication 39
5.1 Modelverse State . 39
5.2 Modelverse Kernel . 41

6 Practical information 44
6.1 Requirements . 44
6.2 Test suite . 44
6.3 Running the Modelverse . 44
6.4 Bootstrap file . 44
6.5 XML/HTTP requests . 45
6.6 Compiling with HUTN . 45
6.7 Examples . 45

2

7 Conclusion 48

3

1
Introduction

An architectural overview of the Modelverse is presented in Fig. 1.1. The Modelverse consists of two main components: the
Modelverse State (MvS) and the Modelverse Kernel (MvK), with a communication layer in between. Different Modelverse
Interfaces (MvI), capable of communication with the Modelverse, exist outside of the Modelverse.
In the Modelverse Interface, the user can have any kind of front-end to the Modelverse, which is close to the problem domain. The
MvI translates all user operations to operations for the MvK to process. The MvK considers models at the logical level, where
it can reason about concepts such as conformance relations and model-management operations. For communication with the
MvS, a conceptual idea of what a model looks like physically is used: the Physical Type Model (PTM). As we clearly distinguish
between the MvK and the MvS, the MvK cannot know how the model is represented in hardware. The PTM is therefore used as
a common concept to reason about. Finally, the MvS receives changes on this PTM and maps them to the representational level,
where it is actually stored in hardware.
In the remainder of this technical report, we present our requirements to the Modelverse in the form of axioms to which we
will back-reference (Chapter 2). Chapter ?? presents the specification of the Modelverse State in a language-independent way.
Chapter ?? presents the specification of the Modelverse Kernel. All communication between the intermediate layers is presented
in Chapter ??. Finally, Chapter ?? gives some practical information about running the Modelverse.

MvSMvKMvI

aPetriNet

MMCL

PetriNet

Logical

In-Memory
 Objects

Relational
Database

Cloud

RDF

Representation

PTM

Physical

Comm

Figure 1.1: Overview of the Modelverse architecture

4

2
Axioms

NOTE: this section is still a work in progress.
We define a set of requirements for a Modelverse. These requirements, or axioms, will be used during our formalization to
motivate our decisions. Although implementation-related requirements are not needed for our formalization, they are mentioned
as it is something every implementation should conform to.
After an explanation of what each axiom represents, we give an overview of how all these axioms are related to each other.

2.1 Axiom I: Forever Running

The Modelverse should always be able to continue running. As such, no modifications to the behaviour should require a restart,
except for changes to the (minimal) kernel (and thus the action language semantics). An (authorized) user should be able to alter
all core concepts, with changes automatically applied for all connected Modelverse Interfaces.
Forever running also implies that the Modelverse runs as a service, separate from the MvI program, which is used by the user,
but also on a different machine. A more drastic interpretation is that it should be parallelized and distributed, as to cope with
possible hardware failure. We do not require this more drastic interpretation, though it is certainly a feature to take into account
in an implementation evaluation.
The forever running does not apply to the MvI, of course, as the MvI is a tool ran on the system of the end-user. It is the whole
of MvK and MvS that should run as if it is running forever.

2.2 Axiom II: Scalability

The Modelverse should be scalable in terms of computation, memory, number of users, number of models, and the size of
individual models. Related to the previous axiom, scalability should still be maintained even if the Modelverse is forever running.
Combined with scalability is performance: even if operations are scalable in terms of complexity, the total time taken by execution
should also be as low as possible.
Due to our split in multiple components, we can also split up our scalability requirements over these components:

• The MvI needs to be scalable in performance, of course, though the size of models will be relatively small compared
to those processed by the MvK or MvS, because the models being worked on will always be submodels of the complete
Modelverse model. More important for the MvI is the scalability in the size of the model for visualization and presentation.
Depending on the domain, an implementation might provide further methods for abstraction of components.
• The MvK needs to be scalable in performance, again, but mainly in the processing of action code constructs. An MvK

instance should be easily parallelizable up to the “1 MvK per user” threshold. Beyond that limit, multiple MvKs would
have to cooperatively work on a single block of action code, which is likely to hamper performance. An MvK also needs
to be scalable in the number of users it is able to handle.
• The MvS needs to be scalable in performance, mainly in terms of the size of the complete Modelverse state. It is non-trivial

to distribute or parallelise, as operations are small and atomic, and all data needs to be shared between users. The MvS
should therefore be offloaded as much as possible, shifting all computation to the MvK. This reduces the functionality of

5

the MvS to that of a simple, but high-performance, data structure library. Again, it should be scalable in the number of,
possibly simultaneous, requests made, which differs from the total number of users.

2.3 Axiom III: Minimal Content

A minimal amount of content should be available in the Modelverse by default. The content consists of the models necessary for
bootstrapping, but also some default formalisms, such as Petri Nets, Parallel DEVS, Statecharts, FTG+PM [1], . . .
For bootstrapping, the Modelverse contains a model of itself, which can then be compiled to a binary, executable outside of the
Modelverse, or interpreted by the currently running MvK. From this viewpoint, the Modelverse will be similar to Squeak [2],
which is a Smalltalk interpreter written in Smalltalk.
Apart from formalisms, some models should also be present in the Modelverse. These include the Formalism Transformation
Graph (FTG), and the corresponding Process Model (PM), forming the FTG+PM. The FTG model can be automatically con-
structed from the formalisms that are automatically detected in the Modelverse. Combined with detecting the formalisms, it
should also be possible to automatically detect all transformations defined between these formalisms, thus completing the FTG.
The PM model will be the driving force of the MvK and defines which operations to execute. It can therefore be written in an
action language, which defines the behaviour of the MvK, and thus the communication with the user.

2.4 Axiom IV: Model Everything

Every element in the Modelverse needs to be explicitly modelled, using the most appropriate formalism. This does not only
include the typical elements, such as the models and metamodels, but should also go down to the level of the primitives such as
Integer and Float. This will allow for stronger model transformations, as they can transform (and access) literally everything.
Ultimately, a model of the Modelverse should also be present in the Modelverse, which closes the loop. In the end, a compiled
version needs to be used for pragmatic reasons, though this compiled version can be (automatically) compiled from the model
that lives in the Modelverse.
Features like debugging, introspection, reflection, and self-modifiability will come from this axiom, as every part of execution is
accessible for both reading and writing.

2.5 Axiom V: Human Interaction

All interaction with the human user of the Modelverse needs to be explicitly modelled. This includes timed behaviour of the Mod-
elverse (e.g., time-out of requests), or even the complete communication protocol. It is actually the MvI which will communicate
with the Modelverse, though it will be guided by the user.
It should also be taken into account that the MvK will be (mainly) used by humans, and as such should be usable. While most of
this will be handled by the MvI, which provides the tool to the user, the fact that a human is behind all of it should be taken into
account. Possible applications for this are for performance evaluation: a human user has completely different (and likely slower)
access patterns than an automated tool. The predefined constructs and design of the system should also be usable by humans,
specifically those that are non-experts in design of the Modelverse. Enforcing strict metamodelling is part of the solution, as this
offers users (and tools) a limited scope to worry about [?].

2.6 Axiom VI: Test-Driven

Development on the Modelverse should happen using the model of the Modelverse, which can be simulated, and placed in a vari-
ety of circumstances which are hard to replicate in real-life situations. A similar approach was taken by [3], where a DEVS model
was made of a distributed DEVS simulation kernel. Modelling allowed them to replicate, among others, sudden disconnects, high
latency connections, or different network topologies. Furthermore, detailed, and perfectly deterministic, performance insights
can be gained by the simulation of the model. Certainly for parallel execution, this gives us deterministic thread interleavings,
which can be crucial to debugging and performance analysis.
Functionality also needs to be checked as exhaustively as possible. Certainly for the first axiom, critical bugs should be avoided
as much as possible. Because the Modelverse will have to communicate with a variety of tools, its interface will also have to be
tested for conformance with the specifications.

2.7 Axiom VII: Multi-View

The Modelverse should support different views on the same model. Examples include hiding parts of a model, or aggregating
different elements into a composite element. This gives rise to consistency management, as changes in one view will have to be
propagated to all other views.

6

Multi-view should be handled at all components, as each component needs to allow it. The MvI needs to provide operations
to use the different views, the MvK needs to update the views and keep them consistent, and the MvS needs to provide these
operations efficiently. The MvS is least concerned with multi-view, as it sits at a lower level.

2.8 Axiom VIII: Multi-Formalism

The Modelverse should support models which combine different formalisms. Models should therefore be able to have a meta-
model which is the combination of multiple (meta)models. Inter-formalism links should also be possible, even if those cannot
be typed within the respective formalism. While the semantics of such a link depends on the domain, and therefore has to be
provided by the user, the Modelverse should allow such links to be created and used. Consequently, links between models should
also be possible, which can then act as the type for those inter-formalism links.
Related, a single model should be able to have multiple metamodels. A model could therefore be typed by a metamodel, but
would also have to conform to a bigger metamodel, which contains the original metamodel as one of its elements. This allows
the reuse of models, even if the context surrounding the metamodel has changed.

2.9 Axiom IX: Multi-Abstraction

The Modelverse should support systems which are expressed using a set of models, all at a different level of abstraction. Consis-
tency management will again have to be handled here.
As was the case for multi-view, each component needs to think about multi-abstraction separately. The exception is again the
MvS, as it is at a lower level. However, it can still (internally) use optimizations, knowing that some requests will be related to
multi-abstraction.

2.10 Axiom X: Multi-User

The Modelverse should be able to serve multiple Modelverse Interfaces simultaneously. A main concern to this is fairness
between users: a user cannot wait for its turn infinitely long. If a single user therefore uses all computational power, at the expense
of other users, the code executed by this user will have to be automatically paused, marked as “low priority”, or terminated.
User Access Control is related to this, as users should be able to configure the Read/Write/Execute status of their models. As
such, groups of users, with specific privileges, should also be supported.
If their access control allows it, users should also be able to read the state of the execution of other users. This will allow for
debugging with multiple users: user A can execute code, with user B being an automated debugging bot, which examines the
state of user A.

2.11 Axiom XI: Interoperability

Different implementations of the Modelverse and its interface should be possible. These implementations should all be able to
communicate with each other, as long as they follow the same specification. This is one of our main goals for specifying the
interfaces between components.
Additionally, because the semantics of action code and its corresponding execution context is defined, different MvK’s should be
able to continue each other’s execution, or interpret the execution context of other tools. This can come in handy with different
tools (e.g., a debugger, a compiler, or an interpreter) which might be developed independently, though are able to understand each
other’s information.

2.12 Interconnections

All of these axioms are related in some way, as the graph in Figure 2.1 shows. We now continue by explaining the links between
all concepts, using their label:

1. As the Modelverse will be forever running, there is a need for garbage collection or periodical maintenance to guarantee a
decent performance.

2. Having everything explicitly modelled allows us to create a self-modifiable Modelverse, which helps us with the forever
running axiom.

3. In the presence of multiple users, it is necessary to have the Modelverse running as a service, which implies that it should
run forever.

7

Forever Running

Scalability

1

Model Everything

2

Multi-User

3

Test-Driven

4

Interoperability

5

Minimal Content

6

Human Interaction

7 8

Multi-View

9

Multi-Formalism

10 11

1213

Multi-Abstraction

14

15

Figure 2.1: Overview of relations between all axioms

4. Using the performance tests, combined with the MvK being modelled explicitly, it becomes possible to assess the scalabil-
ity of the Modelverse algorithms under specific workloads.

5. Scalability is deeply connected with interoperability, as there is often a trade-off: increasing interoperability will decrease
scalability and vice versa.

