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1
Introduction

This report introduces the client-server architecture that is used in the new version of the Modelverse Kernel (MvK) [7]. Whereas
this currently has an explicitly modelled front-end, the HTTP communication between this front-end and the Modelverse server
was not yet explicitly modelled. In this work, we explicitly modelled the network communication: the behaviour is modelled
using Statecharts, and a performance analysis is performed using DEVS. While this explicit modelling offers us the advantages
associated with modelling and simulation, we are able to circumvent problems that would arise when using out-of-the-box
network libraries.

1.1 Motivation

Up to now, the Modelverse server and (explicitly modelled) front-end relied on the HTTP libraries included by Python. These
HTTP libraries however, are not a perfect match with an explicitly modelled front-end. Some of the disadvantages include:

1. Blocking. Frequently, default HTTP libraries require blocking communication. This makes it a bad match with statecharts,
as this would block the statechart runtime from correctly processing timeouts and interrupts. Several non-blocking op-
erations are supported too, though these are not a perfect match with statecharts either, as these should raise statechart
events.

2. Non-portable. One of the advantages of statecharts, is that a compiler can be used to generate code for different platforms.
By using language-dependent libraries, this advantage is mitigated, as the compiler would require knowledge about these
libraries in all kinds of languages that it supports. Additionally, each library has its own interface, with its own semantics
for every operation. While this is managable for a single language, this puts a huge burden on either the compiler writer,
who has to take into account all different libraries and provide a uniform API, or on the modeller, who has to write a
different model for each and every language that will be used.

3. Single user. Most of the default libraries that are included by default, only allow for a single user to connect. Though
frequently there is also a multi-user version available, it is often unknown to the user how this is implemented internally.
Whereas the threading approach is often sufficient, some platforms do not support threading in the way that it is imple-
mented by the library. For example, in a TkInter based application, multi-threading is not supported. All threading has to
be emulated using the TkInter event loop. Clearly, matching the default multi-user HTTP server to this approach is likely
to become a problem.

4. High abstraction. The provided HTTP libraries, both for the client and server component, are frequently at a high level of
abstraction. Sometimes, more information is known about the communication that will be going on, which allows us to
optimize some parts of the code. For example when transferring huge amounts of data, it is possible to increase performance
by increasing the receive buffer of the socket. Certainly if intensive processing is required for every receive, this is can
speed up processing with an order of magnitudes. Another example is the use of socket reuse for HTTP connections.
HTTP/1.1 supports the (optional) reuse of HTTP connections[4], though whether or not this is used is dependend on the
library in use. Even though it is often possible to configure, or manually tweak, these libraries to include these specific
optimizations, this is library dependend and again not easily portable.
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5. Black box. Though HTTP libraries are easy to use and often quite efficient, their correctness is mostly only determined
through the use of testing. Explicit modelling of the front-end offers advanced methods of model analysis, but this analysis
would then stops at the level of the HTTP client (or server).

While external libraries exist that try to solve these problems, they are limited to a specific set of languages. Additionally, these
libraries introduce dependencies to our applications, that are out of our control.
Concerning the performance analysis, we gain lots of advantages, associatied with modelling and simulation. In this work, we
mainly focus on the possibility to evaluate the performance of a variety of situations. This offers us the following advantages:

1. Cost. Without an explicit performance model, the only possibility to measure the performance under a certain situation
is to replicate that simulation in real life. Some of these situations are quite costly to reproduce, such as the performance
that could be expected from the acquisition of a new (costly) computer. If a variety of computers is to be simulated, it is
required to acquire these different types and run the associated operations on them. With an explicit performance model,
only a performance model of that specific machine is required to allow for this analysis.

2. Time. Depending on the set of operations that is being studied, simulation is more efficient as it is not limited to the wall
clock time. When simulating the behaviour of a single client, most of the time will be spent waiting for another request
to come in. If this client is configured to only make a request every few seconds, the experiment will take a long time,
mostly spent idling. On the contrary, simulation is able to progress through time at the maximum pace that the machine
supports. Additionally, computationally intensive operations can be replaced by only a time increment, without wasting
precious computational resources on the actual operation.

