
Bachelor thesis

Logisim to PyDEVS translator

Author:
Yentl Van Tendeloo

Promotor:
Prof. Hans Vangheluwe

May 21, 2012

Contents

1 Introduction 1
1.1 Project description . 1
1.2 Project scope . 1
1.3 Requirements . 2
1.4 Testing techniques . 3

1.4.1 Some ideas . 3
1.4.2 Final solution . 4
1.4.3 Trace files . 5

1.5 Architectural design . 6
1.6 Planning . 7
1.7 Usage . 8

2 Translator 9
2.1 Modifications . 9
2.2 Intermediate tree . 9
2.3 PyDEVS connector . 10

2.3.1 Basic connections . 10
2.4 Translation problems . 10

2.4.1 Splitters . 10
2.4.2 Colliding wires . 11
2.4.3 Pull resistors . 12
2.4.4 The Null element . 13
2.4.5 Putting it together . 14

2.5 PyDEVS code generation . 15
2.5.1 Basic assumptions . 15
2.5.2 Colliding events . 16
2.5.3 Wiring . 16
2.5.4 Gates . 17
2.5.5 Plexers . 17
2.5.6 Arithmetic . 17
2.5.7 Memory . 18
2.5.8 Input/Output . 19
2.5.9 Imported circuits . 19

2.6 Configuration . 19
2.6.1 Main . 20
2.6.2 Delay . 20
2.6.3 Experiment . 20
2.6.4 Speed . 21

1

2.6.5 GUI . 21

3 Checks 23
3.1 Translate-time checks . 23

3.1.1 Loops . 23
3.1.2 Splitter loops . 24
3.1.3 Bitsize . 24

3.2 Run-time checks . 24
3.2.1 Bitsize . 25
3.2.2 Binary values . 25

4 Export methods 26
4.1 XMLTracePlotter . 26
4.2 VCD . 27

4.2.1 Data representation . 27
4.2.2 End time . 27
4.2.3 Scale . 27

5 Results 28
5.1 Comparison to previous work . 28
5.2 Testing . 28

5.2.1 Translator . 29
5.2.2 PyDEVS . 29
5.2.3 Logisim . 29

5.3 Profiling . 31
5.4 My opinion . 32

6 Class diagrams 34

2

Abstract

This report accompanies the Logisim-to-PyDEVS translator that was written
in the context of my bachelor thesis at the University of Antwerp.
This translator will make it possible to translate Logisim[1] circuits to equivalent
PyDEVS[5] code. This is a partial continuation of the bachelor thesis of Naomi
Christis[2]. The generated models support both XMLTracePlotter[6] and VCD
exports in PyDEVS, using the modified simulator.
As a side note, the original verilog translator and intermediate tree parser needed
some modification. This was needed because these were programmed using
Logisim version 2.6.1 files. Due to an update of Logisim, to version 2.7.1, this
parser was no longer completely correct and some new features in Logisim had
to be implemented in Verilog too.

Chapter 1

Introduction

1.1 Project description

This project consists of multiple parts, all of which are based on the Logisim to
Verilog translator. The different parts are:

1. Update the original Logisim to Verilog translator

(a) Update to support Logisim version 2.7.1

(b) Speed up the connection algorithm from O(n2) to O(n)

2. Implement a library of Logisim elements, translated to DEVS

3. Translate Logisim circuit files to equivalent DEVS

4. Trace file export

(a) VCD file (GTKWave)

(b) XML file (XMLTracePlotter)

There are multiple reasons why such a translator is needed. The main reason is
to allow already existing DEVS models to incorporate Logisim circuits and use
them effectively. Other reasons include the possibility to test the Logisim circuit
using a pre-generated DEVS circuit, to export a trace to XMLTracePlotter, ...

1.2 Project scope

One rather serious constraint is placed on the input files (apart from being gen-
erated by Logisim):
Since the Logisim save file is not according to any standard, it can always change
between different Logisim versions. This might effectively break the intermedi-
ate tree parser, which has already happened to the original Logisim-to-Verilog
translator. This reduces the use of the translator, since it will need continuous
development to support newer Logisim versions. The problem is partially solved
by checking the version number before translating and showing an error message
if necessary. Similarly, it is impossible to translate older circuits, though it is
possible to open and save the old circuit with a newer Logisim version. This

1

Figure 1.1: The relation between the Logisim to Verilog translator and the
Logisim to DEVS translator

would make Logisim responsible for the conversion.
Secondly, a little less serious constraint, is that the Logisim files may include a
lot of symbols that are not allowed in Verilog (and PyDEVS). Therefor, the ’ ’
and ’/’ characters are filtered out. This will make the translation of 2 different
circuits with names only differing in these characters impossible. Since it is only
the name, this problem is not really that serious. Besides, it goes against most
common sense to name two elements exactly the same, only differing in the use
of ’ ’ and ’/’.

1.3 Requirements

The translator itself does not have a lot of requirements. Only Python3 is needed
to be able to run the program. The choice for Python3 instead of Python2 is
due to the fact that the intermediate tree parser was written in Python3.
The tests however, have some other dependencies. This is mainly due to the
fact that the translator, and subsequently the tests too, have been written in
Python3, though the simulator, PyDEVS, was written in Python2. This makes
it impossible to do a real simulation without Python2 installed on the system.
This is a rather logical requirement, since it would not make much sense to
generate files to be used in a Python2 program, if no Python2 is installed on
the system.
Another requirement for the tests is Java, which is needed for the comparison of
VCD files 1 . This uses the open-source compareVCD program, which is written
in Java.
To summarize, the requirements are:

• Python v3

• Python v2 (optional)

• Java (optional)

1An explanation for the need for Java can be found in section 1.4.2

2

If any of the optional requirements are not met, the tests that involve these
components will be passed and the results will not be taken into consideration.
Of course, the tests are ordered in such a way that all testable things are tested
before a ’pass’ occurs. This means that if a test passes, the basic translation
and testing went correctly.

1.4 Testing techniques

1.4.1 Some ideas

A possible way to test the functionality of the final program would have been
to translate the same Logisim circuit using both the Verilog translator and the
DEVS translator. Afterwards, both can be run using their respective simula-
tor (PyDEVS and iVerilog), using the same test values. The resulting VCD
trace files can be compared. There are several reasons why this wouldn’t work
decently:

1. The Verilog translator doesn’t add any delay
This makes it impossible to generate identical trace files, since DEVS
requires a certain delay

2. Naming is different
The different translations need a difference in processing. E.g. the Split-
ter can be modeled in Verilog, but not in DEVS. A comparison between
these files would thus reveal wires and elements that are present in one
VCD file, but not in the other. In normal situations, this would be an
error. Should this be allowed, it is no longer a real comparison, but rather
guessing. These special cases and their solution in DEVS are mentioned
in section 2.4.

3. Collisions might be resolved differently
When different models have to output at the same moment, a collision
occurs. PyDEVS resolves this by using a select() function, specified in
the CoupledDEVS model. However, the order in which these are selected
matters, because it might make some outputs of other elements unneces-
sary, incorrect, ... or even cause new models to generate output (when
these models have a delay equal to zero). Due to this difference it would
be rather difficult to exactly resemble the way Verilog handles this kind
of collisions.

Another possibility would be to test the generated DEVS tree and check whether
all connections are made the right way, all elements are translated to correct
models, ... This kind of testing also has some important drawbacks, that made
me consider not to use them:

1. The tests are unclear to maintain and to diagnose
The tests don’t have a clear, logical interpretation. One of the advantages
of tests should be that the workings of the system can be easily seen.
Also, tests should make it easy to debug the (faulty) code. When using
this kind of checks, nothing is known about the system at all. When the
same logisim file is redrawn and reparsed, it might even give other results,

3

since Logisim saves elements in the way they are added. This would cause
a circuit file that is drawn in another way to fail the test, even though it
looks exactly the same in Logisim.

