
Logisim to DEVS translation

Yentl Van Tendeloo† and Hans Vangheluwe†,‡
†University of Antwerp, Belgium

‡McGill University, Canada
Email: yentl.vantendeloo@student.ua.ac.be, hv@cs.mcgill.ca

Abstract—We propose a transformation from digital logic
circuits modelled in the Logisim modelling language (and tool)
to behaviourally equivalent models in the Discrete-EVent System
specification (DEVS) formalism. This is achieved by mapping
each Logisim component to a corresponding atomic DEVS model
and by preserving the component coupling. The challenge in this
work is the faithful preservation of all details of the Logisim
semantics. The transformation is described and the translation
of an example ALU is given.

I. INTRODUCTION

Logisim[1] is a visual tool for designing and simulating
digital logic circuits. It is primarily used for educational
purposes. The Discrete-EVent System specification (DEVS)[2]
formalism is highly expressive, modular and has a precise
formal definition of both its syntax and its semantics. For
these reasons, it is used as a semantic domain for many types
of (domain-specific) discrete-event formalisms. As such, it
is an excellent target for transformation, as it allows multi-
formalism modelling through the mapping onto this single
common formalism as demonstrated in [3] and [4].
Figure 1 gives an overview of all the implemented trans-

Figure 1. Overview of supported transformations

formations. The boxes denote modelling languages and the
arrows denote transformations. In particular, the vertical arrows
denote simulation. The top layer in the figure depicts Verilog
and Logisim, two domain-specific languages for the domain
of logic circuits. Via an intermediate description (modelling
language), Logisim models are translated to either Verilog
models or to DEVS models. The bottom layer of the figure
shows the behaviour traces generated by the three simulators
(VCD trace from Verilog, XML trace from DEVS, Logisim
trace from Logisim).

The remainder of this paper is organized as follows. Sec-
tion II gives the rationale for the transformation to DEVS. Sec-
tion III describes the transformation from Logisim to DEVS.
Our testing strategy to verify that the generated DEVS models
preserve the Logisim semantics is explained in section IV.
Section V analyses simulation performance of the generated
DEVS. Related work is explored in Section VI. Section VII
concludes the paper.

II. RATIONALE

Performing the translation from Logisim to DEVS has sev-
eral distinct advantages, which allows us to harness the power
of both languages and all associated tools and techniques.

1) Logisim as a domain-specific modelling environ-
ment
Logisim with all its features (library of logic ele-
ments, simulation, basic logging, intuitive interface,
static checking of correctness of models with visual
feedback) implements a syntax-directed editing en-
vironment for a Domain-Specific Language (DSL).
A Logisim to DEVS transformation is helpful as
an intermediate structure is generated from each
Logisim circuit, which can be easily reused for tar-
get formalisms other than DEVS (a Verilog Hard-
ware Description Language [5] target is for example
also supported by our translator, making Logisim a
domain-specific visual front-end for Verilog).

2) Couple other DEVS models
As soon as a DEVS model of the circuit is gen-
erated, nothing prevents us from using this model
as a component in other DEVS models. It is thus
possible to create for example a probabilisitic event
generator, a model of a circuit’s environment. This is
not possible in Logisim alone. The generated model
can also be used in an educational setting, to verify a
provided logisim circuit file with a specified interface.
Furthermore, the output of the simulation can be
passed to other DEVS models which could use this
data for performance metrics gathering.

3) Insight in semantics
Logisim provides many standard components, from
basic logical gates to a fully capable RAM compo-
nent. Sadly enough, most of these components lack
a complete precise description of their semantics in
the Logisim Library Reference. While the semantics
in the basic scenarios are mentioned, often there is no
mention of what happens on a floating or error value.
The only way to find out the semantics is through

experimentation. For example, the behaviour of a
Register component on erroneous or floating input:
will the error value be saved, will the memory be
cleared, will the memory be kept the same as before?
What will the output at that time be: the value of the
register itself, or the input value?