3. Hypothetical situations. While it is still possible to acquire the system under study if it is currently available (and afford-
able), this is not the case for hypothetical systems. Simulation makes it possible to analyze the performance of systems
that still have to be built. This does not only apply to computational resources, but also to the network. Like what would
be the performance of the system if network latency were to be reduced to exactly 0ms, or what if it were extremely high?
These situations are very difficult or impossible to replicate in real life, but offer valuable insights in the performance of
the system in a variety of circumstances.

In [6], the performance of a distributed DEVS simulator was analyzed in a similar way, offering insights on the performance in
(difficult to replicate) situations.

1.2 Goal

Our client-server architecture has several goals. First, there are requirements as to what operations should be supported. Second,
our approach tries to deal with some of the disadvantages mentioned in the previous section.
Our requirements consist of:

• Clients should be able to issue HTTP POST requests, for which the MvK server sends an HTTP reply back.
• Server-initiated communication should be supported as a basic operation.
• Multiple users, with possibly interleaving operations on the MvK, should be supported. As the MvK currently does not yet

support parallel operations, operations are sequentialized.
• Every connected client should have a server-side statechart, indicating its current modal state with the MvK. This statechart

is able to receive a single, composite request from the client, and can split it up in multiple smaller CRUD operations on
the MvK.

Furthermore, the following disadvantages that were previously identified will be circumvented:

1. Blocking. The new architecture is purely written in statecharts (with a small, necessary wrapper). Therefore, all operations
are perfect for interleaving with other statechart components.

2. Non-portable. As all behaviour is modelled using statecharts, code can automatically be generated for a variety of plat-
forms. Sockets are a common basis that is available in most languages, all of them offering (nearly) the same interface.
Socket communication will still need a small wrapper that wraps the sockets to allow for statechart events to be processed.
This wrapper is minimal though, as the supported events provide a perfect mapping with the available socket operations.
Note that currently, there is no complete support for language-independent action code, so there will still be some manual
changes that need to be done.

3. Single user. Due to the automatic interleaving offered by statecharts, and the extensions from SCCD which offer the
dynamic structure of the statechart, multiple users are natural to support. Because every user gets its own statechart
objects, they are automatically interleaved by the statechart compiler.
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4. High abstraction. Our approach works on the lowest level offered by the language, being sockets. These sockets can be
configured in the statechart. As an added extra, the socket communication is done in statecharts, making it easy to add
some specific information into the communication.

5. Black box. We will offer up efficiency for the possibility to analyse the system. Analysis of the front-end no longer stops at
the network libraries, but goes down to the low-level sockets. Even though we state that we lose some efficiency, the lower
abstraction can more than make up this loss.

Additionally, code should be automatically generated from the behavioural model. Using a performance model of the architecture,
performance analysis can be executed on the architecture.

1.3 Used formalisms

This section introduces the different formalisms used in the remainder of this report.

1.3.1 Statecharts and Class Diagrams

The Statecharts formalism was introduced by David Harel [5]. Statecharts is an extension of state machines and state diagrams
with hierarchy, orthogonality, and broadcast communication. It is used for the specification and design of complex discrete-event
systems, and is popular for the modelling of reactive systems, such as graphical user interfaces. A Statechart generally consists
of the following elements:

• states, either basic, orthogonal, or hierarchical;
• transitions between states, either event-based or time-based;
• actions, executed when a state is entered and/or exited;
• guards on transitions, modelling conditions that need to be satisfied in order for the transition to “fire”;
• history states, a memory element that allows the state of the Statechart to be restored.

In the remainder of this report, we use the SCCD formalism [3], which is a combination of Class Diagrams and statecharts. Every
class diagram has an associated statechart which defines its behaviour. Just like new objects can be instantiated, new statecharts
can be instantiated too. Furthermore, all of these statecharts are able to communicate with each other by raising events.