2. The tests might fail, even though the program still runs correctly
Since there are several places in the intermediate tree where order doesn’t
have any meaning, e.g. the connection groups, it doesn’t really matter
which wire gets checked first or in what order the connections are made.
Therefor, any kind of absolute checking (as was done in the tests for the
Logisim to Verilog translator) seem useless. Of course, it might be possible
to have some more advanced checks, that just search the expected element
and only give an error when these are not found or are not correctly bound.
However, this would drastically increase the previous disadvantage. As
long as the program doesn’t lose its correctness, the test should succeed.

1.4.2 Final solution

So after all these different kinds of tests that don’t seem all that usefull, a good
test is needed. The best way to test, in my opinion, is to translate a circuit
and use a testing framework to check if the simulator gives back the expected
results. This does cause a large increase in testing time, since a lot of steps have
to happen. But this seems the only way to do a decent check to test the final
result, and not some (arbitrary ordered) intermediate tree.
To allow this kind of testing in DEVS, a CoupledDEVS model had to be writ-
ten, that binds to another circuit at input ports ’inputX’, with X the number
of the input port, and output ports ’outputX’, with X the number of the out-
put port. To allow maximum flexibility, this framework gets constructed when
starting the tests and just takes some lists for every input wire and some lists
of expected values of output wires. This also requires a certain time parameter,
since this test should wait until the circuit finished processing. This is due to
the mandatory delay in DEVS. If the values match, the next value is inserted
in the circuit. If the values don’t match, the verbose output of the simulator
is printed, together with some info about the received data, the expected data
and on which wire this happened. This should make it easy to see where the
tests went wrong.
The circuits that get tested should closely resemble some kind of unit test. So
the basic circuits that are tested, are just circuits containing one element 2 that
is immediately connected to input and output pins. This way, only that element
is tested and problems can be easily identified.
Of course, most real life circuits don’t contain only one element, so different
combinations have to be tested. This way the connection between multiple
models can get tested and how the different changes to the connections 3 are
done in real situations.
Since the project scope is larger than only generating the DEVS models, also
the VCD and XML files have to be tested. This is done in two ways, using a
regression test and using a comparison to Logisim trace files.
The XML files are less error-prone than the VCD files, since the XML export

2Multiple elements are sometimes used, for when an element has many different configu-
rations that should be tested separately

3More info about these changes can be found in section 2.4

4

function was already written and (presumably) well tested. The VCD files on
the other hand need some decent testing since these are completely new and
thus error-prone. For VCD files, the order in which changes are listed doesn’t
matter, as long as these changes happen at the same time. This suggests not to
use a bit-by-bit comparison, since the result might still be valid. Searching the
internet, an open-source program ’CompareVCD’[3] was found, which does just
what is needed. Sadly, the program runs under Java, making Java a dependency
for the tests.
XML file comparison is rather tricky. Again, a bit-by-bit comparison might
not really be what is needed, but might be the only valuable solution. Some
of the more elaborate tests (advALU, advTransistor, ...) generate XML files
of several megabytes. When using an XML parser in Python to parse these
files and compare the trees, the parsing alone takes multiple minutes. Other
stand-alone applications also take this long. This is unacceptable, since testing
would quickly take half an hour. Due to the fact that XML files should already
be well tested when they were integrated in PyDEVS and it would take immen-
sively long to do a complete check, only basic checks for the XML files are done.
The binary comparison is done, though this might cause some failed tests even
though there is no real error.

1.4.3 Trace files

Logisim recently supports the option to make some kind of logging files. This
can be used to generate trace files with Logisim. Since PyDEVS also has an
XML trace function, both traces can be made of an identical circuit (that runs
completely autonomous thanks to a clock) and compared to each other. The
Logisim trace files are very basic and contain nearly no information compared
to the XML traces, therefor, the XML traces are stripped down to the same
format as Logisim. These two trace files should be binary equal, so the standard
UNIX diff can be used.
The logging functionality is (currently) only available through the GUI, mak-

ing it impossible to fetch these traces automatically. The expected trace files
are therefor generated and saved. When a new version of Logisim is released,
all trace files should be regenerated.
Currently, all elements are tested in a brute-force manner: all possible combina-
tions are tried, logged and compared. To make it feasible to do so, a maximum
of 6 bits is used 4 . Any more bits would cause huge XML traces (several hun-
dreds of megabytes) and would just take extremely long due to the verbosity of
XML traces.
The primary advantage of this method is that it allows (semi-)automatic verifi-
cation of the semantics in Logisim, compared to the semantics in the translator.
The only source for semantics that was used in the translator was the Library
Reference, so when the trace file comparison would fail, it might indicate a
difference between implementation and semantics. Otherwise, it might also in-
dicate an oversight in the Library Reference.
Note though, that these trace comparisons take a very long time, so they are
integrated in the tests in a way similar to the ’make’ program. When a circuit

4A bit actually can have 4 values in logisim: 0, 1, E or x. This causes 46 = 212 = 4096
combinations.

5

Figure 1.2: An example output of the logging feature of Logisim

is tested, a file will be generated (name.done). When the test finds this file and
the timestamp is more recent then the trace file and circuit file, the test will
immediately pass. Otherwise, the test will rerun.
When it is desired for these tests to be run on your computer, the .done files
will have to be deleted 5.

1.5 Architectural design

The global architecture was already done by the Logisim to Verilog translator,
so approximately the same architecture is used. This concerns the intermediate
tree, the visit function, the write function, ... However, some smaller design
properties have drastically changed, mainly due to the very verbose code that
gets generated. In the Verilog tree, all writing and all models are generated in
one single Python file, resulting in a lot of lines of code 6 and more difficult
debugging since everything is connected to all other things. While the complete
design up to the Verilog write visitor uses polymorphism and is rather clear,
the write visitor itself doesn’t and the classes are (nearly) empty. This was
changed in the DEVS write visitor, which uses polymorphism extensively for
the generated models. There is still one main class, which does the translation
between different classes, but each class is responsible for how the resulting file
would look like. Considering that the DEVS code is much more verbose than

5located in ’translator/testDEVS/trace/’
6About 2100 lines of code at the moment of writing

6

the Verilog code 7 , it would be insane to put all this code in a single Python
file.
Another architectural difference is the generation of the connections. In Verilog,
this can be done by using exclusive names, but in DEVS, the connections have to
be specifically stated. Therefor, a dual pass system is used. First the connection
groups are generated, effectively generating all the connections and the basis
that will be used in the DEVS visitor. Afterwards, the next pass will convert all
the classes to the DEVS equivalent and use the generated connections to handle
all kind of special cases. Since this causes a seperation between connecting and
translating, this allows for a much clearer design. The bad part is that it needs
several passes over the tree, resulting in a slower conversion. Though translation
of a pipelined datapath in Logisim only takes a few seconds on a netbook, this
performance decrease will not even be in the order of seconds for far bigger
circuits. Also, the algorithmic complexity doesn’t change.
For the class diagrams, see chapter 6.