4) Static checks of Logisim circuits
The save feature of Logisim does not prevent a user
from saving an invalid circuit, thus it is possible that a
circuit is created with non-matching bitsizes on both
ends of a wire (or a collission of such wires). Per-
forming a syntactic sanity check on Logisim models
is therefore implemented. Other, less obvious checks,
implemented in our translator, but not implemented in
Logisim, are useful. For example, detecting a memory
element without an input on its clock input port.
These situations probably indicate a design error in
the circuit, so a warning could be helpful to the
modeller.

5) Static optimisation of the translator to the DEVS
model
Several optimisations can be made on a Logisim
model, much the same as a compiler can perform
several static optimisations while compiling. Besides
the obvious replacement of blocks with only constant
inputs, long connections can be resolved in a single
step. Also, many (possibly conflicting) pull resistors
can be converted to a single pull resistor. The gen-
erated DEVS models will only require computation
as soon as their input changes, so the impact will be
minimal in most situations.

6) Use professional simulators instead of the internal
Logisim simulator
When the same semantics can be obtained using a
different language, the translated models can be used
to obtain information about the original models. Our
PyDEVS simulator[6] for example, allows tracers to
be used in different formats such as for example XML
and Value Change Dump (VCD) which can be fed
into a sophisticated VCD renderer. This way, it is
possible to obtain a VCD trace file from a Logisim
circuit. Other representations are also possible, de-
pending on the simulator used.
The simulator may offer additional features such as
parallel or distributed simulation.

III. METHOD

This section describes the core of the transformation.
Logisim makes several implicit assumptions. These need to
be made explicit in the corresponding DEVS models to
ensure that identical simulation traces are produced. After
these assumptions are made clear, the mapping of the basic
components will be discussed, followed by the mapping of
non-trivial components.

A. Assumptions

Several assumptions have to be made before translation can
take place. The most important assumption relates to timing,
as Logisim uses a very course model of time. All components
compute their output at exactly the same time, and wires

connecting components are assumed not to introduce delays.
Note that this “synchronous” semantics does not match the
Classic DEVS formalism’s semantics well as internal transi-
tions occurring at exactly the same point in time in different
atomic DEVS models require tie-breaking and hence many
(often articifial) invocations of the coupled DEVS select
function. This problem is resolved by using Parallel DEVS[7].
There is a difference in the handling of time between Logisim
and DEVS: Logisim uses discrete time, whereas DEVS uses
continuous time. The time advance function of the DEVS
models is used to return a fixed value, as to emulate the fixed
timesteps. A clock model for example, which is simply an
atomic DEVS model that has an internal transition to output
the changed value. Afterwards, its time advance function will
again return the value of the timestep.
This also means that our generated DEVS models will compute
all outputs at exactly the same time, as was the case in Logisim,
to guarantee identical simulation traces. DEVS does not have
this limitation of discrete time, so it is possible to generate
some jitter on the time advance function and thus allow non-
simultaneous output generation.
In Logisim it is possible to assume that all input values of
a component are valid, since the complete system model and
its environment are built within the interactive syntax-directed
modelling tool Logisim. This same assumption can not be
made for our DEVS models, as it should be possible for the
user to couple the generated (from Logisim) DEVS models to
other DEVS models. Those other DEVS models are developed
outside Logisim and may provide meaningless values (from
the point of view of logic simulation) as input. To make sure
that the input is valid, several checks must happen on each
incoming event. These checks, which are virtually identical
for each generated model, are not present in the shown code
due to space restrictions. These checks include checking for
compliant bitsize and whether or not the input value is a binary
signal.
In DEVS, messages occur in a discrete fashion, so the model
itself should remember the last input on each of its input ports.
Hence, the no event input must be interpreted as no change
and the last message received on a port should be taken into
account for output computation. This implies state needs to
be kept for every component, even though that component
is not a logic circuit memory element. This allows several
optimisations too, since a model could filter out the message
if it matches the previously received event, which also means
no change. Even this solution has problems, which are solved
in section III-C1 on wires.

B. Simple mappings

Most Logisim components can simply be mapped to an
atomic DEVS model which has the same semantics as the
original component. There exist roughly two subgroups in this
kind of components: the stateless and stateful components.
Even though the name implies that there is no state, both
will have a state due to the assumptions that were made. This
naming refers to the ability of the component to depend on its
state in Logisim.