1.3.2 Parallel DEVS

DEVS [9], and in particular Parallel DEVS [2], is used to model the behaviour of discrete event systems. Its basic building blocks
are atomic DEVS models, which are structures

M =< X ,Y,S,δint ,δext ,δcon f ,λ, ta >

where

• The input set X denotes the set of admissible inputs of the model. X is a structured set X = ×m
i=1Xi where Xi denotes the

admissible inputs on port i.
• The output set Y denotes the set of admissible outputs of the model. Y is a structured set Y =×l

i=1Yi where Yi denotes the
admissible outputs on port i.
• The state set S is the set of sequential states.
• The internal transition function δint : S→ S defines the next sequential state, depending on the current state.
• The output function λ : S→ Y b maps the sequential state set onto an output bag.
• The external transition function δext : Q×Xb→ S with Q = {(s,e)|s ∈ S,0≤ e≤ ta(s)} gets called whenever an external

input (∈ X) is received.
• The time advance function ta ta : S→ R+

0,+∞
defines the simulation time the system remains in the current state before

triggering its internal transition function.
• The confluent transition function δcon f : S×Xb→ S is called if both an internal and external transition collide at the same

simulation time, replacing both functions.

A network of atomic DEVS models is called a coupled DEVS model. Output ports of one atomic DEVS model can be connected
to one or more input ports of other atomic DEVS models using “channels”, defining a transfer function to translate output to input
messages. Parallel DEVS is closed under coupling, which means that coupled models can be nested to arbitrary depth.
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2
Behavioural model

As a first step to the modelling of the network, the behaviour is explicitly modelled using SCCD (Statecharts + Class Diagrams).
This step comes before the performance optimization, as we will be using this model to calibrate the performance model, and to
validate it afterwards.

2.1 Requirements

The communication protocol should provide support for several operations, which should be encoded in the form of an SCCD
model. All communication should happen through a standardized protocol, in our case in the form of XMLHTTP requests. The
basic use case is a single client request, which gets answered by the server with a single reply. To support all our operations,
there should additionally be support for:

• Server initiated communication: Some operations on the MvK will require the MvK to send requests to the user. As this
is not natively supported by XMLHTTP requests, support has to be added to emulate this kind of behaviour. The user of
this network client/server should not be concerned with the underlying architecture (being XMLHTTP requests), so there
should be support for both directions of communication that is transparant to the user.
• Multiple users: Due to the requirements for the MvK itself, multiple users should be able to simultaneously connect to

the same server. All complexity concerning multiple users is handled by this network component, which will map all this
complexity to events being generated.
• Client statechart: In the normal request/reply architecture, the server is stateless. The MvK supports composite operations,

such as model transformations, which are composed of multiple smaller steps. In this context, the server should thus have
some state. It is again most logical to implement this in statecharts. Therefore, there should be a statechart for every client,
which receives only messages from its own client. That same statechart should interract with the MvK, providing a small
wrapper for the client.
• Management statechart: In multi-user scenario’s, there should be some kind of management concerning who gets some

processing time. This should again be implemented in a statechart, which receives the requests and replies from all clients
and orders them in the order it sees fit. Some of the possibilities of this approach include queueing, transaction management,
and priority.

2.2 Assumptions

Even though we want every piece of the system to be modelled in SCCD, there are some limitations to this approach. The
most important limitation in our context is the lowest level, where there needs to be a mapping to the low-level sockets. As
these operations do not work together perfectly with statecharts, all socket operations were extracted to a ’socket library’. This
socket library interacts through the use of statechart events. For example, sending a message on a socket gets mapped to the
sending of an event, containing the socket and data to send. This event is catched by the socket library, which will (on a seperate
thread) invoke the necessary commands on the socket. Sending received data from the socket is also done using events, where
the socket library injects statechart events into the running statechart. This approach allows us to use the full power of sockets in
combination with the use of statecharts.
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Because the MvK itself does not have a model part, it is simply put into the statechart as a ’black box’. In the sense that it
processes a single event, and raises the request immediately after.