1.6 Planning

Month Goal
September Update the Logisim-to-Verilog translator

Basic connections
October Model Gates

Model Plexers
November Fix colliding wires, pull resistors, introduce Null element

Refactoring and extend connection algorithm
December Testing larger circuits and fix found bugs, catch up if late

Model Arithmetic elements
January Exams
February Model all remaining elements and Memory elements

Include working VCD and XML exports
Include a configuration file
Include some bigger tests

March Model the Splitter
Clean up code
Fix bugs
Write report
Compare Logisim traces to own XML traces and fix found bugs
Static bitsize checks
Loop checks
More configurability

April Continue writing report
Write presentation
Implement a GUI
Fix bugs

May Finish report
Finish Presentation
Fix bugs

7The DEVS code for an AND gate is approximately 68 lines of code, while Verilog can do
this in a single line

7

1.7 Usage

Usage is fairly simple, though there are several possible parameters:

• –devs: translate to devs

• –verilog: translate to verilog

• –config: supply a configuration file to use (default: config.ini)

For example, to translate the file ’circuit.circ’ to DEVS using ’config.ini’ 8 :

$./translate.py --devs circuit.circ

Note that the location of PyDEVS has to be specified in the configuration, as
this needs to be imported. There are also some extra configuration options that
can be used to fine-tune the generated code, see section 2.6.
Tests are even simpler, just run the command

$./test.py

Again, a configuration file is present for the testing, this should NOT be changed,
since it contains some assumptions for the regression tests. Though the location
of the generated models and PyDEVS might need changing.

8The command ’./translate.py’ might be replaced with ’python3 translate.py’, both have
the same meaning (under Linux) due to the use of a sha-bang line

8

Chapter 2

Translator

2.1 Modifications

Some modifications to the intermediate tree parsing were needed due to the new
version of Logisim. This is because the defaults were changed between logisim
versions. These changes include the following:

• Added element Transistor

• Added element Transmission gate

• Added element Ground and Power

• Changed and added appearance of splitters

• Most plexers now have an optional enable line and a disabled signal

• Plexers can have multiple locations for the select and enable line

• Most basic gates now have an option to change the outputsignal

Most of these changes can be done in the parser itself, though some new ele-
ments and features are introduced that need changes to the Verilog part of the
translator.
Additionally, a small check is included that first checks the version of the Logisim
save file, to determine the correct defaults. Also, the version is checked against
a list of compatible versions. This would at least prevent useless translation
time when an incompatible version is used.

2.2 Intermediate tree

The parsing of the Logisim circuit file to an intermediate tree is already imple-
mented in the Logisim to Verilog translator by Naomi Christis. This intermedi-
ate tree is used without any major modifications 1 , so no effect on the Verilog
part of the translator should happen.

1The required changes are done, including several bugfixes

9

2.3 PyDEVS connector

2.3.1 Basic connections

Figure 2.1: The different connection groups, before and after fixing colliding
wires

The basic connection algorithm just searches all elements in the intermediate
tree and uses introspection to find all connected wires and their names. All
elements on the same wire are put in a list. All these lists are separate groups
of elements that are connected to each other. All of these lists are then put in
the connections list, which is the list that is always used to find connections.
Due to the way colliding wires are parsed in the intermediate tree, the colliding
parts are put in different groups. This is not the best way, so some of these
groups should be merged together.

2.4 Translation problems

2.4.1 Splitters

The Splitter is a standard Logisim element, but has a strange behaviour in some
cases, making it too difficult to translate it to a Model in DEVS. This closely
resembles the problems that were encountered when building the Logisim to
Verilog translator. The intermediate tree contains a lot of information about
the splitter, but constructs some unnecessary inputs and outputs, making loops
(see chapter 3.1.2) possible. This suggests that the simplest approach, just
model it as a normal element, would be a recipe for disaster.
Besides all these problems, the splitter would have to take into account the dif-
ferent pull directions of each wire separately, prevent collisions, etc. However,
a wire that contains multi-bit signals is actually just a bus, containing many
different wires. In this point of view, a splitter is just an artifact of this nice
representation in Logisim. This suggests the solution: removing the splitters
and shredding these busses.
Though this solution seems rather simple, it would cause many esthetical prob-
lems when modelling all multi-bit wires like separate wires, e.g. a bit adder with
two 32-bit inputs would have 64 different input wires and 32 output wires. This
would make it impossible to do decent debugging of a circuit using a waveviewer
and furthermore cause a lot of transitions in the simulator, causing the simula-
tion to slow down immensly. Therefor, these busses will only be shredded when
a splitter is in the connection group. This would still cause some elements to

10

have a strange interface, suggesting the addition of some extra helper models:
the BitShredder and BitMerger (not to be confused with the Merger, which
mergers different signals on one line and allowing collisions).
The BitShredder will take a bus of k bits as input and shred it in k 1-bit wires
in the normal order (thus ignoring remapping of the splitter). The BitMerger
will do just the opposite and take k 1-bit wires and put it on one k-bit bus.
Since these elements are uni-directional, they have to be placed right before or
after an input/output, thus making this a non-issue.
Now the real problem arises: connecting all these 1-bit wires in a correct fashion.
This can be done by constructing a list of all BitShredders in a connection group
and for every bit of these connections, follow the path and eventually hook up
these wires to the BitMergers. This seems like a very inefficient way to connect
the BitShredder and BitMerger, but this will actually pay of in the resulting
model. This is because a lot of reuse can be done: no special bitshredders with
many different output combinations, no special bitmergers with special input
combinations, ... Another very important advantage is that the signal will just
flow through other intermediate splitters, allowing these splitters to be com-
pletely removed. This way, a large network of multiple splitters for one wire
will just be collapsed to a BitShredder/BitMerger combination, reducing the
complexity of the model. This also has the advantage that all collisions and
pull resistors can be solved on a bit level, making it very clear what happens.
An extra problem will arise when using the bit-by-bit method and following the
flow immediately, since a loop can often occur. Section 3.1.2 continues about
this problem and how it is solved.

Figure 2.2: A visual representation about the changes for a Splitter

Figure 2.3: A more difficult circuit, illustrating a possible problem when using a
model instead of the above algorithm. Note the very clear and efficient solution

2.4.2 Colliding wires

Colliding wires are a problem in DEVS, because a DEVS model has a single
input for a certain wire. If multiple elements are connected to this port, the
model will just take the last event as the correct one and discard the previous.

11

This is not what happens in Logisim and is again an artifact from DEVS, be-
cause it replaces continuous signals with single events. To solve this, a special
element is introduced, namely the Merger element.
To detect this kind of collisions, a check is needed if multiple outputs are con-
nected to each other. To accomplish this, some groups are constructed of ele-
ments that are connected to each other. All data that needs to be kept is the
element, the name of the port and whether or not it is an input. However, the
intermediate tree already does some processing for colliding wires, by adding an
element CollidingWire. This is not really what is needed for this approach, so
both ends of the colliding wire should just be merged to each other. This way,
a decent group of elements is constructed.
Now a simple check for the number of outputs in such a group will suffice to find
collisions. If only one output is defined or multiple inputs, no problem occurs.
However, when multiple outputs occur, there is a possibility of a collision.
When a collision is possible, the group gets split in two parts. One part receives
all inputs, and the other receives all outputs. Now all that is needed is a con-
nection between these two groups. This is done by the Merger, as it will be
constructed such that each output element will get an inputline in the Merger,
and for all input elements, only a single output is defined. This last part might
seem strange, however, no collision can occur since there will only be one output
in this group.
Like all other elements, the Merger will have a state that contains the values
of all input wires. The Merger element can then be used as a sort of cache
for the events. When an event comes in, it will compare the enclosed signal
bit-by-bit with all other signals and if necessary replace it with a ’E’ signal.
Notice that the constructed groups will come in handy in further parts of the
translating. Therefor, this construction is done in a separate ’preprocessing’
step of the translator.