1) Stateless components: Stateless components generate
output independent of their previous input, only taking into
consideration their current input. Mapping these to DEVS thus
simply consists of setting the right input values in the state

class ANDb1c01i2n(AtomicDEVS):

 ...

 def outputFnc(self):

 ...

 outValue = 'b'

 for i in range(len(state.inputWires0)):

 if state.inputWires0[i] == '1' and state.inputWires1[i] == '1':

 outValue += '1'

 elif state.inputWires0[i] == '0' or state.inputWires1[i] == '0':

 outValue += '0'

 elif state.inputWires0[i] == 'E' or state.inputWires0[i] == 'x' or

 state.inputWires1[i] == 'E' or state.inputWires1[i] == 'x':

 outValue += 'E'

 else:

 outValue += '0'

 self.poke(self.outputWire, outValue)

Figure 2. The transformation rule for a basic AND gate, common code not shown

and a (small) part where the output value is computed and
put on the output port(s). Since the configuration of the state
is very general, all this logic can be generalised to (nearly)
every component. The only component-dependent code will
be the computation of the output. We chose to put this code
in the output function, though it could alternatively be put in
the external transition function. Note that the output function
is not allowed to change the state in DEVS, while the external
transition function is allowed to do so. It is not necessary
to change the state if the output is immediately put on the
output ports, so there is no need to alter the state in the output
function, thus complying with the DEVS formalism.
The primary advantage of putting it in the output function is
to avoid cluttering the external transition function and have a
clear separation between input handling and the actual output
generation of this input. Furthermore, should a component be
interrupted during its computation, it would be possible to om-
mit the computation entirely, while the computed result would
just be thrown away otherwise1. Using the external transition
function has several advantages too, mainly in Classic DEVS,
as the external transition function can be parallellised whereas
the output function cannot.
As a simple example, we show the mapping of the AND port
to an atomic DEVS model in Figure 2. Note that the AND
port is not as trivial as it could be (e.g., just a simple bitwise
AND as provided in most programming languages), due to the
possibility of an error and floating value. Also, Logisim offers
many different options for the AND port (bitsize, number of
inputs, negate several ports, semantics of signal, . . .), further
complicating the actual AND logic.

2) Stateful components: Stateful components’s behaviour
is dependent on their history, which causes them to be more
complex to translate. This complexity doesn’t necessarily arise
from the mapping to DEVS, but from the lacking documenta-
tion provided for the components. What happens for example
to the state of a component when an error value is read? Also,
parts of the logic must be transferred from the output function
to the external transition function, since it is not allowed in the
DEVS formalism to change the state in the output function.
As an example, we will use the Register component. For this
component, the output function is relatively simple since it

1As Logisim does not support the interruption of components, it is impos-
sible to know the correct Logisim semantics for this situation.

only needs to copy the value from the memory and output
it. To comply with bitsizes, the input is prepended by zeros
(or whatever bit is prepended in Logisim) if needed. Most of
the logic is now transfered to the external transition function,
shown in Figure 3, which will be responsible for setting up
the correct state of the component (so the output function can
output the correct result).

3) Subcircuits: Subcircuits naturally map onto a coupled
DEVS model. As shown in Figure 4, they are translated to
modular DEVS components allowing reuse. The inputs and
outputs of the subcircuit are mapped to input and output ports
in the Coupled DEVS model. Therefore, the original hierarchy
is preserved in the transformation.