2.3 Model

An overview of the complete model is shown in Figure 2.1.
It consists of the following classes (with associated behaviour):

• Socket consists of 4 orthogonal states:

1. Either the socket is still actively listening for input, or it is closed. Note that this closed state is different from the
final state, as a socket can be closed in one direction. Even though the socket containing the request is closed, this
does not mean that a reply is not required.

2. The socket waits for data to arrive in its queue, and sends the data as soon as data arrives. This sending is done in a
different state, as it is possible for the send to fail after a certain number of bytes is put on the socket. In that case, the
send is retried, but only of the next bytes. As soon as all data is sent, the queue is again checked for new messages.

3. Incoming events that should be sent on the socket are queued by the socket, as it is possible for them to arrive at a
higher rate than the socket can process them. Furthermore, we don’t want messages to interleave each other (e.g. due
to partial sending).

4. On the receiving side, the data that is received from the socket is parsed until a complete header is found. If the header
is complete, the content length property is extracted and used to determine the length of the payload. Waiting for the
payload then consists of accumulating incoming data until the length exceeds or equals the content length identified
in the header.

• Server consists of 6 orthogonal states:

1. The queue will process messages coming from the different sockets. They are queued, as multiple sockets can send
data in parallel.

2. This orthogonal state waits until some data has entered the queue. As soon as this happens, the data is processed by
deserializing its contents. Should deserialization fail, an error is send back immediately. Otherwise, the deserialized
data is forwarded to Statecharts and the operation blocks for a reply. This blocking until a reply is received is currently
still necessary, as the MvK itself does not support multiple users at the same time. Therefore, every request implicitly
starts a critical section, which is handled as an atomic operation. Consequently, no queue is necessary for the replies.

3. A queue is necessary for server-initiated communication, as these are send at the discretion of the Statechart.

4. Another orthogonal component checks for data in this server-initiated communication queue, and waits until a long
polling request is made for that specific client. Should such a request already be done (as it should be in most cases),
the request is send immediately. Otherwise, the operation blocks until the client has made such a request. Due to
the design of HTTP, which doesn’t allow for native server-initiated communication, we can only wait until the client
decides to issue such a request.

5. Yet another orthogonal component corresponds to the logic required to start up a server socket. This orthogonal
component will bind the socket to the desired port and start listening on it. Connections are accepted when they are
issued, which causes a new Socket to be created.

6. Finally, one orthogonal component is responsible to catch close events sent by the different Sockets. Upon receiving
a close event, the corresponding Socket is deleted.

• Controller is a fairly simple statechart at the moment, as it does not yet include any kind of management logic. All it does
is set up the different objects that are required for communication. Internally, it is used to route messages to the differrent
objects.
• MvK is the statechart containing the actual MvK. As the MvK itself is not modal, this is simply a wrapper around its

interface, translating all events into operations. The reply returned by the MvK is raised as an event too.
• Statecharts is again a simple statechart, which waits for a request and forwards it to the respective Statechart. If the

Statechart corresponding to the statechart does not yet exist, it is first instantiated.
• Statechart is the client-specific statechart. This part should contain most modal parts about the MvK, as this has to be

handled on a client-by-client basis. The basic statechart simply waits for a CRUD request and forwards it to the MvK. An
orthogonal component then waits for a reply from the MvK and wraps it into the required form for serialization. Future
versions of this statechart can make use of the server-initiated communication by sending out the necessary events.

A client-initiated request is processed in the following order:
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Figure 2.1: Overview of the architecture in SCCD
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1. The Socket statechart receives an event from the ’socket library’. It unwraps it from the POST data, decodes the enclosed
data, and determines how it should be forwarded to the next statecharts (i.e. is it a request or a reply).

2. The Server receives the event from the Socket and deserializes the JSON content that is enclosed. Should a deserialization
error occur, this message is marked as invalid. After deserialization, the message is forwarded to the next statechart.