Figure 2.4: A visual representation about the changes for a Merger

2.4.3 Pull resistors

The Pull Resistor is, contrary to the Merger, also an element in Logisim. But
since this element does not really have a normal input/output port combination
and it isn’t even represented as an element in the intermediate tree. This means
that it will have to be represented with a new model. The intermediate tree
does however contain a list of wires, which have the direction given by the pull
resistor. Since the previous step already generated groups of connections, this

12

can now be used to add the Pull Resistor. Note however, that the problem
of multiple outputs on one wire no longer exists, because this was solved by
the fixing of the Merger. Thus resulting in an easy division between input and
output elements. The insertion of the Pull Resistor happens analogous to the
insertion of the Merger.
Because all connected wires have the same direction, it doesn’t really matter
which wire is chosen to find the direction. This does mean though, that the
direction should be taken into account when drawing wires, e.g. when adding
the Merger element. To fix this, the input wires of the merger don’t have a
direction, while the output wire does have the direction. Otherwise there would
be a collision if one wire has a pull direction to 0, but is floating, and the other
wire does have the 1 signal. The Merger would detect a 0 and a 1 and mark
this bit as ’E’. However, in Logisim, the floating value would just be set to 1
and the pull direction wouldn’t matter.

Figure 2.5: A visual representation about the changes for a Pull Resistor

2.4.4 The Null element

Sometimes, a connection between two elements just won’t work in PyDEVS like
it works in Logisim. Therefor, to fool PyDEVS, an extra intermediate element
is introduced. This is called the Null element. This element does absolutely
nothing, it only copies the input signal to the output port. All of this happens
with a delay of 0, as to guarantee no difference in behaviour.

Coupled Input/Output connections

In Logisim it is possible to make an immediate connection between the input
elements of the circuit and the output elements of the circuit. This obviously
doesn’t have any productive use 2. But since it might be done, it has to be
supported. However, the real problem lies with PyDEVS, which doesn’t support
this kind of immediate connections (again, for obvious reasons). To model these
connections, there should happen an extra pass over the connection groups, that
checks if an input is connected immediately to (multiple) outputs and if so, add
a Null model between them.

2It might actually have an esthetical purpose: when connecting multiple elements to each
other, that share a same wire for input, it can be drawn in logisim with straight lines instead
of multiple curling wires.

13

Figure 2.6: A direct connection not allowed by PyDEVS and its solution

Direct feedback loops

It’s also possible to make a direct feedback loop in Logisim. However, PyDEVS
doesn’t allow this. Since a complete translator is needed, it is necessary to
translate these files. However, since a direct feedback loop is probably not what
the user intended, a warning will be displayed about a loop, but the transla-
tion will continue, since there are (semi) valid uses of this kind of connections.
Since PyDEVS doesn’t allow this, an intermediate element is introduced to fool
PyDEVS. This element is, again, the Null element.

Figure 2.7: A loop not allowed by PyDEVS and its solution

2.4.5 Putting it together

It is possible to construct a circuit that does all these things at once. This has
to be taken into account and thus it is necessary to define a correct order of
fixing these problems. The order in which the problems were introduced is the
one followed in the translator and is a correct one. The order can be explained
according to the following constraints:

1. Splitters should be removed first
This is because otherwise the colliding wires between BitShredder and
BitMerger and pull directions of these wires will not be done correctly or
efficiently. This does place a lot of constraints on the connection algorithm,
because there has to be a possibility for multiple wires to be connected
to a single BitMerger input. Also the Pull direction has to be taken into
account.

2. Merging has to happen before Pulling
This has already been mentioned when discussing the Pull Resistor solu-
tion. If Pulling happens before Merging, the Merger could have problems

14

when a floating signal gets pulled, while another wire has a fixed signal.
This does however put a constraint on the working of the Merger, which
should take into account the pull direction of the resulting wires.

3. Adding the Null element should happen last
This isn’t really necessary, but will result in slightly more performant code.
It might be possible that a collision or a pull resistor appears, thus already
adding an element between these problematic elements. When this step
is done before all others, this might add a Null element, even when there
are colliding wires and an extra element will be added nonetheless, this
would add useless complexity to the model and should be avoided.

Figure 2.8: A visual representation about the changes for all of the above

2.5 PyDEVS code generation

The generated models need to comply with the semantics provided by Logisim.
This suggests the use of the Logisim Library Reference, to find out what hap-
pens with different configurations, without having to find it out by constructing
that particular circuit and constructing that particular situation. However, this
library reference is often far from complete, since there often is no mention of
what should happen when an input contains an error value. This did lead to
manual checking of these situations. Note also that this could lead to problems
when new versions of Logisim are released, because these semantics are unde-
fined and therefor might change between releases. This problem with semantics
is solved with the version number checking in the intermediate parser, which
requires a code revision when a new version is released.

2.5.1 Basic assumptions

As DEVS requires a certain amount of delay, some concept of time needs to be
introduced to the simulation of Logisim. Because, in the real world, all elements
have a certain amount of delay 3 , it is possible to simulate this delay as the
delay in DEVS. The different states that are constructed for the DEVS models
are therefor an ’active’ and an ’inactive’ state. ’active’ means that the output is
pending, while ’inactive’ means that the element is ready to process new input.
If an element gets a new input while it is active, the delay will start all over
again and no output for the previous input will ever be calculated. It is then

3This delay is called the propagation delay or gate delay

15

assumed that the input was not stable yet. The concept of how this delay is
interpreted is analogous to the MIPS-32 implementation in DEVS by [7].

2.5.2 Colliding events

Due to the above explanation, it follows logically that the time at which el-
ements output is crucial to other elements. Some elements might output at
exactly the same instant 4 , causing a collision. The select() function in the
CoupledDEVS model tries to resolve these collisions. This collision resolution
might influence the result of the system, which is certainly not what is desired
5 , since in real life these collisions might have been resolved simultaneously.
In real life, some variation to this delay is natural, making this kind of simultane-
ous events another artifact of simulation. To resolve this, an option is provided
to use random delays. Though for testing purposes, a fixed delay is more inter-
esting, so it can be compared to known trace files. Because the fixed delay is
used for testing, it is very important to have deterministic output, as it would
otherwise fail the test, while both files are correct...
The select() function that gets generated is a rather intelligent one. It will run
over all elements that are colliding with each other and pick the first one that
doesn’t influence any other element that is also waiting to output its value. The
order in which these elements are chosen doesn’t matter, since they won’t have
any influence on the other elements and as soon as collision resolution is over,
it is impossible to view which element did output before the other. Of course,
it is possible to have a loop of elements, all of which want to output a value.
Because this problem doesn’t have a decent solution, the first element in the list
is returned, hoping to solve the problem.

2.5.3 Wiring

Most Wiring elements are not real elements that should be translated. They are
already mixed in in the intermediate tree and are almost completely handled in
the intermediate tree. This does however cause some problems when converting
this intermediate tree to a DEVS connection group, as discussed in section 2.4.
The BitExtender is just a normal element and is handled like one.

Transistors and Transmission Gates

This element is new in Logisim 2.7.1, so changes to the intermediate tree were
needed. This was a good opportunity to learn about how the intermediate tree
works and how it can be used. The elements themself can be easily implemented
because they are nicely documented in the Library Reference. Because these
elements were completely new, there is an advanced test for these elements
separately, so all different types and directions get tested. The Transmission
gate is basically a Transistor with an extra input, so it is always treated like
another type of Transistor (type C).

4Equality is up to an ε, defined in PyDEVS
5Actually, a bad resolution could even lead to complete blocking of an element, when an

element keeps sending new inputs to the other element, and the first element is always chosen
to resolve the collision, the second element will always start over

16

Power and Ground

This element is also new in Logisim 2.7.1, but is actually just a constant with a
fixed value. This simply suggests changing the intermediate parser to set it as
a constant. Only the bitsize has to be determined to know the exact value of
the constant.