C. Complex mappings

Some constructs in Logisim cannot simply be mapped
to a single DEVS model. Such constructs include colliding
wires, pull resistors and the splitter element. To map these
constructs to DEVS, we have to deviate from our previous
1-to-1 mapping. All these changes are implemented as pre-
processing steps, since they have to happen before the actual
model generation happens.
By dropping the 1-to-1 mapping, we introduce elements which
do not have a direct counterpart in Logisim, thus making
the trace files incompatible and obscuring the generated code.
However, these artifacts are necessary to allow correct simu-
lation in a relatively performant way.
Many of these problems are partially caused by a single port
in Logisim being both an input and output port at the same
time. This problem gets magnified due to a signal being able
to ‘go back’ to where it came from and cause problems there.
To solve these problems, all ports in a single connection are
grouped on their direction (input or output). As soon as any
rewriting of this connection needs to happen, this component
needs to be generated in between this group, thus preserving
the directionality of the signal. The values from the input signal
will not be modified, though this is not a problem, since there
is no input port connected to it to actually ‘listen’ to this value.

1) Wires: Wires cause a problem in DEVS. Since wires
are mapped to connections between DEVS models, they also
have to adhere to the discrete nature of message passing, while
in reality, a wire is of course continuous. This presents two
problems:

class Registerb1i1trising(AtomicDEVS):

 ...

 def extTransition(self):

 ...

 state = Registerb1i1trisingState(active,

 inputWire[1:], clockInputWire[1:],

 extraInputWire[1:], resetInputWire[1:])

 state.triggered = triggered

 state.memory = self.state.memory

 state.timeFromTrigger = timeFromTrigger

 self.state.oldState = None

 state.oldState = self.state

 if state.resetInputWire == '1':

 state.memory = '0'

 elif state.extraInputWire != '0' and state.triggered:

 goodInput = True

 for i in state.inputWire:

 if i != '0' and i != '1':

 goodInput = False

 if goodInput:

 state.memory = state.inputWire

 def outputFnc(self):

 ...

 result = str(self.state.memory)

 while len(result) < 1:

 result = '0' + str(result)

 self.poke(self.outputWire, 'b' + str(result))

Figure 3. The transformation rule for a basic Register component, common code not shown

class main(CoupledDEVS):

 def __init__(self, name=None):

 ...

 from subcirc import subcirc

 self.importedCircuit0 = self.addSubModel(

 subcirc(name='importedCircuit0'))

 self.importedCircuit1 = self.addSubModel(

 subcirc(name='importedCircuit1'))

 self.input0 = self.addInPort(name='input0')

 self.input1 = self.addInPort(name='input1')

 self.output0 = self.addOutPort(name='output0')

 self.output1 = self.addOutPort(name='output1')

 self.connectPorts(self.importedCircuit0.output0, self.output0)

 self.connectPorts(self.importedCircuit1.output0, self.output1)

 self.connectPorts(self.input0, self.importedCircuit0.input0)

 self.connectPorts(self.input0, self.importedCircuit1.input1)

 self.connectPorts(self.input1, self.importedCircuit0.input1)

 self.connectPorts(self.input1, self.importedCircuit1.input0)

class subcirc(CoupledDEVS):

 def __init__(self, name=None):

 ...

 from ANDb1c01i2n import ANDb1c01i2n

 self.gate0 = self.addSubModel(ANDb1c01i2n(name='gate0'))

 self.input0 = self.addInPort(name='input0')

 self.input1 = self.addInPort(name='input1')

 self.output0 = self.addOutPort(name='output0')

 self.connectPorts(self.input0, self.gate0.inputWires0)

 self.connectPorts(self.input1, self.gate0.inputWires1)

 self.connectPorts(self.gate0.outputWire, self.output0)

Subcircuit

Figure 4. The transformation rule for a Subcircuit

Figure 5. The necessary preprocessing for colliding wires

1) The value on the wire must be remembered in the
atomic model itself, as it will not be repeated.

2) The values of colliding wires will overwrite each
other, whereas for the DEVS model, there seems to
be a sequential ordering to the incomming messages.

The second part is the primary concern here, since colliding
wires should generate error and floating values if necessary.
To circumvent this problem, an extra DEVS-only element
is introduced, called a ‘merger’. It takes in as many wires
as necessary (determined at translate-time), remembers their
values (to circumvent the first problem) and merges all values
into a single output wire (circumventing the second problem).
This is depicted in Figure 5 While wires are now considered as
simple connections, it is also possible to map them to atomic
DEVS models, for example to be able to model signal loss.
We did not chose to do so, since Logisim does not support this
functionality, but also to prevent huge performance degradation
and to prevent additional cluttering of the tracing output (as
every atomic model will be traced).