3. The Controller receives the event and processes it according to its managing rules. Depending on e.g. a running transaction
or the current system load, it is decided when the event should be propagated. As soon as the event is allowed to be
processed, the event is forwarded.

4. The Statecharts receives this event and decides to which statechart this should be processed. Because there is no 1-to-1
mapping between sockets and statecharts, all events contain a unique client identifier. If this is the first time that this specific
identifier is seen, a new Statechart is started. The event is now forwarded to the specific Statechart that is responsible for
the enclosed client identifier.

5. The Statechart receives the event and processes it according to its current state. For CRUD requests, these events will
simply be forwarded to the MvK directly, but composite operations might be expanded. It is also possible that the received
data was a reply to a server-initiated request, in which case the input is processed directly.

6. The MvK receives requests from all running statecharts, and will answer them in FIFO order. After an event is processed,
it raises a new event containing the response.

7. The Statechart catches the event with the reply, and depending on its state, it forwards the reply to the client, or it processes
this reply itself. In case the reply is forwarded, it is directly forwarded to the server.

8. The Server serializes the content in the reply (or server-initiated message) and decides on the appropriate socket to send
this data to. For normal replies, the message will be put on the socket that caused the original request. For server-initiated
communication, the message is put on the socket that is still waiting for a reply (long polling).

9. The Socket finally receives the data and turns it into a form that is appropriate for a reply to the running POST request. The
final result is directly sent on the socket, by outputting an event that is understood by the socket library.

For a server-initiated request, the following steps are done:

1. The Statechart issues a server-initiated request by sending the corresponding event.

2. The Server catches this event and places it into a queue. An orthogonal component waits until a long polling request is
done by the client. The event is further processed as soon as a socket is open that was used for long polling.

3. The Socket transmits the data like usual, putting the POST request data in the data field of the HTTP reply. This is then
processed by the socket library like a normal reply.

4. Finally, the client has to redo the long polling request, to make sure that the server can again initiate communication.

Due to the choice for long polling, server-initiated communication has a relatively large overhead, as the client has to initiate a
long polling request before the data can be sent.
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3
Performance model

As a second step, the performance model was created based on the architecture that we created in the modelling of the behaviour.
This phase consists of several steps: modelling, parameter calibration, validation, and finally analysis. All these steps are
discussed in the remainder of this chapter.

3.1 Requirements

It is always required to first identify the requirements for the model. This way, it is known which abstractions can be made in the
model, without invalidating the results.
For our model, these requirements are in the form of the parameters that we want to tune, and the results that we want to get out.
Our tunable parameters are:

1. Server processing speed. The MvK server will most likely be the performance bottleneck. Therefore, the time it takes for
the server to process a single request is a mandatory parameter. Some more detailed parameters are contained in this single
parameter, such as the time required in each layer defined in the previuos chapter. As these parameters do not have much
individual influence, they are accumulated. Additionally, measuring these parameters at such a fine-grained scale becomes
much more difficult.

2. Client behaviour. Different types of clients cause different loads on the MvK. Some of the supported client types for
the MvK are fully automated clients (possibly issueing multiple asynchronous requests), manual clients (issueing a single
synchronous request, with a big delay between requests), or a user-guided automated client (sending a batch of requests
automatically, followed by some delay for the user to choose the next request).

3. Network latency. Network latency is a defining factor for the client behaviour of non-automated clients. For non-automated
clients, the network latency will be added to the total duration of their request time, but also to the absolute time of their
next request. On the other hand, automated clients issue asynchronous requests and therefore their behaviour is unrelated
to the network latency. For example, a non-automated client will not be able to make more than one request

4. Number of clients. As the final goal of the MvK is to serve a multitude of users, the number of clients is a vital configuration
parameter. Intuitively, increasing the number of clients will have a serious effect on the time requests take, so this parameter
needs to be present.

For each of these cases, we are only interested in how long it takes for the client to receive a reply to its request.