Probe

The probe element doesn’t really do anything useful, but it doesn’t have a
bitsize. This makes it necessary to not take this element into account when
checking for bitsizes. Since this element doesn’t have an output, nothing can
be done. Printing the content of the wire would be rather dirty, since it would
mess up the normal PyDEVS output. However, the element gets generated,
though it will be empty. The user might choose what to do with it, either in
the Probe.py file itself, or in the generated model.

2.5.4 Gates

Contrary to Verilog, DEVS (actually Python) doesn’t have a standard way of
doing most of these gates, like AND, OR, NOT, ... 6 so they have to be
manually implemented. These elements are like the core blocks of every circuit
so are very nicely documented, making it easy to write these blocks.
Note however, that since Logisim 2.7.1, it is possible to change the default
output format of most basic gates. This makes it possible to change a 0 signal
to floating, or a 1 signal to floating and such. This adds to the complexity of
the models, since they need to have another pass to change this.

2.5.5 Plexers

The plexers are rather simple, but quickly become very large. This is due to
the fact that there are no hardcoded names of wires in the code. To allow for
maximum flexibility and simulation speed, the same code might get duplicated
multiple times. This does not really impact the simulation speed in a bad way,
since it will remove a function call. For maintainability, no negative impact is
experienced, since the translator just contains that code once. If there were a
bug in the Plexers, it would be best to change this in the translator instead of
the generated model. Otherwise the bug will persist in future plexers.

2.5.6 Arithmetic

Most arithmetic elements are just normal elements and have a very easy im-
plementation, so they are modeled that way. Though some elements do have a
certain difficulty to them, namely the basic arithmetic elements (Adder, Sub-
tractor, Multiplier and Divider).

6Actually, Python does have some bitwise operators, but these don’t handle the different
error and floating values like Logisim

17

Basic arithmetic

These elements have a high grade of complexity, due to functionality given by
the Logisim developer. e.g. providing partial operations if a floating or error
value is detected. Again, Python doesn’t have the kind of nice bit addition like
Verilog has, and certainly not with the partial operations feature.
However, a conversion from binary to decimal and decimal to binary does exist
in python, suggesting the conversion to decimal, decimal operation and finally
reconversion to binary. However, this conversion to decimal doesn’t allow values
other than 0 and 1, causing a lot of problems with the partial operations. All
these problems caused the code to be rather verbose. The behaviour of the
partial operation also differs between the different operations, making it hard
to reuse a lot of code.

2.5.7 Memory

The memory elements are special in the sense that they have a common part,
namely the way they get triggered. This provides a good opportunity to make a
superclass that handles the triggering and just sets a variable (self.triggered in
this case). This also reduces the complexity in all Memory models. Thanks to
this decision, all Memory models are fairly easy to implement. The internal rep-
resentation of the memory can vary depending on the element. This allows for a
lot of performance gain. e.g. ROM memory has a complete list of all adressess
and their value, but RAM memory can be optimized by using a dictionary. This
way, only used values are stored, while accesses keep O(1). ROM memory on
the other hand, can be optimized to only initialize the defined values and all
access to higher addresses are just translated to 0.

ROM

The ROM needs to have its content defined by an extra file, this is to make
large ROM memories easier to modify. This is analogous to the implementation
in the Logisim-to-Verilog translator.
This can easily by optimized, by saving the values in decimal format. Since the
data is originally saved and sent as strings, saving as a string would give an
immense overhead due to the representation as a character. When translated
to an integer, it can be saved optimally in memory, though it will require a lot
of conversions. Another advantage is the early detection of files that contain
non-binary characters, since the parsing is already done at initialization.

Random

The Random element is a special kind of element, in the way that it depends
on randomness. The library reference tells that, when a non-zero seed is given,
this seed will be used according to a certain formula. This is implemented and
should work exactly like in Logisim. However, when a seed equal to zero is
given, the time will be used to initialize the seed. The problem is that there is
no info about ’what’ from the time is used (e.g. unixtime, milliseconds, time
till startup, ...). This problem could still be resolved by looking in the source-
code of Logisim, however, it is likely unimportant. When using a seed that is
unknown at the moment the circuit is run, it doesn’t really matter which seed

18

is chosen, as long as it has something to do with time. Therefor, the PyDEVS
implementation just takes a seed depending on time, but this might give other
results then the Logisim Random element at the exact same time. But since
the user will never notice this, it is safe to do so.

2.5.8 Input/Output

This category of elements does not really contain anything that can be done
decently in a modelling language. Note however that Python is a complete
programming language, making it possible to offer this kind of elements and
really hooking up some kind of input/output device. This would lead too far and
thus this category is unsupported, apart from the joystick, which is simulated
with two different input ports. This behaviour is the same as the Logisim to
Verilog translator. All other elements will display an error about an undefined
element. Generating all these files as empty files would take too long for the
user to make them, so it would be best that these elements are defined when
needed.

2.5.9 Imported circuits

Importing other subcircuits is relatively easy, since these are just modeled like
other elements, but use the CoupledDEVS superclass instead of the Atom-
icDEVS superclass. There is a minor problem when custom appearances are
selected for the circuit, since this might change the location of the ports and
break the connection algorithm. This problem is not easily solved, since the way
these appearances are saved is non-trivial due to the visual nature of Logisim.
To solve it, another pass over the file is needed to check whether there are cus-
tom circuits. If the circuit has a custom appearance, the list of appearances
is read and these coordinates are saved. When this circuit is encountered as a
subcircuit, the name of that subcircuit is looked up and the different coordinates
are calculated on a subcircuit base, taking into account the Anchor, the Loca-
tion and the Ports. Eventually the correct values are found and saved in the
element itself. When using this element to make the connections, it is checked
whether this has a remapping defined and if so, the remapping is used to search
for the pins, instead of just calculating the coordinate of the pin.

2.6 Configuration

The translator uses a lot of parameters that should be user-tweakable. At first
a command-line interface was implemented, however, the interface got way too
big and it took too much typing to generate a useful model. Also a lot of
defaults might not be suited for every purpose, so an ini file was chosen to
implement the configuration. The main advantage is that a set of defaults can
be generated, saving a lot of typing. Apart from that, ini files are more easy to
use and document then command-line parsing. What follows in this section is
an enumeration of all possible ini variables and their influence.
However, to make it easier to use the program, a GUI has been integrated to
set all these variables in a more controlled way.

19

2.6.1 Main

keyword description type
destination The location that will hold the generated mod-

els, should always end with a ’/’
string

importPath The location of the PyDEVS module on the
current system

string

experiment Should an experiment be generated for this
circuit?

boolean

verbosity How much output should be generated? integer
allowCollision Should collisions be allowed? If not, colliding

wires will be broken automatically
boolean

testing Specifies whether this is a test run or not.
Should NOT be manually toggled

boolean

interactive Should an interactive version be made, allow-
ing the user to inject data at run-time

boolean

2.6.2 Delay

keyword description type
base The base delay of all elements (except these

not present in Logisim)
float

clockScale How much longer should a clock tick take, rel-
ative to the base delay

integer

random Should the delays have some kind of (uniform)
randomness to them

boolean

variation If the elements should be random, how much
should the variation be? The random values
will be between [base, base + variation]

float

interactive The delay between consecutive requests for in-
put data for the interactive circuit

integer

2.6.3 Experiment

keyword description type
circuit Specifies the main circuit, for the experiment

to call. If ’None’ or an unknown circuit is
specified, the one saved in the circ file is used

string

end time How long should the experiment take, in sim-
ulation time

integer

verbose Should the experiment itself be verbose boolean
XMLtrace Should the experiment output a XML trace boolean
VCDtrace Should the experiment output a VCD trace boolean

20

2.6.4 Speed

keyword description type
dynamicChecks Should run-time checks happen Boolean
staticChecks Should optional translate-time checks happen Boolean
stopOnStaticFail Should translation stop when the optional

translate-time checks fail
Boolean

2.6.5 GUI

The GUI is implemented in Tk, which is included by default in Python 3. The
main goal was to facilitate future integration with Logisim, as Logisim would
otherwise have to handle the configurations. Since Logisim is rather graphical
itself, it would not show a good integration if it were to require manually chang-
ing configuration files. Besides, a GUI also makes it easier for inexperienced
users to do a translation. The configuration files can even be used for batch
scripts, while the GUI can be used for standalone cases.
Since the GUI doesn’t really add any functionality, it is just a basic form which
will create a config file depending on the selected options and afterwards it will
just call the translator with this config file. This might not seem the most op-
timal solution at first, though it should be noted that the configuration system
can be kept unchanged by doing it this way, thus minimizing the impact of the
GUI on the program and reducing coupling of the components.
To invoke the GUI, the translator should be run without any command line
options, though the circ-file is allowed.