6. Having everything modelled explicitly requires the presence of at least a few basic formalisms. Ultimately, it also includes
having a model of the Modelverse in the minimal content of the Modelverse.

7. By modelling everything, we will inevitably also have to model the interaction with the human.

8. The performance tests will use a performance model of the Modelverse, which is contained in the Modelverse. To that end,
the Modelverse will simulate its own performance.

9. Multi-view requires the ability to model everything, as we will have to model all different views separately.

10. By modelling everything explicitly, we also need to model links between different formalisms, which is a requirement for
multi-formalism models.

11. Interoperability between different Modelverse components becomes easier if each component is modelled explicitly, as it
clearly defines the expected semantics.

12. Interoperability is an essential part of human interaction, as otherwise it would be impossible for both of them to commu-
nicate.

13. Multi-view and multi-formalism are related due to a view being possibly expressed in a different formalism.

14. Multi-view and multi-abstraction are related, as different views might be at different levels of abstraction.

8

3
Modelverse State

We start our specification with the Modelverse State (MvS). The MvS maps the Physical Type Model (PTM) to the hardware.
Essentially, the MvS needs to implement the CRUD interface using whatever algorithms and data representation it sees fit.
Despite the liberal choice of data representation and algorithm, the interface is strictly defined and uses a special kind of graph,
defined in this chapter. We will first describe the conceptual representation of the PTM, followed by the operations on it that the
MvS should support.

3.1 Data representation

Conceptually, all data in the MvS is stored in the form of a kind of graph, as defined below. Informally, we define a graph which
can have a primitive value in a node, and both nodes and edges can be connected using edges. Allowing edges to connect other
edges allows for a more explicit representation, such as type links on associations, (Axiom IV: Model Everything). While edges
between edges could also be conceptualized using the standard notions of graphs, having a close mapping between the PTM and
the models will allow for higher performance (Axiom II: Scalability). Both nodes and edges can be accessed using a unique
identifier.
An actual implementation of this interface might store the graph in different physical representations (e.g., using a relational
database or triplestores). This allows for more specialized implementations, depending on the problem domain (Axiom II:
Scalability), while still being interoperable (Axiom XI: Interoperability). Despite the need for multi-view (Axiom VII: Multi-
View), multi-formalism (Axiom VIII: Multi-Formalism), and multi-abstraction (Axiom IX: Multi-Abstraction), everything is
represented uniformly at this level. It is only at the Modelverse Kernel (MvK) level, that an interpretation is given to this graph.
We define a graph G, element of G (the set of all possible states of the MvS). A graph consists of nodes (NG), possibly with
values (in U) defined on them (mapping NV,G), and edges (stored in EG as triples). Edges can run between both nodes and edges.
All identifiers allocated to edges are stored in EIDS,G. Nodes and edges have a unique identifier, with IDSG being (exactly) the
set of all identifiers. This also means that identifiers cannot be reused between nodes and edges.
Edges which are self-connecting can be problematic for certain recursive algorithms, which traverse an edge by going on to the
source and target. Therefore, edges can, by construction, only link elements that already exist. This effectively prevents (indirect)
links to itself. With this restriction, such constructs are disallowed and these recursive algorithms are therefore guaranteed to
terminate. Such a restriction is also not limiting, as it is a normal requirement to only connect elements that already exist.
The requirement for ever increasing identifiers might seem contradictory to Axiom I: Forever Running, as the identifier would
go up to infinity, consequently endangering Axiom II: Scalability. In theory, this is not a problem, though implementations will
specifically have to handle this to prevent problematic situations (e.g., integer overflow or slow operations). In an implementation,
this could easily be solved by periodical “identifier compaction” (identifiers are reassigned, to filter out removed identifiers), or
reusing removed identifiers (keeping in mind the constraint).

9

G = 〈NG,EG,NV,G〉 ∈ G
ni ∈ NG ⊆ IDSG

e j ∈ EG ⊆ IDSG× IDSG× IDSG

NV,G : NG→ U

EIDS,G = {b|(a,b,c) ∈ EG}
NG∩EIDS,G = /0

NG∪EIDS,G = IDSG

∀ei,e j ∈ E : ei = (a,b,c),e j = (d,e, f),(b = e)⇒ (ei = e j)

∀ei ∈ E : ei = (a,b,c),(a < b)∧ (c < b)
U defines the set of all possible values, or the union of all possible types: U = I∪F∪S∪B∪A∪Σtype. We define the following
primitive types, supported in the PTM, for which the MvS needs to provide native support:

• Integer (I) as the set of integers in the range [−(263),263−1] (i.e., as would be available using 64-bit integers);
• Float (F) as the set of floating point numbers, as defined by IEEE 754, with double precision (i.e., as would be available

using 64-bit floating point numbers). Values be rounded towards the closest value in this format;
• String (S) as the set of all ordered combinations of ASCII characters;
• Boolean (B) as either True or False;
• Action (A) as an action language construct, used to define Modelverse semantics. This is any of
{I f ,While,Assign,Call,Break,Continue,Return,Resolve,Access,Constant,Declare,Global, Input,Out put}.

We use I and F, instead of Z and R, respectively, because an implementation of these infinite concepts would not be able to
exploit current hardware. This is required for Axiom II: Scalability, as otherwise primitive operations would be inefficient due to
their generality. With this restriction, we enforce the size of the data values, thus preventing implementation-dependent behaviour
(e.g., some implementation using 32-bit integers, whereas another uses 64-bit integers).
The use of primitives does not violate Axiom IV: Model Everything, as primitives will still be explicitly modelled in the linguistic
dimension. In the physical dimension, however, we shift the representation of the data to the physical level to obtain higher
performance (Axiom II: Scalability) and to have a basic type system available.
None of the value sets overlap, therefore it is possible to infer the type of the data, using NT .

NT : U→ Σtype

NT (d) =

IntType i f d ∈ I

FloatType i f d ∈ F
StringType i f d ∈ S

BooleanType i f d ∈ B
ActionType i f d ∈ A

∀i, j ∈ {I,F,S,B} : i 6= j⇒ i∩ j = /0

We can define a subgraph (M) of a graph (G), as a graph containing a subset of the nodes and edges, with the restriction that all
used nodes and node values are copied. It is implicit that the resulting graph should still be valid according to the restrictions
placed on the graph (e.g., source and target of nodes is still present).

M ⊆ G

⇔
NM ⊆ NG ∧
EM ⊆ EG ∧

NV,M ⊆ NV,G ∧
∀(a→ b) ∈ NV,G : a ∈ NM ⇒ (a→ b) ∈ NV,M ∧

∀(a,b,c) ∈ EM : a,c ∈ IDSM

10

3.2 CRUD interface

The final part of the PTM is the interface, or the set of its supported operations, which are defined here. An MvS implemen-
tation needs to offer the operations defined here, irrespective of its implementation algorithm or data structure. Of course, the
implementation does not need to be using a graph similar to the conceptual representation of the PTM, but the operations should
always return exactly the same result.
We distinguish four different kinds of operations in our interface: Create, Read, Update, and Delete (CRUD). For each set of
operations, we define the function signature and the required semantics.
Apart from the actual return value, operations also return a status. This status is an integer specifying a status code: S = I. We
have different categories of status codes: 1xx for success; 2xx for interface errors; and 3xx for execution errors. An interface error
indicates an error in the call, for example wrong type of arguments. An execution error means that the call itself was well-formed,
but could not be executed due to another restriction, such as an element not being defined.
All possible status codes are defined. Some additional errors might happen in the MvS though, such as out-of-memory problems.
These errors are platform-dependent and are only caused due to the implementation, the hardware, or the combination of both.
As such, an MvS is not allowed to return such errors and needs to handle such situations gracefully. For example, in the case of
an out-of-memory error, the MvS needs to be able to swap out pieces of itself to disk, or over the network.

3.2.1 Create

The first set of instructions that we define are create operations. Create operations cause the creation of new elements in the
graph, thus extending its size. Each newly created element will be assigned an identifier by the MvS, which is returned. It is this
identifier which acts as the handle to that element in the MvS.
Note that there are no restrictions on the created identifier, apart from it being a value that is not yet used for another element.
This allows whatever kind of identifier to be used, and even reuse is possible if the previous element was deleted.
First is the create node operation (CN), which takes no arguments and returns the identifier of the newly created node, which was
unused up to now.

CN : G → G ×N×S

CN(G) = (G′,n,100)
G = 〈N,E,NV 〉

G′ = 〈N′,E,NV 〉
N′ = N∪{n}

n 6∈ IDS

The create edge operation (CE) takes the identifier of the source and target elements (either a node or an edge) as argument, and
returns the identifier of the newly created edge.

CE : G × IDS× IDS→ G ×EIDS×S

CE(G, i1, i2) = (G′, i3,s)

G = 〈N,E,NV 〉
G′ = 〈N,E ′,NV 〉

E ′ = E ∪{ei}
ei 6∈ E

ei = (i1, i3, i2)

i3 6∈ IDS

s 6= 100⇔ i3 = None

s =

 200 i f i1 6∈ IDS
201 i f i2 6∈ IDS
100 else

The last primitive create operation (CNV) creates a new node, and assigns it a value immediately. It has the same signature as the
create node, but takes a primitive value to assign to the created node. This operation could be implemented by first creating an
empty node and afterwards updating its value, though this would negatively impact performance (Axiom II: Scalability).

11

CNV : G ×U→ G ×N×S

CNV (G,d) = (G′, i,s)

G = 〈N,E,NV 〉
G′ = 〈N′,E,N′V 〉

N′ = N∪{i}
N′V = NV ∪ (i→ d)

i 6∈ N

s =
{

202 i f d 6∈ U
100 i f else

For performance, we add a composite create operation, which creates a named edge between two graph elements (CD). This
operation is equivalent to creating an edge between the two elements, followed by creating an edge from the newly created edge,
to the data value that was specified. It is formalised as follows.

CD : G × IDS×U× IDS→ G ×S

CD(G,a,d,b) = (G′,s)

G = 〈N,E,NV 〉
G′ = 〈N′,E ′,N′V 〉

N′ = N∪{c}
E ′ = E ∪{(a, i1,b),(i1, i2,c)}

N′V = NV ∪{(c→ d)}
c, i1, i2 6∈ IDS

s =

203 i f a 6∈ IDS
204 i f d 6∈ U
205 i f b 6∈ IDS
100 i f else

3.2.2 Read

The next set of operations consists of the read operations. As there is no useful information in non-data nodes, there is no read
operation defined on nodes, except for their primitive data (RV). It is an error if the node that is being read does not have a value
assigned to it.

RV : G ×N→ U×S

RV (G,n) = (d,s)

G = 〈N,E,NV 〉
d = NV (n)

s =

 206 i f n 6∈ N
300 i f n 6∈ dom(NV)
100 else

Instead of a read operation on the nodes, it is possible to read out their outgoing edges (RO) and incoming edges (RI). This
works for nodes, but also for edges, as edges can also be the source (and target) of other edges. The result is the identifier of the
connected edges, in an unordered collection.

RO : G × IDS→ 2E ×S

RO(G, i) = (e,s)

G = 〈N,E,NV 〉
e = {(i,b,c) ∈ E}

s =
{

207 i f i 6∈ IDS
100 i f else

12

RI : G × IDS→ 2E ×S

RI(G, i) = (e,s)

G = 〈N,E,NV 〉
e = {(a,b, i) ∈ E}

s =
{

208 i f i 6∈ IDS
100 i f else

A read operation for edges (RE) is defined as returning a tuple consisting of the source and target of the edge. Due to the restriction
on the edge identifier, both the source and target identifier will be smaller than the edge identifier.