3.2 Assumptions

Related to our requirements, several assumptions can be made during the abstraction and simplification of the model. The most
important assumptions that are made, are:

• Server-initiated communication has no influence on the performance of simple requests.
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s2c2 : Network

c2s2 : Network

c3 : Client

s2c3 : Network
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Figure 3.1: Structure of the DEVS model for 3 clients

• Queueing is only done when the MvK is still processing a previous request. Related to this, no client has priority over the
other, and all queues are FIFO.
• Non-preemptibility of the processing of a request is assumed. This is certainly not the case in real situations, as every step

in the statechart allows for preemption. However, this is assumed not to have a significant impact on performance.
• Network bandwidth is assumed to be infinite. For the MvK, we know that requests and replies are simple JSON-encoded

data, which are relatively small compared to currently available bandwidths.
• Packet loss is assumed not to be a problem, as TCP/IP is used. While this combats packet loss, packet loss still introduces

higher latency due to timeouts and resends. All of this will be captured, as network latency is not assumed to be constant.

3.3 Model

A graphical overview of the structure of our model is shown in Figure 3.1. A detailed description of each atomic DEVS model
follows:

• The Client atomic DEVS model is responsible for the sending of requests. Its implementation defines the client access
behaviour mentioned previously.
• The Network atomic DEVS model causes the introduction of latency into the simulation. Before the client’s request is

received by the server, it has to pass through the network, which inevitably adds a certain amount of latency. As we have
chosen to ignore the bandwidth limitations, and consequently queueing, this component only adds a small delay that is
independent of the message being passed. Packet loss and out-of-order delivery is also ignored, making this a very simple
model.
• The Server atomic DEVS model implements a basic FIFO queue, which will queue all incoming requests until they can be

processed. Because the actual results of the request are not important in the simulation, the request will not be evaluated
(thus saving time), but processing time is introduced.
• Finally, Collector simply receives all messages that are sent back to the client and determines the time it took for a response.

These values are saved into a list, which is later used for for the computation of statistics.

Note that there is only a single shared resource: the Server.
Our model takes three different configuration parameters:

1. Processing time distribution, which determines the distribution that should be used by the Server to compute the timeAd-
vance.

2. Network latency distribution, which determines the distribution that should be used by the Network to compute the timeAd-
vance.

3. Number of clients, which determines how many clients are connected at the same time.

The client behaviour is also a configurable parameter, but to support complex behaviour patterns, the client behaviour is just
represented as a complete atomic DEVS model.

3.3.1 Calibration

After modelling the system in Parallel DEVS, calibration is required for subsequent validation. When calibration is finished, the
system for which the model is calibrated can be simulated in a variety of situations. In our case, we first start by calibrating the
model to our own machine. This same calibration can be done on any machine that needs to be simulated. In case a hypothetical
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Figure 3.2: Measured server processing time
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Figure 3.3: Measured network latency

machine is to be simulated, calibration is of course not possible, but then the parameters of the model will have to be defined
manually.
Our calibration is done using a calibrator. The calibrator is modelled in statecharts too, and will perform a series of requests.
Each request is identical, but the requests are repeated for a certain amount of time, to get a decent amount of samples. The
server will be slightly altered, to also time how long it takes from the moment the message is received from the socket, to the
time its reply is put on the socket again. This duration is included in the reply as an additional parameter. The calibrator (client)
times how long the request took in total, but then subtracts the processing time that it got together with its reply and divides the
resulting value by two. Subsequently, the calibrator will have a value for the time it took for the server to process the message,
and a value for the time it took the network to transport the message between the client and the server.
These timings are saved and a distribution is generated depending on the measured values. We repeated this calibration for
a variety of machines, all of them running both the calibrator and server at the same machine. Calibration results for both
parameters are shown for a desktop (Intel i5-4570 @ 3.2 GHz) and netbook (Intel SU3500 @ 1.4 GHz) in Figures 3.2 and 3.3.
Note that these results are not completely correct, in the sense that the network latency only contributes for a small part to the
parameter “network latency”. However, for us, this latency includes the processing of the message in the client, which has the
same effect in the end.