$./translate.py

$./translate.py circuit.circ

21

Figure 2.9: The GUI to the translator

22

Chapter 3

Checks

3.1 Translate-time checks

A lot of things that define a correctly functioning DEVS model can already be
checked at translate-time. To prevent most problems in the resulting models
(and possibly save time, as the error is identified a lot earlier), some checks are
added to the translator.

3.1.1 Loops

The problem that loops could induce are very serious. It might be that a value
gets passed infinitely, effectively halting the simulation. In DEVS, this is not a
real problem thanks to the decoupling of ’receiving an event’ and ’sending an
event’. This way it is possible to prevent this kind of loops, on the condition
that there is a non-zero delay in the elements.
This is because the delay will halt the loop momentarily and allow the simulation
to progress. This means the simulation will eventually progress and finally the
simulation will halt. An extra protection that has been added to every generated
model is the cancellation of repeated signals. If a model receives the exact same
signal on the exact same input port as the previous event, it will just discard this
new event and continue as if nothing happened. Since elements do not save the
value they sent on their outputs, the outputting model cannot check this. Most
elements map different inputs to the same output, e.g. an OR port will output
1 if one of its input signals is 1, but it doesn’t matter which of the inputs is 1.
So it might be possible to have changing input signals, but a constant output
signal.
When ignoring repeated input signals, there is another crucial advantage to
simulation of Logisim circuits. Every physical element has some period of time
that the input should stay stable to be able to output the desired value. When
altering signals happen while the element is still in this time, it should forget
these input signals and restart, since it couldn’t output these anyway. However,
when the incoming signals are identical, this should not happen, since in the
real world nothing happened. This is just an artifact of DEVS, where an event
is fired once, instead of a constant signal. Therefor, the best practice is to
ignore the incoming value. Note that the PyDEVS simulator will still call the

23

timeAdvance() function, making it necessary for this function to calculate the
time that was remaining.

3.1.2 Splitter loops

Contrary to the previous section, splitters are translated in such a way that
loops might cause problems due to their delay equal to zero. To prevent this
kind of problems, a list of visited elements and their ports is remembered. This
way recursion can stop when the same element is visited.
Due to the construction of the intermediate tree, multiple splitters connected
to each other, where it would have been possible to do it with only one splitter,
might cause this check to go off. This doesn’t really pose a problem, since only
the suspected loop is broken, this doesn’t break the correctness of the translator.

3.1.3 Bitsize

The translate-time check for bitsize might partially be a redundant test, since
the same test always happens on run-time when a new signal is received (see
further). This check might stop translating early if an error is detected, but it
is quite possible that the user wants to translate a ’broken’ circuit. This might
be because some elements are limited in bitsize by Logisim (most of the time 32
bits), but if the user wants more bits, it would be rather difficult. If the user just
constructs a circuit with a wrong bitsize at several places, the translator could
translate these files and at the end, the user could simply change the bitsizes of
the element.
It is rather difficult to make a circuit with non-matching bitsizes without know-
ing, as Logisim will immediately warn about the situation, making it a basic
assumption that the user knows what is going on. Though the inattentive user
might save it and try to translate it, resulting in an error at run-time. Since a
translate-time check isn’t that hard to implement, it is an optional feature. The
user can specify in the configuration what should happen when bitsizes don’t
match and even if it should be checked or not (see section 2.6. When translating
a gigantic circuit, checking bitsizes of all wires and elements might take some
time, while the user might already know that it is perfectly safe since Logisim
didn’t notify him.

3.2 Run-time checks

Not all problems can be identified at translate-time. These checks have an
influence on the incoming signal, since this isn’t known at translate-time. One
could argue that these tests are not really needed, since these assertions are
always valid if the circuit was valid in Logisim. Though the project description
clearly describes the possibility of coupling other DEVS models, that aren’t
known at translate-time. Also, if there would be some kind of bug with a wrong
output signal, that is caused by an invalid incoming signal, it is way easier to
raise an error and clearly explain what went wrong. Otherwise, the user would
have to resort to manual checking of the signals, which could be quite tedious
if all wires had a lot of bits and only one bit was missing on one wire.
However, these kind of checks might get expensive when continuously running

24

them, certainly when the user knows everything is safe. These dynamic checks
are kind of like the preconditions of the model. Even though it is always safer
to use preconditions in functions, there might be good reasons to turn them off.
Most of the time when a wrong bitsize is received, the model itself will crash due
to out-of-range indexing etc, so the probability of false outcomes is nearly zero.
This suggested the configuration option to turn off dynamic checking, though
it is highly recommended to leave it on for general purpose.

3.2.1 Bitsize

The most interesting and important run-time check is checking if the bitsize
matches. This is a normal test, taking into account the above reason for run-
time checks. Another important reason might be the possibility of logisim to
save ’broken’ circuits, in the sense that the wires might have different bitsizes.
Since Logisim allows this, there is no guarantee that the supplied circuit files
contain a consistent circuit.
One might argue why this should still be a run-time test, since it already gets
checked at translate-time. It is important to note that the generated models will
often cooperate with other models, not necessarily generated by this translator.
This makes bitsize checks between these models impossible and might result in
other errors, hiding the real cause of the problem.

3.2.2 Binary values

Another important check is to check if the signal is actually of the format that is
expected. This means that the signal should comply to the following constraints:

1. The first character is a ’b’

2. All other characters should be either (character) ’0’, ’1’, ’E’ or ’x’

This kind of checks is necessary since DEVS allows much more events to happen.
To prevent this kind of problems, a check is recommended. The addition of a
’header bit’ is to represent that the following is a binary signal 1.

1This notation complies to most representations of bitstrings, such as Python and VCD

25

Chapter 4

Export methods

4.1 XMLTracePlotter

All that had to be done for a decent XMLTracePlotter output is an implementa-
tion of the toXML() function in the model. For optimal flexibility, all variables
that are saved in the state are exported in the XML file.

Figure 4.1: An example output in XMLTracePlotter

26

4.2 VCD

The export to VCD trace files happens analogous to the way XML files get
exported. The only real problems that were encountered are mentioned in the
following subsections.

Figure 4.2: An example output in GTKWave

4.2.1 Data representation

The main models have been constructed according to the data representation
of Logisim. However, VCD files require another. The main difference is in
the error and floating signals. Therefore, a simple replacement is needed when
saving the VCD files.

4.2.2 End time

Every VCD file requires an end time. This is the time that is written as the
final line in the file. However, if the end time of the experiment file would be
used, this might cause some ugly output in GTKWave[4] if the end time was
just taken ’large enough’. Therefore, the final time is chosen as 10 further then
the last DEVS-output. Most of the time, this would generate proper traces.
Though 10 might sometimes be rather small in big traces, though this should
not really be a problem.