RE : G ×EIDS→ IDS× IDS×S

RE(G, i1) = (i2, i3,s)

G = 〈N,E,NV 〉
e = (i2, i1, i3) ∈ E

s =
{

209 i f i1 6∈ EIDS
100 i f else

For efficiency (Axiom II: Scalability), an additional “dictionary read” operation (Rdict) is defined to read an element which is
linked to another one through an edge, which is connected to a node with a primitive value. This allows for a more efficient
implementation of lookups from a specific node, without requiring an exhaustive search of the connected edges. While the search
might still be necessary internally, implementations are free to create specialized data structures for this operation. Even if that is
not the case, this operation reduces the amount of calls required to 1. If the specified entry is not found in the dictionary, an error
is raised.
Notice that there is room for ambiguity if a node has multiple outgoing links, linking to the same data value. While this could
cause an error, we explicitly allow for this situation for performance reasons, as otherwise the search would always need to
traverse all links, even if a match was already found. Similarly, multiple outgoing edges might exist with the same label added to
them, resulting in ambiguity. For performance reasons, however, the result will be non-deterministic.

Rdict : G × IDS×U→ IDS×S

Rdict(G, i1,v) = (i2,s)

G = 〈N,E,NV 〉
d = NV (v)

∃b,c ∈ EIDS : (i1,b, i2),(b,c,d) ∈ E

s =

210 i f i1 6∈ IDS
211 i f v 6∈ U
301 i f 6 ∃b,c ∈ EIDS : (i1,b, i2),(b,c,d) ∈ E
100 else

Some other, more complex read operations on dictionaries are also supported, purely for efficiency reasons. Their errors are
similar to the Rdict operation. Each of these operations returns a slightly different result, determined by the frequently used
operations in the next section. These operations are:

• Rdict node returns the element being linked to, but instead of a primitive value, it searches for a specific element by identifier.
It therefore does not try to dereference the value stored in the resulting element, nor will it match different elements with
the same value.
• Rdict edge is equivalent as Rdict , but returns the identifier of the edge between them, instead of the element itself.
• Rdict reverse returns a list of all elements that have an outgoing link towards the passed element, with the provided name on

that edge. It is therefore basically a reverse dictionary lookup: return the dictionaries that contain this exact value with a
specified key.

Multiple combinations would also be possible, though we only formalize those that are used by the MvK in later sections.

13

Rdict keys : G × IDS→ 2IDS×S

Rdict keys(G,a) = (l,s)

G = 〈N,E,NV 〉
∀b,c,d,e ∈ IDS : (a,b,c),(b,d,e) ∈ E : e ∈ l

s =
{

222 i f i1 6∈ IDS
100 else

Rdict node : G × IDS× IDS→ IDS×S

Rdict node(G, i1, i2) = (i3,s)

G = 〈N,E,NV 〉
∃b,c ∈ EIDS : (i1,b, i3),(b,c, i2) ∈ E

s =

212 i f i1 6∈ IDS
213 i f i2 6∈ IDS
303 i f 6 ∃b,c ∈ EIDS : (i1,b, i3),(b,c, i2) ∈ E
100 else

Rdict edge : G × IDS×U→ IDS×S

Rdict edge(G, i1,v) = (i2,s)

G = 〈N,E,NV 〉
d = NV (v)

∃b,c ∈ EIDS : (i1, i2,b),(i2,c,d) ∈ E

s =

214 i f i1 6∈ IDS
215 i f v 6∈ U
305 i f 6 ∃b,c ∈ EIDS : (i1, i2,b),(i2,c,d) ∈ E
100 else

Rdict node edge : G × IDS× IDS→ IDS×S

Rdict node edge(G, i1, i2) = (b,s)

G = 〈N,E,NV 〉
∃b,c ∈ EIDS : (i1,b, i3),(b,c, i2) ∈ E

s =

216 i f i1 6∈ IDS
217 i f i2 6∈ IDS
307 i f 6 ∃b,c ∈ EIDS : (i1,b, i3),(b,c, i2) ∈ E
100 else

Rdict reverse : G × IDS×U→ 2IDS×S

Rdict (G, i1,v) = (l,s)

G = 〈N,E,NV 〉
d = NV (v)

l = {i2 : ∃b ∈ EIDS.(i2,b, i1),(b,c,d) ∈ E}

s =

218 i f i1 6∈ IDS
219 i f v 6∈ U
309 i f 6 ∃b,c ∈ EIDS : (i1,b, i2),(b,c,d) ∈ E
100 else

3.2.3 Update

Even though we implement a CRUD interface, we do not offer support for any update operations.
The most important reason is correctness and performance. Updating the source and target of edges has the potential of creating
impossible loops, like an edge connecting itself. While this is impossible to do when constructing the edge at first (as it is
required that its source and target already exist), this can no longer be guaranteed when the edge is updated. An alternative
would be to allow updates, but search for correctness violations (i.e., recursively following the source and target of an edge, we

14

ultimately end up in nodes) after the update was done. This would have a significant, and unpredictable, impact on performance
when performing an update for an edge. As an update operation is similar to a subsequent create and delete, which have better
complexity, we did not think this is a viable approach. Yet another alternative would be to allow updates again, but only those
updates that change the source and target to nodes that existed when the edge was originally created. This prevents correctness
violations by construction, though it does not make the operation generally applicable. And since we would need to have a
fallback method (i.e., subsequent delete and create) anyway, it might be easier to just always use the fallback method. This also
prevents us having to store some kind of causality information, like which elements were created before which other elements.
Another reason is cache management, as also proposed by [4]. If a node can be updated, caches can become invalid, implying
some kind of MvS-initiated invalidation protocol for the MvK. While we do not have any significant optimization for this yet,
restricting updates has significant potential.

3.2.4 Delete

Finally there are the delete operations. The source and target of each edge should always exist in the graph. Therefore, if a
deleted node or edge is the source or target of an edge, the edge needs to be recursively removed. The resulting graph should
thus be the largest possible subgraph of the original graph, while still being a valid graph. For the delete node operation (DN),
the node itself is removed, and then all connected edges are recursively removed.

DN : G ×N→ G ×S

DN(G, i) = (G′,s)

G = 〈N,E,NV 〉
G′ = 〈N′,E ′,N′V 〉

N′ = N \{i}
G′ ⊆ G

∀G′′ ⊆ G : (G′ ⊆ G′′)⇒ G′ = G′′

s =
{

220 i f i 6∈ N
100 else

The delete edge operation (DE) operation is similar, but it is guaranteed that no nodes are removed at all. Due to recursive
deletions, the resulting set of edges is possibly a subset of the original edges. The resulting graph is again the largest possible
(valid) subgraph, with the specified edge removed.

DE : G ×EIDS→ G ×S

DE(G, i) = (G′,s)

G = 〈N,E,NV 〉
G′ = 〈N,E ′,N′V 〉

E ′ ⊆ E \{(a, i,c) ∈ E}
G′ ⊆ G

∀G′′ ⊆ G : (G′ ⊆ G′′)⇒ G′ = G′′

s =
{

221 i f i 6∈ EIDS
100 else

15

4
Modelverse Kernel

We will now consider the Modelverse Kernel (MvK), which is responsible for the execution of action code. Execution of action
code causes changes to the PTM, which need to be handled by the MvS. As such, the Modelverse Kernel is responsible for the
mapping between the user-level and the PTM. Users can create action code constructs directly, thus forming a direct interface to
the MvS for the user. Alternatively, users can create models using a formalism which has action code constructs defined (e.g., to
define the model semantics).
As everything is modelled explicitly (Axiom IV: Model Everything), both the execution context and instructions to execute are
part of the MvS, and can thus be accessed by the MvK and ultimately the user. When executing an action language model, the
execution context is modified in the MvS. Therefore, the MvK itself does not have any local state. By making all states and
intermediate steps explicit, we obtain enhanced debugability and introspection. This furthermore contributes to Axiom I: Forever
Running, as it allows action code to modify other action code (i.e., self-modifiability).
We first introduce the notion of transformations for our graph, subsequently called graph transformations 1. Such transformations
consist of a matching part, which we will use to determine if the execution context is well-defined, and a rewriting part, which
we can use to define the action language semantics by defining transformations of the execution context.

4.1 Graph transformations

Before we can use graph transformations in our well-formedness check and semantical definition, we need to define them first.
We need to bridge the gap between graph transformations and the CRUD operations defined by our MvS interface.
For each transformation rule, it is possible to decompose it in four distinct (sequentially ordered) components. The first two
are read operations, which are used for the matching, and the last two are create and delete operations, which are used for the
rewriting.

1. Positive read operations are used for elements which are present before and after execution of the transformation rule.
They are used for finding a possible match during the matching phase. Note that all elements need to be matched, even
those that are about to be removed. All elements that are now matched, can be used during the rewriting phase. Elements
that are simply required for the match, but without any changes to them, are visualized by black, solid lines.

2. Negative read operations are used for the negative application conditions. Such elements should not be present before
application of the transformation rule. If they are present in a match, the match is considered incorrect and another match
is searched for. Elements which are searched for here, can of course not be used during the rewriting phase, as we explicitly
required that they are absent. They are visualized by a red, dotted line.

3. Delete operations are used for elements that need to be removed during the rewriting phase. Elements which should be
removed, should also be matched in the positive read operation. These elements are visualized by a blue, dashed line.

1They are called graph transformations, though are different from the usual meaning of graph transformations in the literature. While the idea is similar, we
provide a different mapping as we do not work on Typed Attributed Graphs (TAGs).

16

X Y
W

(a) Shorthand notation

X Y

W

(b) Expanded notation

Figure 4.1: Shorthand notation and equivalent expanded notation.

4. Create operations are used for elements that need to be created during the rewriting phase. Because the element is newly
created, it does not need to be matched by a positive read operation. However, we do not require them to be absent either.
They are visualized by a green, wide solid line.

Each rule can be written in the following form, assuming success status, thus mapping to our previously defined formalization of
the MvS. If an error is encountered, it is propagated to the user.

PositiveReadA(G)
NegativeReadA(G)
G′ =CreateA(G)
G′′ = DeleteA(G′)

G
stepA−−−→ G′′

Each rule uses the matched elements, which get bound during application. As such, the PositiveRead operation binds the
variables, which are then used in the NegativeRead to detect invalid matches, in the Delete to delete elements, and in the
Create to create new elements.
For conciseness, we define the shorthand notation for graph elements shown in Fig. 4.1a, equivalent to Fig. 4.1b, meaning:

(Xnode,Wlink,Ynode) ∈ E

(Wlink,e,Wnode) ∈ E

NV (Xnode) = X

NV (Ynode) = Y

NV (Wnode) =W

If X , Y , or W is not shown in the shorthand notation, then the NV mapping is unconstrained, and might not even exist.
An example of the mapping between the shorthand notation and the previously defined semantics is given next. We explain the
transformation shown in Figure 4.2. First, the success status code is stored in s (equation 4.1), to shorten subsequent rules. All
parts of the rule are assumed to result in a success status code. The positive read operations start at equation 4.2, followed by the
negative read operation at equation 4.6. Now that all nodes and edges are bound, the create operation creates the necessary links
starting from equation 4.7. From equation 4.10 to the end, operations try to match the edge to delete at a finer granularity and
delete it in equation 4.18.