3.3.2 Validation

After calibration, there is a need for validation to make sure that the models are indeed correct with respect to our requirements.
For validation purposes, we created ’automated clients’, which will perform the desired user behaviour. An MvK server is started
and such automated clients are started in a batch file. These values are then compared to a DEVS simulation of the model, with
these exact same parameters. Simulation is done using PythonPDEVS [8]. If the model is correct, results should be almost
identical.
Results for 10, 50, and 100 clients are shown in Figure 3.4, 3.5, and 3.6 respectively. From these results, it is clear that results
are fairly accurate for every amount of clients being validated. For only 10 clients, results are slightly off, though this is to be
expected due to the small time scale and small amount of clients.

3.4 Results

After calibration and validation, we have some certainty that our model is correct with respect to the requirements. As per our
goals, it is now possible to simulate e.g. the request delay that is to be expected in real life scenario’s, depending on all parameters
previously configured. Figure 3.7 shows this, depending on the number of concurrent clients. Using this plot, combined with
hard performance requirements, it is possible to estimate the total number of clients that can be concurrently connected to the
server. Due to it being a boxplot, requirements can be made about the general case, average case, or worst case.
From this plot, it becomes clear that the complexity of the server is O(n2) in function of the number of clients. We investigated
these results, as this is not a desirable complexity for a server, and found out that this was caused by an inefficiency in our SCCD
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Figure 3.4: 10 clients
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Figure 3.5: 50 clients
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Figure 3.6: 100 clients

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

D
e
la

y
 (

s
)

Clients

Figure 3.7: Delay for varying number of concurrent clients

compiler and runtime, which does not scale optimally with multiple objects.
Our results learned us that the MvK server performance is highly dependent on the number of clients and the processing time.
On the other hand, increasing the network latency has an almost unnoticable effect due to the bad scalability of SCCD.
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4
Conclusions and future work

By explicitly modelling the behaviour and performance of the client server architecture of the MvK, we have achieved our initial
goals.

• Communication is non-blocking and fully integrated with statecharts. Additionally, due to the modularity, this protocol is
again reusable in other projects that use statecharts too.
• Portability is partially achieved by mapping to statecharts. Due to the lack of a complete, language-independent action

language, this goal is not achieved completely. Additionally, there is still some small socket-wrapper that is required to
make the low-level binding with the sockets in the target language. However, this socket library is much smaller, as it
consists of only a few lines of trivial code for every socket operation that is supported.
• Multiple users are supported by using the dynamic creation and destruction of statecharts. No deadlocks or strange inter-

leavings can occur, and the user is completely shielded from all concurrency issues.
• Both low and high levels of abstraction are available to the user, depending on which is desired. The low level of abstraction

makes it possible to add additional information in the statechart and the socket library. The high level of abstraction is the
one used by the real client and server application, which allows communication with statechart events. As this event
passing is even closer to the application being modelled, we believe that this offers an even higher abstraction to the client,
whereas it offers the possibility for low abstraction where necessary.
• By explicitly modelling the client and server, up to the level of the sockets, all of the communication protocol can now be

analyzed.

Additionally, adding features in the future will become much easier due to the explicit modelling of the reactive behaviour in
Statecharts.
By modelling the performance, we gained detailed insight in the complexity of our application, and have even discovered a
complexity problem in our statecharts compiler and associated runtime. A calibration tool was created to compute the distribution
of both the processing power and the network latency, which can be used to calibrate the DEVS model. After this calibration,
validation was performed, which showed that our model closely resembles actual results that are achieved during validation.
Finally, simulation was used to determine the influence of the number of concurrently connected clients on the total delay for
each request. These results can be interpreted and combined with hard performance requirements, to get a grasp of how many
clients can connect to a specific machine.
In the future, we wish to solve the complexity problem of the statechart, to give more favorable performance results for our
approach. Also, we could extend our approach and also model our client server architecture in UPPAAL [1], which would allow
us to verify properties about our model.
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