4.2.3 Scale

A problem with VCD outputs is that a scale has to be specified, while DEVS
does not really have a connection with real time. Therefor, a scale of ’1 nanosec-
ond’ has been chosen. If this scale is inappropriate, it is rather easy to change
this in the PyDEVS code or in the exported VCD file, just because there is no
relation between this scale and the DEVS simulation time.

27

Chapter 5

Results

5.1 Comparison to previous work

As mentioned before, the same assumptions are made as in [7] concerning the
different states, transition functions, delays and such. However, this bachelor
thesis goes a little further, since it will translate any Logisim circuit to an equiv-
alent DEVS model. This caused some problems that weren’t present in [7], like
feedback loops, colliding wires, pull resistors and in general ’strange’ things a
user might generate in Logisim that aren’t supported in PyDEVS 1 , simply
because it would be illogical to do so. However, in the assumption that the user
knows what he is doing, these circuits should also be translated.
Also, the semantics of the models had to be exactly the same as Logisim, with
the same functionality and behaviour. This was not necessary in [7], since they
generated their own models with only the functionality that was required for
the MIPS datapath, defining their own semantics and thus avoiding some hard
parts like the splitters (in the general case).
Furthermore, the focus is different. In [7], the focus lies on making students un-
derstand a MIPS datapath using DEVS, including a very graphical environment.
The focus in this thesis lies on translating between different representations of
the same circuit, making it possible to integrate a Logisim circuit in any other
DEVS model. So while the structure of the DEVS models is the same, what is
done with these models differs.

5.2 Testing

The tests that were used were rather exhaustive. Tests include the standard
input-expected output, regression testing of the generated VCD files and XML
files and trace comparison to Logisim itself. This last one uses the brute force
approach: it will just input all possible combinations and check the output.
This causes the elements to be of rather small bitsizes though, since increasing
the bitsize with 1 automatically quadruples the time required (and memory
required, since the XML export list is kept in memory until the end).

1These problems and their solution are mentioned in 2.4

28

5.2.1 Translator

The comparison to the logisim trace files was an interesting test, since a lot
of bugs were found. These bugs were mainly due to the fact that the Library
Reference just wasn’t deep enough and my assumptions of what should happen
were different from the assumptions that the author of Logism had. Of course,
some bugs of my own were discovered too, mainly due to the fact that the trace
files is a brute force method, causing every line to be executed. Most of the
found issues were rather small or just some case that was simply forgotten.

5.2.2 PyDEVS

When running the different tests, sometimes the comparison of XML files failed,
while it passed a few seconds ago. This seemed rather strange, since all the files
that were used were exactly the same. After comparing where it went wrong,
it seemed that in some runs, the order of the models was different. Since the
simulator should use a canonical form and the generated models didn’t change,
there had to be an error somewhere. When diving into the PyDEVS code,
there was a sort to find the first model that can transition. However, a lot
of times were exactly the same each time, because a constant delay of 1 was
used in the tests. When printing the list of ’what’ was sorted, this was a list
of lists containing both the time found with the timeAdvance function and the
corresponding event. However, when a draw appeared in the timeAdvance,
which happened rather frequently, the second element was used for comparison.
Since this was just an instantiation of a class, without any compare function
defined, Python would just compare memory addresses. Since this can differ
between different runs, this was the cause of the problem. When found, this
problem was easily fixed by introducing a lambda function to check for the full
model name instead of the address. This migh slow down the sorting a bit, since
a string comparison has to happen and the getModelFullName function will be
called a lot, however, the output will now always be canonical.
The line that caused the problems was:

cDEVS.eventList.sort()

The solution to this problem was:

cDEVS.eventList.sort(key=lambda i: (i[0], i[1].getModelFullName())

5.2.3 Logisim

The trace file comparison caused a lot of differences between the generated
models and the Logisim elements behaviour, some bugs on behalf of the trans-
lator that weren’t caught in the normal tests, but also a lot of ambiguities in
the Library Reference that were misinterpreted when writing these models or
that weren’t mentioned. Furthermore, some elements exhibit rather illogical
behaviour. An example might be the Counter element. The Library Reference
states:

In addition to the output Q, the component also includes a single-
bit output carry. This is 1 whenever the counter is at its maximum
and the load and count inputs indicate that the component should

29

increment on the next step - or when the counter is at 0 and the
load and count inputs indicate to decrement at the next step.

However, when the Counter is at its maximum value and both load and count
are 0, this would cause the element to stay at its current value and thus, logically
speaking, the carry out should be 0. However, Logisim does actually set the
Carry Out to 1 in this situation. This does not really violate what is being said
in the Library Reference, but certainly goes against common sense. Note that
when going in the reverse direction, so counting down, the carry out bit is being
done correctly, making it extra strange.
Some other ambiguities exist for the Counter:

Figure 5.1: The strange output of the Counter element, both the Load and
Count input wires indicate that the Carry out should be 0

1. What happens when the counter has a maximum value but a value greater
than that one is loaded

2. What happens when an error/floating bit is present in the value to be
loaded

3. What happens when an error bit is given as input

4. What happens when decreasing under 0 when a maximum value is speci-
fied

Most of these questions aren’t only for the Counter element, but for other ele-
ments too. This is mainly due to the fact that the Library Reference just isn’t
thorough enough to be used as a complete definition of the semantics of the
elements.

30

5.3 Profiling

Due to the long time required to run the traces, some basic profiling has been
done on the code, using the Python module ’cProfile’. The tested circuit is the
RAM trace circuit. The results indicate that most of the time, the simulator
itself is responsible for the slow behaviour. A (stripped) version of the profile
outputs follows, only the parts that take longer than 1 second in total are shown:

102592842 func t i on c a l l s (94325134 p r im i t i v e c a l l s) in 601.646 seconds

Ordered by : standard name

n c a l l s tott ime cumtime f i l ename : l i n eno (func t i on)
115661 3 .153 10.023 BitMergerb2 . py : 5 7 (ex tTrans i t i on)
32774 1 .137 4 .930 Counte rb14 i5 t r i . . . : 6 7 (ex tTrans i t i on)

1406976 2 .521 2 .521 DEVS. py : 107 (type)
16301534 25.275 25.275 DEVS. py : 155 (getModelName)
14656494 86.372 109.065 DEVS. py : 164 (getModelFullName)

425265 14.593 16.302 DEVS. py : 220 (poke)
1017297 17.900 21.573 DEVS. py : 244 (peek)
205630 4 .520 8 .008 DEVS. py : 374 (getSubModel)

1671887 3 .592 3 .592 DEVS. py : 519 (type)
32770 1 .347 2 .808 Shredderb14 . py : 6 8 (ex tTrans i t i on)

749978 9 .563 23.169 copy . py : 145 (deepcopy)
733591 6 .072 7 .878 copy . py : 267 (k e e p a l i v e)
205630 2 .309 10.879 experiment . py : 1 2 (terminateFunct ion)

11405239 16.131 16.131 i n f i n i t y . py : 5 4 (cmp)
39568 7 .408 14.822 main . py : 153 (s e l e c t)

578776 13.941 84.100 s imulator . py : 163 (r e c e i v e)
249360 204.430 587.818 s imulator . py : 318 (r e c e i v e)

7284503 23.791 132.857 s imulator . py :355(< lambda>)
828136 6 .777 589.682 s imulator . py : 521 (send)

1 1 .066 601.627 s imulator . py : 531 (s imulate)
723837 1 .051 1 .123 {abs}
48991 1 .671 1 .671 { d i r }

1954353 2 .606 2 .606 { g e t a t t r }
2069677 2 .591 2 .591 { id }
1677316 2 .678 2 .678 { i s i n s t a n c e }
1964356 2 .516 2 .516 { l en }
7876268 10.158 10.158 {method ’ append ’ o f ’ l i s t ’ ob j e c t s }
1483569 2 .076 2 .076 {method ’ get ’ o f ’ d ic t ’ ob j e c t s }