17

’E’

’C’

’F’ ’A’

’B’

’D’

Figure 4.2: Example graph transformation which is expanded

s = (100,) (4.1)
Rdict(G,a,”A”) = (b,s) (4.2)
Rdict(G,a,”B”) = (c,s) (4.3)
Rdict(G,a,”F”) = (e,s) (4.4)

RV (G,e) = (”E”,s) (4.5)
6 ∃d : Rdict(G,d,”C”) = (c,s) (4.6)

CNV (G,”D”) = (G′, f ,s) (4.7)
CE(G′,b,c) = (G′′,g,s) (4.8)

CE(G′′,g, f) = (G′′′,h,s) (4.9)
〈V1,s〉= RO(G′′′,a,s) (4.10)
〈V2,s〉= RI(G′′′,c,s) (4.11)

i ∈V1 (4.12)
i ∈V2 (4.13)

〈V3,s〉= RO(G′′′, i,s) (4.14)
j ∈V3 (4.15)

RE(G′′′, j) = ((i,k),s) (4.16)
RV (G′′′,k) = (”B”,s) (4.17)
DE(G′′′, i) = (G′′′′,s) (4.18)

G
stepA−−−→ G′′′′

Note that this does not explicitly remove all parts of the edge. Specifically, the node containing the data value still remains. This
is because it might still be referenced from somewhere else, and deleting that might have serious repercussions. As a safety
measure, only the link itself is removed. All elements that are no longer reachable from the root will later be removed in the
garbage collection phase.
The current notion of graph transformations should not be confused with the notion of model transformations, which the user
can use. The graph transformations we have defined here, are merely a conceptual construct, used to formalize the semantics of
action language constructs. It is therefore not mandatory for an MvK implementation to implement the semantics as if it were a
graph transformation. On the other hand, model transformations, which are implemented on top of action language constructs,
will be usable by the user, and as such are really implemented as transformations. Furthermore, model transformations will be
at a level closer to the user (i.e., not on raw graphs), and will therefore be typed. We will not discuss model transformations any
further in this technical report, as this is part of future work.

4.1.1 Performance

It is important to mention that our graph transformations do not use the notion of types. As we are working on simple graphs,
which do not have a real notion of type, and it can therefore not be used. This implies that nodes in the transformation rules can
as well be edges, since the semantics of a point in the tranformation rules is simply an identifier from IDS. Conversely, this might
imply a performance impact, as the only basis to determine a match is the use of primitive values, and edges between specific
nodes. While this is a concern relating to Axiom II: Scalability, it is not a fundamental problem for the following reasons:

18

username

’input’ ’last_input’ ’output’ ’last_output’ ’frame’

’symbols’ ’IP’ evalstack’ ’phase’ ’returnvalue’

Figure 4.3: Graph to match as execution context. Some nodes might be identical.

1. We start from a pivot, which is the Modelverse Root previously defined. All MvK instances will know which node to use
for this, and therefore there is already a place where the matching can start.

2. At most one match exists. This means that we can already stop searching as soon as a single match is found.

3. All edges have a constant on them, which needs to be unique. Therefore, no trackbacking is required as soon as the correct
edge is found: each edge will be identifiable.

4. A primitive operation exists to read out the aforementioned edges: the Rdict operations. If this operation is implemented in
O(1) (e.g., using hashmaps), this means that the complexity of finding a match is unrelated to the size of the host graph.

Combining all of this information, we can write a simple algorithm for each rule, which starts from the Modelverse Root, and just
performs a serie of Rdict operations. As there is only one possible result for that operation, we do not need to rely on backtracking.
Some exceptions exist to these findings though, such as the accessing of variables in the symbol table. These do not use values
on the edge that are in U, and therefore require more advanced algorithms.

4.2 Execution context

We specify the structure of the execution context by defining a graph that has to be matched. If the graph is matched, the
execution context is valid and execution is possible if the current instruction is valid. If no match can be found for the specified
user, the user’s execution context is invalid and execution is impossible. If multiple matches are found, the execution context is
also invalid, and results will be undefined. We make no distinction between no execution context (i.e., nothing at all) and corrupt
execution context (e.g., a single missing link). In either case, no execution is possible. During normal operation, the user is unable
to corrupt or remove its own execution context, as all action language primitives are guaranteed to keep the execution context
in a valid state. But in case introspection or self-modifiability is used (i.e., if an intentional change is made by the user), it is
possible to alter, and possibly corrupt, the execution context. This is possible because the execution context is itself again another
model in the MvS, and it can be manipulated like any other. We do this to enable self-modifiability, introspection, reflection, and
debugability, which can now be performed directly on the graph. For debugging it is even possible for another (privileged) user
to debug the state of another user, or process.
A valid execution context is one that is matched by the structure in Fig. 4.3. At the top of the structure sits the Modelverse root
node, which is a node that is known to the MvK. From this root node, there is a link to all user root nodes, containing the name
of the user. In our figure, username has to be interpreted as a variable for the transformation. From the user root, there are links
for input and output lists, and a “frame” link. These input and output links come with both an initial link, and the last variant,
which points to the last element of the list. The last element will always be empty (have no value), but needs to be there to guard
for the case of an empty list. Each element in such a list will have a “value” link, which points to the actual value, and a “next”
link, which points to the next element in the list. The exception to this is the element pointed to by the “last ” element, which is
the empty placeholder.
The destination of the “frame” link is the currently active execution frame for that user. Each execution frame has several
outgoing links.

19

First is the “symbols” link, which points to the symbol table. A symbol table is a node which is interpreted as a dictionary, where
all outgoing edges have a unique key. The symbol table can then be accessed using the Rdict CRUD operation of the MvS. In this
case, the key is the variable definition in the code being executed. The destination of the edge is the current value of the specified
variable. It is not possible to save this variable in the executing code itself, as the code can possibly be executed by different users
simultaneously (Axiom X: Multi-User).
Second is the “IP” link, which points to the current action code primitive being executed. It is similar to an Instruction Pointer,
with the exception that it does not advance linearly, nor is there a default direction. Every instruction primitive is responsible to
update the instruction pointer.
Third is the “evalstack” link, pointing to the evaluation stack. In this stack, instructions are stored, which need to be made in the
same scope. Such a structure is necessary because we do not use compiled bytecodes which modify a stack. For example, for the
execution of an If construct, we first need to evaluate the condition. In such “stack-based” languages, the result of the condition
is first put on the stack by the appropriate bytecodes. Only then a bytecode concerning the If construct is encountered, which
consumes the evaluated value on the stack. In our language, the If is encountered first, which then explicitly states to evaluate
the condition first (by moving the “IP” link), and come back as soon as it is evaluated (by putting it on the evaluation stack).
There is also the “phase” link, allowing for a distinction between the different sub-states in the evaluation of a primitive. For
example in the If construct, a distinction between the “evaluate condition” and “branch on value” phases is necessary. To make
this possible, the phase keeps the current state of the evaluation of that specific execution primitive.
Finally, there is the “returnvalue” link, which links to a node which contains the value from the previous execution. Each
instruction primitive can read and update this link. It is used for the exchange of temporary values between different instructions.
In contrast to languages which use a stack, there is only one temporary variable in our language. This offers us a slightly more
efficient implementation of most constructs, due to avoiding the use of a list. Some constructs get more complex (though not
necessarily slower, performance-wise), such as those where it is natural to evaluate multiple values sequentially.
Some additional links might be present on the frame, and their use is mandatory, though they are not required for a well-defined
execution context. These links are the “prev” and “variable” links. The “prev” links to the previous execution frame, that is, the
invoker of the function for which the frame is created. The “variable” link is used during assignment, as we need two evaluated
elements at the same time: the variable to write to, and the value to assign. If these links are not present at the time where they are
necessary, the execution context is considered to be corrupt. These optional links could be made mandatory, by setting making
them point to an empty node if they are not necessary.
The execution context is well-defined if exactly one such match is found for a given user. No matches means that there is
no execution context with all required elements (i.e., either corrupt or completely missing). Multiple matches indicate non-
determinism and are therefore not allowed. Additional elements, though not indicated here, are allowed, as they do not interfere
with the match. These elements should be considered implementation-dependent and should not be used for the implementation
of functional requirements.
Apart from the user-specific execution context, there is also a global symbol table, stored as if it were the “ global” user. This
symbol table is shared by all users, and is accessed if a variable could not be found in the local symbol table of the current
execution frame.

4.3 Execution primitives

What remains is the semantics of each of the action language constructs. For each construct, defined in A, the required modifica-
tions on the execution context needs to be defined.
As proposed in previous sections, graph transformations are used to define the semantics. These graph transformation rules are
defined such that there should always be exactly one possible match. If no matches can be found, this indicates that the execution
context, the current action language primitive, or both, are invalid. If multiple matches are found, non-determinism is possible,
which is disallowed.
In the presence of multiple users (Axiom X: Multi-User), interleaving is necessary between them to guarantee fairness. This also
prevents uninterruptible loops (Axiom I: Forever Running), as another (privileged) user can then always halt the execution of
another user. For performance reasons (Axiom II: Scalability), an MvK can ignore updates to the execution context (e.g., by not
propagating them to the MvS, or by implementing compiled operations). But this comes at the cost of debugability, introspection,
and self-modifiability. Hybrid approaches are supported, meaning that some functions will be called without modifications to the
execution context (e.g., primitive operations such as integer addition), whereas others modify to the execution context.
A step function is defined for each user, which applies the only applicable rule.

20

Construct Name Mandatory Executable Meaning (informal)

If

cond Yes Yes Condition
true Yes Yes Block to execute if condition is True
false No Yes Block to execute if condition is False
next No Yes Next instruction after True/False block

While
cond Yes Yes Condition
body Yes Yes Body to execute while condition is True
next No Yes Next instruction after condition is False

Break while Yes Yes While construct that should be broken
Continue while Yes Yes While construct that should be continued
Access var Yes Yes Variable to access
Resolve var Yes No Variable definition to access

Assign
var Yes Yes Variable to assign to

value Yes Yes Value to assign to variable
next No Yes Next instruction after assignment

Call

func Yes Yes Function signature to call
next No Yes Next instruction after function call returned

params Yes No First parameter, linking to a Parameter
last param Yes No Last parameter, linking to a Parameter

Parameter
name Yes No Name of the parameter, used to link with the formal parameters
value Yes Yes Instructions to evaluate as parameter

next param No No Next parameter to be evaluated (optional if this is the last parameter)
Return value No Yes Value to return
Const node Yes No Node containing the constant to access
Input N/A N/A N/A
Output value Yes Yes The node to output

Table 4.1: Outgoing link specification.

G
stepA−−−→ G′ ∨

G
stepB−−−→ G′ ∨

...

G
step−−→ G′

The interleaving of different users, and thus of different steps, is not specified, as long as there is some fairness between all users.
This allows for the definition of primitive operations in the Modelverse Kernel, which consist of several (atomically executed)
instructions. Such primitives can then be used for performance reasons (Axiom II: Scalability), but also as a core function
(Axiom IV: Model Everything).
In Table 4.1, we present an overview of all specified outgoing links for each primitive element. A construct is valid if all
mandatory elements are present. Links which guide the instruction pointer, require the target of the link to be executable (i.e., be
another primitive construct, ∈ A). If that is not the case, execution will terminate.
Normally, the action language constructs are created by a different tool, such as a HUTN MvI, which will guarantee that the
constructs are well formed. But it is possible for users to access all parts of the MvS, thanks to Axiom IV: Model Everything, and
therefore to manually create (or alter) action language constructs. Such actions cannot automatically be checked for correctness,
due to our lack of typing: there is no metamodel for the primitive action language constructs. And since there is no metamodel,
there is no constraint on the graph. Although counter-intuitive, this is actually what we want: unconstrained modifications on the
raw model representation, thus allowing model management operations. In the next chapter, we will add a layer on top of all this,
which is typed and more constrained. Notwithstanding, it is possible to create a function which manually checks whether or not
a construct is well-defined, using the information from Table 4.1.

21

4.3.1 If

’init’

If

’cond’

’prev’

’cond’

username

’frame’

’phase’

’IP’

’evalstack’

’evalstack’

’IP’

’inst’ ’phase’

(a) Evaluate condition

’cond’

If

’then’

’prev’

’finish’

’init’ True

username

’frame’

’phase’

’IP’

’evalstack’ ’phase’ ’returnvalue’

’evalstack’

’IP’

’inst’ ’phase’

(b) Returned True

’cond’

If

’else’

’prev’

’finish’

False ’init’

username

’frame’

’phase’

’IP’

’evalstack’ ’returnvalue’ ’phase’

’evalstack’

’IP’

’inst’ ’phase’

(c) Returned False and there is an ’else’ block

’cond’ ’finish’ If

’else’

False

username

’frame’

’phase’ ’phase’ ’IP’ ’returnvalue’

(d) Returned False but there is no ’else’ block

Figure 4.4: If branch rules

The If construct will first evaluate the condition (cond link) by moving the instruction pointer there. It signals that it should be
executed again afterwards, but now in phase cond, by putting this on the evaluation stack (Figure 4.4a). As soon as the condition
is evaluated, and the If popped back from the stack, the return value (of the condition) can either be True or False. If it is True
(Figure 4.4b), the then link is executed, and the if is pushed on the stack again, but now in the final phase finish. This is the phase
which signals to another rule that this operation has finished, and the next instruction can be loaded. If it is False, and there is an
else link (Figure 4.4c), it is executed, similar to the previous case. If it is False, but there is no else link (Figure 4.4d), the If is
marked as completed immediately, without any subsequent actions.

22

4.3.2 While

’init’

While

’cond’

’prev’

’cond’

username

’frame’

’phase’

’IP’

’evalstack’

’evalstack’

’IP’

’inst’ ’phase’

(a) Evaluate the condition of the While

’cond’ ’init’

While

’body’

’prev’

’init’

True

username

’frame’

’phase’ ’phase’

’IP’

’evalstack’ ’returnvalue’

’evalstack’

’IP’

’inst’ ’phase’

(b) Condition was true

’cond’ ’finish’ While False

username

’frame’

’phase’ ’phase’ ’IP’ ’returnvalue’

(c) Condition was false

Figure 4.5: While loop rules

The While construct will first evaluate the condition (cond link) by moving the instruction pointer there. It signals that it should
be executed again afterwards, but now in phase cond, by putting this on the stack (Figure 4.5a). As soon as the condition is
evaluated, and the While popped from the stack, the return value (of the condition) can either be True or False. If it is True
(Figure 4.5b), the body link is executed, and the While is pushed on the stack again, but with its phase set to init. This way, the
while construct will again be executed after the body has terminated. By setting the phase to init, we effectively cause looping, as
the condition will again be evaluated, and, depending on the result, the body gets executed once more. If it is False (Figure 4.5c),
the While is immediately marked as finished and the body is not executed.

23

4.3.3 Break

username

’frame’

’init’

’phase’

’finish’

’phase’

Break

’IP’

While

’IP’

’while’

Figure 4.6: Break rule

The Break construct will move the instruction pointer back to the While construct it belongs to (Figure 4.6). The phase is set to
finish to indicate that the loop has finished. This prevents the condition evaluation and marks the end of the while loop.

4.3.4 Continue

username

’frame’

’init’

’phase’

Break

’IP’

While

’IP’

’while’

Figure 4.7: Continue rule

The Continue construct will move the instruction pointer back to the While construct to which it belongs (Figure 4.7). The phase
is set to init to indicate that the loop needs to continue. This causes the condition to be evaluated again, indicating the next
iteration of the loop.

24

4.3.5 Access

’init’

Access

’var’

’prev’

’eval’

username

’frame’

’phase’

’IP’

’evalstack’

’evalstack’

’IP’

’inst’ ’phase’

(a) Evaluate variable to access

Access ’eval’ ’finish’

username

’frame’

’IP’ ’phase’ ’phase’

’returnvalue’

’returnvalue’

’value’

(b) Access evaluated variable

Figure 4.8: Variable dereference rules

The Access construct will move the instruction pointer to the variable which has to be resolved first (Figure 4.8a). It signals that
it needs to be executed again after the variable was resolved, by putting itself on the evaluation stack. After resolution of the
variable, the value of the variable is accessed and set as the new return value (Figure 4.8b).

25

4.3.6 Resolve

Resolve

’var’

’init’ ’finish’

username

’frame’

’IP’ ’phase’ ’phase’

’returnvalue’

’symbols’ ’returnvalue’

(a) Access the variable from the local symbol table

Resolve

’var’

’init’’finish’

username ’__global’

’frame’

’IP’ ’phase’’phase’ ’returnvalue’’symbols’ ’returnvalue’

(b) Access the variable from the global symbol table

Figure 4.9: Resolution rules

With the resolve rule, a variable is looked up in either the local (Figure 4.9a) or global (Figure 4.9b) symbol table. The variable
in the symbol table will be set as the returnvalue. The local symbol table has priority over the global symbol table. Note that the
returned value is only a reference, similar to the lvalue in parsers. A further Access is required to read out the actual value.

26

4.3.7 Assign

’init’

Assign

’var’

’prev’

’value’

username

’frame’

’phase’

’IP’

’evalstack’

’evalstack’

’IP’

’inst’ ’phase’

(a) Resolve the variable to assign to

’value’

Assign

’value’

’prev’

’assign’

’init’

username

’frame’

’phase’

’IP’

’evalstack’ ’phase’

’evalstack’

’IP’

’returnvalue’ ’variable’

’inst’ ’phase’

(b) Evaluate the value to assign

Assign ’assign’ ’finish’

username

’frame’

’IP’ ’phase’ ’phase’

’returnvalue’

’variable’

’value’ ’value’

(c) Assign the value to the variable

Figure 4.10: Assignment rules

The Assign rule will first evaluate the variable (Figure 4.10a), as it will first need to be resolved. After resolution (Figure 4.10b),
the found value is stored in a temporary link from the frame (variable link). The instruction pointer is moved to the value that will
be assigned, as it will also need to be evaluated. After the value is evaluated (Figure 4.10c), the value link in the stored variable
is changed to the evaluated value.

27

4.3.8 Function call

Call

’params’ ’func’

’call’

’init’

’prev’

username

’frame’

’IP’

’phase’ ’evalstack’

’evalstack’

’IP’

’inst’ ’phase’

(a) Resolve function without parameters

Call

’func’’params’

’init’

’prev’

username

’frame’

’IP’

’phase’’evalstack’

’evalstack’

’IP’

’inst’

’phase’

(b) Resolve function with parameters

Call

’last_param’

’call’’finish’

’init’’caller’

’phase’’evalstack’ ’symbols’ ’returnvalue’ ’prev’

’IP’

username

’frame’

’frame’

’IP’ ’phase’’phase’’returnvalue’

’body’

(c) Execute call with no parameters

Call

’last_param’

’call’’finish’

’value’

a

username

’frame’

’frame’

’IP’ ’phase’’phase’

’returnvalue’

’caller’

’prev’ ’symbols’ ’IP’

’name’

’body’ ’params’

a

(d) Execute call with parameters

Figure 4.11: Function call rules for resolution and execution

A Call construct has different paths, depending on how many parameters there are. The distinct situations are:

1. No parameters: in this simple case, the method is first resolved by moving the instruction pointer there, and the call is
already put on the stack (Figure 4.11a). After the function is resolved (Figure 4.11c), the call is made by creating a new
execution frame and making it the active frame.

2. One parameter: similar to the previous situation, the function is first resolved (Figure 4.11b), but instead of putting the
call on the stack, the first parameter is used. Afterwards (Figure 4.12b), the stack is created for the resolved function,

28

the instruction pointer is set to evaluate the argument, and the call is put on the stack. When the parameter is evaluated
(Figure 4.11d), the result is put in the symbol table of the new execution frame and the new frame is made active.

3. Two parameters: similar to a single parameter, the first parameter is again put on the stack for after the function resolution
(Figure 4.11c). When evaluating the first parameter (Figure 4.12a), the next param parameter is put on the stack, instead
of the call phase. The second parameter is already the last parameter, so we then put the call on the stack (Figure 4.12c).
Finally, the function is called as with only a single parameter (Figure 4.11d).

4. More than two parameters: similar to two parameters, but with an iteration rule (Figure 4.12d) for all parameters except
the first and last. This iteration rule simply evaluates the parameters in order of their next param links.

In all cases, the finish is put on the stack during the call to the function. As soon as the called function has finished, it will invoke
a return and thus pop the active execution frame. This will make the current frame active again, which will then progress towards
the next instruction.
Parameter passing happens through the use of both named variables and positional parameters. However, the positional parame-
ters are only used to determine the evaluation order, and not for binding of actual to formal parameter. It is possible for a front-end
to offer positional parameters, by automatically mapping them onto their formal parameters.

29

Call

’params’

’prev’

’init’

’caller’

’phase’ ’evalstack’ ’symbols’ ’returnvalue’’prev’

’IP’

’init’

username

’frame’

’IP’

’evalstack’ ’phase’

’IP’

’phase’

’evalstack’

’returnvalue’

’value’’next_param’

’inst’

’phase’

’body’’params’

(a) Set first parameter of multiple

Call

’params’ ’last_param’

’call’

’prev’

’init’

’caller’

’phase’ ’evalstack’ ’symbols’ ’returnvalue’ ’prev’

’IP’

’init’

username

’frame’

’IP’

’evalstack’’phase’

’IP’

’phase’

’evalstack’

’returnvalue’

’value’

’inst’’phase’

’body’ ’params’

(b) Set first and only parameter

Call

’last_param’

’call’

’prev’

’init’

’value’

a

username

’frame’

’IP’

’evalstack’ ’phase’

’IP’

’phase’

’evalstack’

’returnvalue’

’value’

’inst’ ’phase’

’name’’next_param’

’caller’

’prev’ ’symbols’ ’IP’ ’body’ ’params’

a

(c) Set last parameter of multiple

Call

’prev’

’init’

’value’

a

username

’frame’

’IP’

’evalstack’ ’phase’

’IP’

’phase’

’evalstack’

’returnvalue’ ’value’

’next_param’

’inst’’phase’

’name’ ’next_param’

’caller’

’prev’’symbols’’IP’’body’’params’

a

(d) Set next parameter

Figure 4.12: Function call rules for parameter evaluation

30

4.3.9 Return

’init’

’phase’

Return

’IP’ ’prev’

’value’

username

’frame’

’frame’

(a) Return without value

’init’

Return

’value’

’prev’

’eval’

username

’frame’

’phase’

’IP’

’evalstack’

’evalstack’

’IP’

’inst’ ’phase’

(b) Evaluate the value of the return

’eval’

’phase’

Return

’IP’ ’prev’

’returnvalue’

username

’frame’

’frame’

’returnvalue’ ’returnvalue’

(c) Return with the evaluated value

Figure 4.13: Return rules

For the Return construct, there are again two options: either there is a value to return, or there is none. If there is no return value
(Figure 4.13a), the current execution frame is removed and the previous one is made active again, without touching the return
value of the underlying frame. If there is a return value (Figure 4.13b), it is first evaluated by moving the instruction pointer there.
After evaluation (Figure 4.13c), the evaluated value is stored in the returnvalue of the previous frame, and the current frame is
deleted.