14188839 20.277 20.277 {method ’ keys ’ o f ’ d ic t ’ ob j e c t s }
227501 35.666 173.450 {method ’ sort ’ o f ’ l i s t ’ ob j e c t s }

7371970 48.000 58.490 {min}
730683 1 .843 1 .843 { range}

The most resource-hungry function seems to be the ’receive’ function, taking
about 200 seconds (or 33%). This shouldn’t be too surprising, since about 25%
of the simulator code is this function.
Since the sort function uses a lot of different parts now that is being canonical-
ized, the functions ’sort’, ’getModelFullName’, ’infinity. cmp ’ and ’lambda’
are the most important part of it, taking (in total) 173 seconds out of the total
600 seconds. Meaning that 29% of the time, the simulator is sorting the events.
Notice that the generated models are only responsible for a few seconds of the
total time, this will of course depend on which models are generated and which
input is given.
Other circuits were also tested, yielding comparable results. On average, both
the ’sort’ and ’receive’ functions are responsible for about 30% of the time each.
Another test that was conducted is the difference between a constant delay and
a variable delay. Normally, it would be expected that the variable delay would
be somewhat faster, since it doesn’t need to do the collision resolution. This
test was conducted with the AND port. First of all, the constant delay profiling
was done, revealing a total time in the select function of about 4 seconds (8

31

Constant Random
Total select() 4.0s 1.7s
Cummulative select() 8.0s 3.4s
Total time 221s 216s

Table 5.1: Difference between constant and random delays

Constant Random
Total time 690s 663s

Table 5.2: Difference between constant and random delays with verbose output

seconds cummulative). This would mean that the maximum time we could save
would be around 8 seconds. The total time of the experiment was 221 seconds.
The test with the random delay was a little faster, taking a total of 216 sec-
onds, thus 5 seconds (or about 2%) faster. This profiling revealed that only
1.5 seconds were spent in the select function in total (3 seconds cummulative).
Both tests were conducted in (nearly) the same circumstances, with no other
resource-hungry processes running. This means that a random delay should
not be chosen to speed things up, though it might be useful to do so when the
verbose setting is set to True, since a collision would then cause a lot of extra
(slow) output to the terminal 2 . For completeness, this comparison was also
done. The results are not surprising: This means that, when using verbose out-
put, using a random delay causes another 2% of speed-up, resulting in a total
of 4%. This still isn’t that interesting, though it might be when huge circuits
would be translated. However, in these cases, the output would be way too
fast to actually read it and probably a pipe would be used to e.g. a file. So
when choosing between random and constant delays, the performance aspect
shouldn’t really be taken into account.
Note though, that the total time is drastically increased, since python now only
used about 40% of the CPU, since the terminal and X required a lot of resources
to keep up with the output.

5.4 My opinion

I am very happy with the result. All Logisim circuits (that I could think of)
can be converted to DEVS without a problem. These models can even be used
interactively, making it possible to inject data at run-time. This prevents the
coding overhead of hardcoding all data that should be tested.
Most coding was done very soon, which allowed for a lot of testing and opti-
mizations. I learned a lot about DEVS, which was a completely new concept
when I started this project. Besides DEVS, I also learned to use Python and
mainly using it in larger projects. Another thing that was new for me, was ex-
panding an already existing project instead of writing everything from scratch.
This gave me some insight in why decent coding, comments, documentation,
patterns, version control, ... is really necessary in larger projects.
Sadly, as also mentioned in [2], the Logisim save file isn’t according to any stan-

2This also reduces readability

32

dard, neither is the semantics of the Logisim elements. So when a new Logisim
version is released, it might be necessary to rewrite some parts of the parser
and the semantics of the generated models. It might also be possible that extra
elements are introduced, as happened in the transition between version 2.6.1
and 2.7.1.

33

Chapter 6

Class diagrams

For all class diagrams concerning the intermediate tree, please refer to [2]. Only
the DEVS-specific class diagrams are new, so only these are included here.

34

35

36

Bibliography

[1] Carl Burch. Logisim v2.7.1. http://ozark.hendrix.edu/~burch/

logisim/index.html, March 2011.

[2] Naomi Christis. Logisim-to-verilog translator. http://msdl.cs.mcgill.

ca/people/naomi/, June 2011.

[3] CompareVCD. Comparevcd. http://sourceforge.net/projects/

comparevcd/, November 2011.

[4] GTKWave. Gtkwave. http://gtkwave.sourceforge.net/, February 2012.

[5] Hans Vangheluwe Jean-Sébastien Bolduc. Pydevs. http://msdl.cs.

mcgill.ca/projects/projects/DEVS/, July 2002.

[6] Bill Song. Xmltraceplotter. http://msdl.cs.mcgill.ca/people/bill/0_

research.html, December 2005.

[7] Hessam S. Sarjoughian Yu Chen. A component-based simulator for mips-32
processors. http://sim.sagepub.com/content/86/5-6/271/, September
2009.

37

http://ozark.hendrix.edu/~burch/logisim/index.html
http://ozark.hendrix.edu/~burch/logisim/index.html
http://msdl.cs.mcgill.ca/people/naomi/
http://msdl.cs.mcgill.ca/people/naomi/
http://sourceforge.net/projects/comparevcd/
http://sourceforge.net/projects/comparevcd/
http://gtkwave.sourceforge.net/
http://msdl.cs.mcgill.ca/projects/projects/DEVS/
http://msdl.cs.mcgill.ca/projects/projects/DEVS/
http://msdl.cs.mcgill.ca/people/bill/0_research.html
http://msdl.cs.mcgill.ca/people/bill/0_research.html
http://sim.sagepub.com/content/86/5-6/271/

List of Figures

1.1 The relation between the Logisim to Verilog translator and the
Logisim to DEVS translator . 2

1.2 An example output of the logging feature of Logisim 6

2.1 The different connection groups, before and after fixing colliding
wires . 10

2.2 A visual representation about the changes for a Splitter 11
2.3 A more difficult circuit, illustrating a possible problem when us-

ing a model instead of the above algorithm. Note the very clear
and efficient solution . 11

2.4 A visual representation about the changes for a Merger 12
2.5 A visual representation about the changes for a Pull Resistor . . 13
2.6 A direct connection not allowed by PyDEVS and its solution . . 14
2.7 A loop not allowed by PyDEVS and its solution 14
2.8 A visual representation about the changes for all of the above . . 15
2.9 The GUI to the translator . 22

4.1 An example output in XMLTracePlotter 26
4.2 An example output in GTKWave 27

5.1 The strange output of the Counter element, both the Load and
Count input wires indicate that the Carry out should be 0 30

38

	Introduction
	Project description
	Project scope
	Requirements
	Testing techniques
	Some ideas
	Final solution
	Trace files

	Architectural design
	Planning
	Usage

	Translator
	Modifications
	Intermediate tree
	PyDEVS connector
	Basic connections

	Translation problems
	Splitters
	Colliding wires
	Pull resistors
	The Null element
	Putting it together

	PyDEVS code generation
	Basic assumptions
	Colliding events
	Wiring
	Gates
	Plexers
	Arithmetic
	Memory
	Input/Output
	Imported circuits

	Configuration
	Main
	Delay
	Experiment
	Speed
	GUI

	Checks
	Translate-time checks
	Loops
	Splitter loops
	Bitsize

	Run-time checks
	Bitsize
	Binary values

	Export methods
	XMLTracePlotter
	VCD
	Data representation
	End time
	Scale

	Results
	Comparison to previous work
	Testing
	Translator
	PyDEVS
	Logisim

	Profiling
	My opinion

	Class diagrams