31

4.3.10 Input and Output

’init’

Output

’value’

’prev’

’output’

username

’frame’

’phase’

’IP’

’evalstack’

’evalstack’

’IP’

’inst’ ’phase’

(a) Output rule evaluates value

username

’frame’ ’last_output’

’last_output’

Output

’IP’

’output’

’phase’

’finish’

’phase’ ’returnvalue’ ’value’ ’next’

(b) Output rule outputs value

username

’frame’

’input’

’input’

Input

’IP’ ’returnvalue’

’init’

’phase’

’finish’

’phase’ ’returnvalue’ ’next’’value’

(c) Input rule consumes input

The Output construct will first evaluate the element the ’value’ link points to (Figure 4.14a), and afterwards it puts the returnvalue
in the output queue (Figure 4.14b).
The Input construct will read the value that is in the input queue and put it in place of the returnvalue. No evaluation whatsoever
is done on the values.

32

4.3.11 Constant access

username

’frame’

’returnvalue’

’returnvalue’

’init’

’phase’

’finish’

’phase’

Const

’IP’

’node’

Figure 4.15: Constant access rule

The Const construct is used for constants, which are closely linked to the primitive data types presented in the Modelverse State.
It is only used as an ’executable wrapper’ for a literal: evaluation of this construct will yield the contained node (Figure 4.15).
The phase is also set to finish, to indicate termination of the construct.

4.3.12 Helper rules

’finish’ ’init’

username

’frame’

’phase’ ’phase’ ’IP’

’IP’

’next’

(a) Progress to the next instruction

’finish’

’prev’

username

’frame’

’phase’ ’evalstack’’IP’

’IP’ ’phase’

’evalstack’

’next’

’inst’ ’phase’

(b) Pop the next instruction from the stack

Figure 4.16: Next rules

When the instruction pointer points to an instruction which is marked as finished, one of these helper rules becomes active. These
are responsible for progressing towards the next instruction. Either there is a next link (Figure 4.16a), which links towards the
next instruction to execute. If it is present, the instruction pointer is moved to this instruction, and the phase is reset to init as it is
the first time this construct is executed. In case no next link exists (Figure 4.16b), the next instruction is popped from the stack,
together with its phase. This popping not only sets the instruction pointer, but also copies the saved phase, making it possible to
progress where we left off.

33

4.3.13 Declare

username

’frame’

’init’

’phase’

’finish’

’phase’

Declare

’IP’ ’symbols’

’var’

Figure 4.17: Declare instruction

The Declare instruction will add the specified node to the symbol table, so that it can be assigned a value, or read out. As the
declare does not take a value, the default value of the node is just an empty node. Future instructions can use the node connected
to the Declare instruction to reference to the variable.

4.3.14 Global

username

’frame’ globals

’init’

’phase’

’finish’

’phase’

Global

’IP’

’var’

Figure 4.18: Global declare instruction

Apart from a declaration in the symbol table of the current user, it is also possible to declare it in the global namespace. This
makes sure that other users can also find it and access the values. Its primary use will be function resolution though, as functions
should be declared in a higher scope than the current scope. Nonetheless, it is possible to define everything else as a global too,

34

making it accessible.

4.4 Primitive operations

As there are no special, built-in constructs for basic operations, such as mathematical operations, all of them have to map to a
normal, user-level function. But these functions cannot implement the specified behaviour either, as the provided data values
are MvS primitives. Such functions are primitive functions, which form the core of the MvK, and are hardcoded in the MvK
implementation.
Primitive functions are hardcoded functions in the MvK, which get loaded like normal operations (i.e., their parameters are
evaluated and loaded on the stack). The execution of their body differs though, as it is executed without intermediate steps. As
they cannot be written in Action Language, they do not have an implementation in the Action Language either. It is the MvK
which recognizes that there is a primitive function available for the called function. If so, it calls the primitive instead of the
(empty) body.
To comply with our axioms (Axiom IV: Model Everything), we need to model these functions explicitly. This can be done by
taking the same approach as Squeak [2], where an interpreter is written in the interpreted language. Doing this, we can map the
interpreted function (in the code being executed) to the primitive function of our used interpreter (in the implementation of the
interpreter). Optionally, the interpreter could also be compiled, where these functions are then changed to primitive operations in
the target language.
The operations in Table 4.2 and 4.3 need to be defined as a primitive by all Modelverse Kernel implementations, with the specified
semantics. None of them are allowed to modify any of the incoming parameters. Semantics are given in simple Python code.
An MvK is free to implement additional functions as primitives, as long as each primitive instruction is guaranteed to terminate
and does not violate the fairness between different users (Axiom X: Multi-User). Additionally, all additional functions need to
have an equivalent implementation in Action Language for interoperability between different MvKs (Axiom XI: Interoperability).
To enforce this fairness, and guarantee that all users have a fairly low response time, an upper bound is placed on the time allocated
for such a primitive. If the operation times out, the operations done by the primitive are ignored and the function is interpreted as
usual. The mandatory primitive operations should never time out due to their simplicity.
Modelled functions can therefore be compiled to new primitives for performance reasons (Axiom II: Scalability): they get mapped
to native code, and they no longer need to update the execution context after every instruction. As the execution context is not
updated, primitive operations cannot be debugged easily. For debugging, the user needs to be able to toggle an interpreter-only
flag, which forces the Modelverse Kernel to execute in interpreter mode, bypassing all possible optimizations. This flag also
requires the Modelverse Kernel to continuously update the execution context, as described in the previous sections. Execution of
the primitives defined in Table 4.2 and 4.3 will still be through their hardcoded implementation though.
As almost everything is a function call, including mathematical operations, no order of operations is imposed, apart from the one
in the function calls. Instead, the user is required to expand this to the correct function call. Most users, however, will use an MvI
with a parsed concrete syntax, which can generate an automatically modified abstract syntax graph from this. Therefore, the user
might still be able to write d = a+ b ∗ c, as long as the MvI expands this to d = integer add(a, integer mul(b,c)), taking into
account the typing and order of evaluation during parsing. This offloads the work required for the implementation of a MvK.
Several primitive operations require some additional explanation:

• float operations only work on floats and not on integers, due to possible loss of accuracy. To get the desired results, explicit
type conversions are required using the cast operations.
• string operations work on both strings and characters, as a character is a string of length 1.
• cast operations are used to switch between types. Casts from a string will try to parse the result, whereas casting to a string

will pretty-print the value. Boolean True is equal to integers or floats different from 0 or 0.0, respectively. Conversion from
float to integer is rounded down if necessary.
• create operations are a one-to-one mapping with the MvS CRUD interface.
• read nr (out/in) returns the number of outgoing and incoming edges, respectively.
• read (out/in) returns the specified outgoing or incoming edge, respectively.
• read dict is a one-to-one mapping with the Rdict MvS CRUD operation, thus reading out from the dictionary based on

value in the node.
• read dict is a one-to-one mapping with the Rdict node MvS CRUD operation, thus reading out from the dictionary based on

the actual node.
• The delete operation will automatically determine the correct MvS delete operation to call.

35

Name Parameters Returns Semantics
integer addition a: Integer; b: Integer c : Integer c = a+b
integer subtraction a: Integer; b: Integer c : Integer c = a−b
integer multiplication a: Integer; b: Integer c : Integer c = a×b
integer division a: Integer; b: Integer c : Integer c = a/b
integer lt a: Integer; b: Integer c : Bool c = a < b
integer lte a: Integer; b: Integer c : Bool c = a≤ b
integer gt a: Integer; b: Integer c : Bool c = a > b
integer gte a: Integer; b: Integer c : Bool c = a≥ b
integer neg a: Integer c : Bool c =−a
float addition a: Float; b: Float c : Float c = a+b
float subtraction a: Float; b: Float c : Float c = a−b
float multiplication a: Float; b: Float c : Float c = a×b
float division a: Float; b: Float c : Float c = a/b
float lt a: Float; b: Float c : Bool c = a < b
float lte a: Float; b: Float c : Bool c = a≤ b
float gt a: Float; b: Float c : Bool c = a > b
float gte a: Float; b: Float c : Bool c = a≥ b
float neg a: Float c : Bool c =−a
bool and a: Bool; b: Bool c : Bool c = a∧b
bool or a: Bool; b: Bool c : Bool c = a∨b
bool not a: Bool c : Bool c = ¬a
list read a: Element; b: Integer c : Element c = a[b]
list append a: Element; b: Element a : Element a+= b
list insert a: Element; b: Element; c: Integer a : Element a.insert(b,c)
list delete a: Element; b: Integer a : Element a = a.pop(b)
list len a: Element b : Integer b = len(a)
dict add a: Element; b: Element, c: Element a : Element a[b] = c
dict delete a: Element; b: Element a : Element delete a[b]
dict read a: Element; b: Element c : Element c = a[b.value]
dict read edge a: Element; b: Element c : Element c = a[b]
dict read node a: Element; b: Element c : Element c = a[b.id].edge
dict len a: Element b : Integer b = len(a)
dict in a: Element; b: Element c : Boolean c = bina
dict in node a: Element; b: Element c : Boolean c = bina
dict keys a: Element b : Element b = a.keys()
string join a: String; b: String c : String c = a.b
string get a: String; b: Integer c : String c = a[b]
string split a: String; b: String c : Element c = a.split(b)
string len a: String b : Integer b = len(a)
set add a: Element; b: Element a : Element a.add(b)
set pop a: Element b : Element b = a.pop()
set remove a: Element; b: Element a : Element a.remove(b)
set remove node a: Element; b: Element a : Element a.remove(b.id)
set in a: Element; b: Element c : Boolean c = bina
value eq a: Element; b: Element c : Bool c = a.value == b.value
value neq a: Element; b: Element c : Bool c = a.value 6= b.value
element eq a: Element; b: Element c : Bool c = a.id == b.id
element neq a: Element; b: Element c : Bool c = a.id 6= b.id

Table 4.2: Primitive functions modifying primitive datavalues. If a Value is taken or returned, this refers to the value of the
returned node.

36

Name Parameters Returns Semantics
cast i2f a : Integer b : Float b = f loat(a)
cast i2s a : Integer b : String b = str(a)
cast i2b a : Integer b : Bool b = bool(a)
cast f2i a : Float b : Integer b = int(a)
cast f2s a : Float b : String b = str(a)
cast f2b a : Float b : Bool b = bool(a)
cast s2i a : String b : Integer b = int(a)
cast s2f a : String b : Float b = f loat(a)
cast s2b a : String b : Bool b = bool(a)
cast b2i a : Bool b : Integer b = int(a)
cast b2f a : Bool b : Float b = f loat(a)
cast b2s a : Bool b : String b = str(a)
cast a2s a : Action b : String b = str(a)
cast v2s a : Element b : String b = str(a.value)
cast e2s a : Element b : String b = str(a)
create node — a : Element create node and return ID
create edge a : Element; b : Element c : Edge create edge from a to b and return ID
create value a : Value b : Element create node with value a and return ID
is edge a : Element b : Boolean return whether a is an edge or not
read nr out a : Element b : Integer return number of outgoing links from a
read out a : Element; b : Integer c : Element return the bth element which has an outgoing link from a
read nr in a : Element b : Integer return number of incoming links from a
read in a : Element; b : Integer c : Element return the bth element which has an incoming link from a
read edge src a : Edge b : Element return the source of edge a
read edge dst a : Edge b : Element return the destination of edge a
delete element a : Element a : Boolean delete element a
deserialize a : String b : Element merge serialized graph with current and return initial node
log a : String a : String print to console at Modelverse server
is physical int a : Element b : Boolean type(a.value) == integer
is physical float a : Element b : Boolean type(a.value) == f loat
is physical string a : Element b : Boolean type(a.value) == string
is physical boolean a : Element b : Boolean type(a.value) == boolean
is physical action a : Element b : Boolean type(a.value) == action

Table 4.3: Lower-level primitive functions to implement. If a Value is taken or returned, this refers to the value of the returned
node.

4.5 Interface

Since the MvK is not an autonomous process, it requires input from the user, and needs to forward output to the user when
required. Therefore, an interface towards the MvI is required, which offers only two functions: add something to the input queue,
and pop something from the output queue.
This interface is sufficient to execute all operations, as the input value can be any element in the modelverse, for example a
function signature or name to resolve and subsequently execute. While this makes the interface very minimal, it pushes all API
definitions to the MvK itself, thus explicitly modelling parts that were normally hardcoded.
Another advantage of this very versatile API, is that the MvK can be customized per-user. The running process of the user will
just have to function as the API itself, and process all incoming messages. It also makes sure that all desired functionality is
present, as users can manually implement it if necessary.
We now formalize the behaviour of these two functions (set input and get output) just like the execution rules. It should be
noted however, that these rules are not executed when they are applicable, but only when they are invoked through the API. The
rules also reference elements that are passed to the invoking API call, and returns the marked node.

37

username

’input’

’input’

’next’

__input__

’value’

(a) API rule for input processing

username

’output’

’output’

’next’

__returned__

’value’

(b) API rule for output processing

Figure 4.19: API rules

38

5
Network communication

Apart from the logical interface that is exposed, the physical interface should also be specified. This interface determines how
the provided services can be invoked, possibly over the network. Since the Modelverse components are defined as seperate
modules, with a standardized API, multiple back-ends can be created to couple them. Depending on the used back-end, the
physical interface will differ. We will implement a simple back-end that makes the Modelverse state run as a service, exposed to
the network. This is done with the XML/HTTP back-end, described below.
While XML/HTTP is not the most efficient protocol for this data exchange, it has the most wide portability and is not blocked
by most firewalls. It also shows that our approach works with even a minimal communication protocol. It is possible to use other
communication protocols as well. Even then, using XML/HTTP can still be used as a fallback method if other protocols are not
supported.

5.1 Modelverse State

The XML/HTTPRequest back-end of the MvS will simply host an HTTP server, which responds to POST requests. The reply of
the server is again encoded in the same format as the POST request.
All requests should be send via POST, and contain the following two parameters:

• op: this indicates which operation to execute on the MvS.
• params: contains the parameters for the function, encoded in JSON format. While we require JSON encoding, the data

can never be complex due to the simple signature of the supported operations. This parameter should always be a list of
the parameters to pass. If there is only a single parameter, a list with a single element is still required.

The operations all use coding, to reduce the amount of data that needs to be transfered. Table 5.1 shows the mapping between the
operation and the formalized function name.

Listing 5.1: Example request and reply

Request: op=RE¶ms=[1]
Reply: data=[[2, 3], 100]

An example request, and corresponding reply, is shown in Listing 5.1, where an edge with identifier 1 is read. The reply indicates
that the request was succesful (statuscode 100), and the returnvalue indicates that edge 1 goes from element 2 to element 3.
Note that the G parts of the request and reply, as were formalized previously, are not included. This is because the MvS itself is
the instance of G being modified.
Sockets are kept open until explicitly closed, so it is possible to reuse a single socket for every request. It is also possible to send
a request before the previous request is handled of. In that case, the order of the replies will be the same as of the requests.

39

SocketServer sockets

queue

HTTP_output
/ add_to_queue()

waiting

processing

[data in queue] / HTTP_input

init

binding

listening

accepting

create_socket
/ bind_socket

bound_socket
/ listen_socket

listened_socket
/ accept_socket

accepted_socket
/ create_instance (Socket)

instance_created
/ start_instance

close

close
/ delete_instance

init

closed

close

listening

received_socket
[not complete]

received_socket
[complete]

waiting

transferring

[data]
/send_socket

sent_socket

queue HTTP_input
/add_to_queue()

header payload close

[got header]

[got payload] / HTTP_output

[close]

/close

close

1 *

Figure 5.1: Modelverse State server statechart

40

Operation Formal function
CN create node
CE create edge
CNV create nodevalue
CD create dict
RV read value
RO read outgoing
RI read incoming
RE read edge
RD read dict
RDN read dict node
RDE read dict edge
RRD read reverse dict
RR read root
RDK read dict keys
DE delete edge
DN delete node

Table 5.1: Mapping between operations and formalized function name

5.1.1 Statechart

As the server component itself also contains non-trivial behaviour, it should just as well be modelled explicitly. For this purpose,
SCCD [?] is ideally suited thanks to its support for reactive and timed behaviour, as well as dynamic structure. The SCCD
structure is shown in Figure 5.1.

5.2 Modelverse Kernel

Communication with the Modelverse Kernel is very similar to the communication with the Modelverse State. The Modelverse
accepts two different operations: set input and get output. Data is to be send as a POST request, and has to consist of the
following fields:

1. op: the operation to perform. It can be either ”set input” or ”get output”. Depending on the value of this entry, some
additional elements need to be present in the request.

2. username: the name of the user whose input or output queue is modified. Always present for both operations.

3. element type: how to interpret the value parameter. It is either ”R”, to indicate that the value parameter is a reference,
and therefore an element identifier. The other option is ”V”, to indicate that the value parameter is a JSON encoded value.
Only present if the operation is set input.

4. value: the actual parameter to the operation. Its interpretation is given by the element type operation. If it has to be
interpreted as a value, it needs to be an instance of a primitive for the MvS. Only present if the operation is set input.

For both requests, a reply will be returned containing an id and value entry.
For the set input, the id and value are a status code and human-readable description. Generally, giving input should always
succeed, resulting in id 100 and value success.
For the get output, the id will be the identifier of the node that is to be output. The value is the value of the node with the
provided identifier. Getting output is a blocking call, so the request will stay open until input is actually generated. As soon as
the output is generated, it will be sent out.
An example request and reply is shown in Listing 5.2 and 5.3, for set input, and Listing 5.4 and ??, for get output.

Listing 5.2: Example: create new user

Request: op=set_input&username=user_manager&element_type=V&value="user_1"
Reply: id=100&value="success"

Listing 5.3: Example: input element ID 15 for user

41

Request: op=set_input&username=user_1&element_type=R&value=15
Reply: id=100&value="success"

Listing 5.4: Example: read output value

Request: op=get_output&username=user_1
Reply: id=123&value="node_value"

5.2.1 Optimization

Whereas the communication between the MvK and MvS can be highly optimized and probably uses low-latency networks, the
MvI and MvK most likely communicate over a high-latency and low-bandwidth connection. And since communication with the
MvK can become relatively frequent, for example when executing a batch program, performance can be limited by the latency
of the connection, and the overhead imposed for each small request. To circumvent this problem, the MvK accepts an additional
parameter data, taking a JSON serialized list of JSON serialized element type and value tuples. The list is still executed in order.
The reply will still just contain success, but will now be for all data simultaneously. An example is shown in Listing 5.5.

Listing 5.5: Example: create two new users simultaneously

Request: op=set_input&username=user_manager&data=[[\"V\", \"\\"user_1\\"\"], [\"V\", \"\\"user_2 \\"\"]]"
Reply: id=100&value="success"

5.2.2 Statechart

Again, the MvK server has non-trivial behaviour and is therefore explicitly modelled using SCCD. This model can be seen in
Figure 5.2. In contrast to the MvS statechart, which only modelled an HTTP server, the MvK models both an HTTP server and
an HTTP client.

42

q
u
e
u
e

H
T
T
P
_o

u
tp

u
t

/
fr

o
m

_m
v
i

in
it

b
in

d
in

g

lis
te

n
in

g

a
cc

e
p

ti
n
g

cr
e
a
te

_s
o
ck

e
t

/
b

in
d

_s
o
ck

e
t

b
o
u
n
d

_s
o
ck

e
t

/
lis

te
n
_s

o
ck

e
t

lis
te

n
e
d

_s
o
ck

e
t

/
a
cc

e
p

t_
so

ck
e
t

a
cc

e
p

te
d

_s
o
ck

e
t

/
cr

e
a
te

_i
n
st

a
n
ce

 (
S

o
ck

e
t)

in
st

a
n

ce
_c

re
a
te

d
/

st
a
rt

_i
n
st

a
n
ce

cl
o
se

cl
o
se

/
d

e
le

te
_i

n
st

a
n
ce

in
it

cl
o
se

d

cl
o
se

lis
te

n
in

g

re
ce

iv
e
d

_s
o
ck

e
t

[n
o
t

co
m

p
le

te
]

re
ce

iv
e
d

_s
o
ck

e
t

[c
o
m

p
le

te
]

w
a
it

in
g

tr
a
n

sf
e
rr

in
g

[d
a
ta

]
/s

e
n
d

_s
o
ck

e
t

se
n
t_

so
ck

e
t

q
u
e
u
e

H
T
T
P
_i

n
p

u
t

/a
d

d
_t

o
_q

u
e
u

e
()

h
e
a
d

e
r

p
a
y
lo

a
d

cl
o
se

[g
o
t

h
e
a
d

e
r]

[g
o
t

p
a
y
lo

a
d

]
/

H
T
T
P
_o

u
tp

u
t

[c
lo

se
]

/c
lo

se

cl
o
se

id
le

e
xe

cu
ti

n
g

w
a
it

 M
v
S

[q
u
e
u
e
]

/
e
xe

cu
te

()

[h
a
s

re
q

u
e
st

]
/

H
T
T
P
_i

n
p

u
t

[n
o
 r

e
q

u
e
st

 &
&

st
o
p

]
/

e
xe

cu
te

d

[n
o
 r

e
q

u
e
st

 &
&

ke
e
p

 g
o
in

g
]

H
T
T
P
_o

u
tp

u
t

q
u
e
u
e

e
xe

cu
te

/
a
d

d
_q

u
e
u
e
()

S
o
ck

e
t

S
e
rv

e
r

U
se

rS
ta

te
ch

a
rt

M
v
K

 C
o
n

tr
o
lle

r

H
T
T
P
C

lie
n
t

E
xe

cu
to

r

in
it

co
n
n
e
ct

in
g

/
cr

e
a
te

_s
o
ck

e
t

cr
e
a
te

d
_s

o
ck

e
t

/
co

n
n
e
ct

_s
o
ck

e
t

co
n
n
e
ct

e
d

_s
o
ck

e
t

/
h
tt

p
_c

lie
n
t_

re
a
d

y cl
o
se

lis
te

n

re
cv

_s
o
ck

e
t

re
ce

iv
e
d

_s
o
ck

e
t

[n
o
 d

a
ta

]

re
ce

iv
e
d

_s
o
ck

e
t

[d
a
ta

]

w
a
it

in
g

tr
a
n

sf
e
r

[d
a
ta

]
/

se
n

d
_s

o
ck

e
t

se
n
t_

so
ck

e
t

q
u
e
u
e

H
T
T
P
_i

n
p

u
t

/
a
d

d
_t

o
_q

u
e
u
e
()

w
a
it

 h
e
a
d

e
r

w
a
it

 p
a
y
lo

a
d

[g
o
t

h
e
a
d

e
r]

[g
o
t

a
ll

d
a
ta

]
/

H
T
T
P
_o

u
tp

u
t

in
it se

t_
re

tu
rn

p
a
th

e
xe

cu
te

ti
m

e
o
u
t

[s
u
cc

e
ss

]
/

e
xe

cu
te

se
t_

in
p

u
t

/
e
xe

cu
te

a
ft

e
r

5
 /

 e
xe

cu
te

[f
a
il]

/
e
xe

cu
te

fe
tc

h

se
t_

in
p

u
t

/
e
xe

cu
te

()

e
xe

cu
te

d
 /

 H
T
T
P
_i

n
p

u
t

w
a
it

in
g

g
e
t_

o
u
tp

u
t

/
a
d

d
_t

o
_q

u
e
u
e
()

tr
y
_e

xe
cu

te
w

a
it

e
xe

cu
te

d
[s

u
cc

e
ss

]

[q
u
e
u
e
]

/
g

e
t_

o
u
tp

u
t(

)

e
xe

cu
te

d
 [

fa
il]

a
ft

e
r

1
s

/
cr

e
a
te

_i
n
st

a
n
ce

(H
T
T
P
C

lie
n
t)

in
st

a
n

ce
_c

re
a
te

d
/

st
a
rt

_i
n
st

a
n
ce

in
it

g
e
t

ro
o
t

in
it

 s
e
rv

e
r

in
it

 e
xe

cu
to

r

h
tt

p
_c

lie
n
t_

re
a
d

y
/

H
T
T
P
_i

n
p

u
t

H
T
T
P
_o

u
tp

u
t

/
cr

e
a
te

_i
n
st

a
n
ce

(S
e
rv

e
r)

in
st

a
n

ce
_c

re
a
te

d
/

st
a
rt

_i
n
st

a
n
ce

,
cr

e
a
te

_i
n
st

a
n
ce

(E
xe

cu
to

r)

in
st

a
n

ce
_c

re
a
te

d
/

st
a
rt

_i
n
st

a
n
ce

q
u
e
u
e

fr
o
m

_m
v
i

/
a
d

d
_q

u
e
u
e
()

w
a
it

p
ro

ce
ss

[u
n
k
n
o
w

n
_u

se
r]

/
u
se

r_
re

fr
e
sh

[s
e
t_

in
p

u
t]

/
se

t_
in

p
u
t

[g
e
t_

o
u
tp

u
t]

/
g

e
t_

o
u
tp

u
t

[q
u
e
u
e
]

g
e
t

u
se

rs

w
a
it

g
e
t

lin
ks

g
e
t

n
a
m

e
s

p
ro

ce
ss

 u
se

r
cr

e
a
te

 u
se

r

H
T
T
P
_i

n
p

u
t

H
T
T
P
_o

u
tp

u
t

[u
se

rs
]

/
H

T
T
P
_i

n
p

u
t

H
T
T
P
_o

u
tp

u
t

/
fi
lt

e
r_

u
se

rs
()

cr
e
a
te

_i
n
st

a
n
ce

(U
se

rS
ta

te
ch

a
rt

)

cr
e
a
te

d
_i

n
st

a
n
ce

/
st

a
rt

_i
n
st

a
n
ce

[n
o
 u

se
rs

]

[n
o
 u

se
rs

]

a
ft

e
r

5
s

u
se

r_
re

fr
e
sh

so
ck

e
ts

u
se

rs

se
rv

e
r

e
xe

cu
to

r

h
tt

p
_c

lie
n
t

1

1

1
1

1

11

1

*

*

Figure 5.2: Modelverse Kernel server statechart

43

6
Practical information

This chapter describes how to execute and use our proof of concept implementation of the Modelverse. This implementation
follows the previously defined interface, and is implemented in Python. Other implementations are possible, since each part
of the service runs separately and they communicate through the use of sockets. As such, more efficient implementations in
compiled programming languages (e.g., C++) are possible.

6.1 Requirements

The proof of concept implementation uses Python 2.7. As all aspects are explicitly modelled, this platform is the only dependency.
For the testing framework, py.test is recommended, though it is compatible with the default unittest module of Python.
All mentioned scripts are written purely in Python and should therefore work on all platforms.

6.2 Test suite

Since the Modelverse project consists of several subprojects (Modelverse State, Modelverse Kernel, and Modelverse Interface),
a script run tests.py is provided which runs the tests of each component in order.
Additionally, some “integration” tests are provided, which set up a complete Modelverse process and accesses it through the
usual Modelverse Interface API. These tests are also ran using the run tests.py script.

6.3 Running the Modelverse

Manually running the Modelverse happens, again, through the invocation of the script run local modelverse.py. This script
takes a single parameter: a file containing the initial state of the Modelverse, called bootstrap.m.
This script will first compile the necessary Modelverse wrapper statechart, and afterwards executes it. Now that the Modelverse
is running, by default on port 8001, it can be accessed through XML/HTTP requests.

6.4 Bootstrap file

The bootstrap file contains the initial state of the Modelverse upon startup. It contains essential constructs, such as the primitives
(e.g., integer addition, create node), and the initial user (user manager, for generating further users). While it should
normally not be changed, this initial content can be automatically generated through the generate bootstrap.py script. The
script contains a basic configuration for determining which primitives need to be loaded, and what the initial structure of the
Modelverse should be upon creation.
By default, the bootstrap file initializes each user with code to deserialize an encoded string to a graph that will be merged in the
Modelverse State. After merging, the provided graph is executed. If the provided code returns True, a deserialize call is invoked
again, otherwise the user stops execution.

44

6.5 XML/HTTP requests

As the Modelverse listens for XML/HTTP requests, every possible XML/HTTP request-capable client can be used. In the limit,
this can be even a simple command line tool, such as curl. An example curl invocation to create a new user called “test” is curl
http://localhost:8001 -d "op=set input&username=user manager&element type=V&value=ẗest"̈. To get output of
the user, the curl invocation is curl http://localhost:8001 -d "op=get output&username=test&element type=V&value=".

6.6 Compiling with HUTN

Manually using the XML/HTTP interface is clearly not desirable for end-users. As such, an MvI is needed to hide this complexity
from the users. An example MvI, in the form of a HUTN compiler, is provided and will be introduced now.
To compile and run your program, use the script make parallel.py. It takes the address of the Modelverse, the username,
and all files to compile and link together. For example, to execute integration/code/factorial.alc, execute: python
scripts/make parallel.py http://localhost:8001 test bootstrap/*.alc integration/code/factorial.alc. Note
that this command also works on shells that don’t do globbing (i.e., expand the *.alc). There is also the slower, but more elegant,
script make all.py. make all.py should be seen as the reference implementation, with make parallel.py being an optimized
version.

6.7 Examples

Finally, we introduce some simple examples that show how the HUTN compiler can be used and what the results are. More
examples are provided in the test suite.

6.7.1 Simple Action Language Services

First, to show that every kind of service can be modelled explicitly, we define a simple arithmetic service, shown in Listing 6.1.
This service will continuously wait for input, and respond with the factorial of this number. The example essentially consists of
three parts:

1. Imports: as everything is explicitly modelled, even the primitive operations need to be explicitly loaded. This can be done
by including the file “primitives.alh”.

2. Code The actual algorithm is stored here, and is written in a minimal action language syntax. The core of the algorithm is
very similar to how the implementation would be in another implementation langauge. Most notably, there is currently no
support for operators, so each part has to be explicitly invoked as a function.

3. Main loop As the code defines its own interface, a main loop will also be required for our example. This main loop is just
a simple inifite while loop, which takes input, passes it to the defined algorithm, and outputs the result. In more complex
situations, this main loop can contain the actual decoding of the incoming message.

Listing 6.1: Example factorial service.

include "primitives.alh"

Integer function factorial(n : Integer):
if(n < 1)):

return 1
else:

return n * factorial(n - 1)

while(True):
output(factorial(input()))

After compilation, as presented before, a user can provide input to this method, by sending the input to the previously defined user.
This can be done as follows: curl http://localhost:8001 -d "op=set input&username=test&element type=V&value=5".
After which the Modelverse will start to compute this value. Immediately after, the output can be requested (as it will block any-
way) as follows: curl http://localhost:8001 -d "op=get output&username=test&element type=V&value=". This
request will eventually return with a response similar to this: id=12345&value=120. Note that the id might be different, though
the value should be identical.

45

7
Conclusion

In this paper, we described the Modelverse: a self-describable multi-paradigm modelling tool. Several axioms were presented,
which served as guidelines while making decisions on the specification of the models. Our architecture was briefly presented,
showing the distinction between the Interface (MvI), Kernel (MvK), and State (MvS).
We presented a model of the Modelverse, which defines how an implementation has to behave. The model covers both the way
data is represented (in the MvS), and the semantics of its action language constructs (in the MvK).
Concerning data representation, we leave open how the graph could be physically implemented. This allows for a variety of
implementations, allowing the developer to choose between available technologies. And as all implementations will be interop-
erable, users can try out different implementations and check whether it better matches with their goals.
Concerning the action language, we described the execution context representation, and how language primitives modify this
execution context. This needs to be explicitly specified if multiple tools need to interoperate on the same piece of execution
data. For example, an external debugger can now access all internal execution data, as its representation has been specified.
For performance, we allow implementations to ignore updates to the execution context, allowing for optimized execution or
primitive operations. This allows users to achieve higher efficiency, for example through compiled functions, although limiting
debugability.
Tools can create and use additional elements in the execution context, which can be interpreted by compatible tools. However,
tools have no obligation to support all these additional elements. An example is additional debugging information, such as tracing
information.
By splitting up the components of the Modelverse, and requiring that all parts need to be explicitly modelled, we arrived at
different notions of conformance. We distinguished between a conformance closer to the physical level (conformance⊥), and a
linguistic type of conformance closer to the user level (conformanceL). Whereas the physical notion allows users to circumvent
strict metamodelling, by switching to a graph representation, linguistic conformance allows the MvK, and ultimately the user
through the MvI, to reason about the model in a level that is close to the problem domain.
In future work, we will create a reference implementation of this specification. Apart from the reference implementation, multiple
variations of components will be created, each with a different goal.
After the creation of the reference implementation, the implementation will be scaled up to a distributed and parallel version.
Multiple Modelverse Interfaces will also be created, each with a different kind of user in mind. First, a textual HUTN interface
will be created. Afterwards, a graphical tool will be created.
Our different notions of conformance will also be further extended with the introduction of ontological conformance. This would
allow us to have three different kinds of mappings: physical, linguistic, and ontological [5].

46

Bibliography

[1] Levi Lucio, Sadaf Mustafiz, Joachim Denil, Hans Vangheluwe, and Maris Jukss. FTG+PM: An Integrated Framework
for Investigating Model Transformation Chains. In SDL 2013: Model-Driven Dependability Engineering, volume 7916 of
Lecture Notes in Computer Science, pages 182–202. Springer, 2013.

[2] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the Future: The Story of Squeak, a Prac-
tical Smalltalk Written in Itself. In Proceedings of the 12th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’97, pages 318–326, New York, NY, USA, 1997. ACM.

[3] Eugene Syriani, Hans Vangheluwe, and Amr Al Mallah. Modelling and simulation-based design of a distributed DEVS
simulator. In Proceedings of the Winter Simulation Conference, pages 3007–3021, 2011.

[4] Miklós Maróti, Róbert Kereskényi, Tamás Kecskés, Péter Völgyesi, and Ákos Lédeczi. Online Collaborative Environment
for Designing Complex Computational Systems. Procedia Computer Science, 29(0):2432 – 2441, 2014. 2014 International
Conference on Computational Science.

[5] Bruno Barroca, Thomas Kühne, and Hans Vangheluwe. Integrating language and ontology engineering. In Proceedings of the
8th Workshop on Multi-Paradigm Modeling co-located with the 17th International Conference on Model Driven Engineering
Languages and Systems, MPM@MODELS 2014, Valencia, Spain, September 30, 2014., pages 77–86, 2014.

47