2) Pull resistors: A pull resistor is a component that has an
effect on the complete wire, which again causes problems since
a wire is merely a connection and does not contain any logic.
This problem is solved by splitting all connected elements into
a ‘sending’ and a ‘receiving’ group. These groups become
seperated by a new atomic DEVS model which will perform
the necessary pulling of the signal. Notice that the output-
to-input mapping function of DEVS is not used, for multiple
reasons:

1) PyDEVS, PyPDEVS and several other DEVS simu-
lators do not support such a function.

2) It is possible that multiple pull resistors are present
on a single wire, thus requiring these components to
be taken together into a single component. Since this
construction is now completely reduced to a simple
component, performing a 1-to-1 mapping again seems
more natural.

3) The generated component can be reused and complies
better with all other translation problems that might
occur (e.g., colliding wires with a pull resistor).

4) Introducing a new component allows some extra
performance tuning, such as not recalculating and
subsequently propagating an unchanged value. The
pull register preprocessing is depicted in Figure 6.

3) Splitter: Splitters probably present the hardest part of
the complete translation process. Mapping them onto an atomic
DEVS model seems to be the straightforward solution. This
is not possible due to the Logisim semantics. In Logisim, a
splitter is a-causal, meaning that every port of the splitter can
function as an input and output port at the same time, with

Figure 6. The necessary preprocessing for pull resistors

even possibly alternating roles at different times in the same
model. Should an atomic DEVS model be written for this,
taking into account all these possibilities, the model would
become relatively big and there would be situations where
the simulation becomes erroneous. When multiple splitters are
connected to each other for example, they will transition in a
sequential manner, possibly resulting in overwriting of previ-
ous values, while actually an error should be generated. This
problem becomes even worse knowing that a splitter should
have a zero time advance, due to it being an artifact from
our transformation process. The only viable solution was to
adhere to the Logisim interpretation of the splitter and consider
all multi-bit signals to be a bunch of seperate wires in every
part of the simulation. A naive implementation would cause
several performance problems, since the number of messages
passed would increase immensly and some processing would
be necessary in each component to split and merge the signals
back together.
For these reasons, a hybrid approach was taken, only splitting
and subsequently merging the wire if a splitter is present on the
connection. The connections between the splitters are resolved
at translate-time and the meaning of a splitter gets reduced to
a pair of a bitmerger and a bitshredder, with the appropriate
connections in between. With Logisim semantics it is also
possible to remap the input/output ports with the change of
a configuration setting, so these situations are also resolved.
It should be clear that this transformation is partially an
optimisation in case lots of splitters are used, since all this
routing no longer has to happen at simulation time. All that
is required at simulation time is splitting a string in seperate
characters and subsequently merging them back together later
on. The preprocessing for a splitter is depicted in Figure 7.

4) Illegal couplings: In the DEVS formalism, several cou-
plings are deemed illegal due to them being either useless
(connect an input port of a coupled model to the output port
of the same coupled model) or dangerous (algebraic loops).
However, all these situations are valid in Logisim.
To provide a complete mapping between both semantic do-
mains, an extra element needs to be inserted to trick the simula-
tor in thinking that the model complies to these specifications.
This model will be the Null model, which merely copies its
input value to its output port with a zero delay. This is by no
means a clean solution as these situations most likely indicate
a problem in the model. It is only included for completeness.

5) Putting it together: The translation becomes more of
a problem if multiple difficult cases occur together. In such
cases, the order in which these problems are resolved is
important to prevent problems in the assumptions made when
fixing these problems. This correct order is:

1) Remove splitters
A splitter must be removed as soon as possible. This
is because it must be interpreted as a wire and not as a

Figure 7. The necessary preprocessing for a splitter in different situations

model, so it must also propagate all special situations,
such as pull resistors and colliding wires. When a
splitter is solved, its complete connection is traversed,
which allows us to decide the direction in which the
wire has to be pulled in case of a floating value. In
the case that a pull resistor is placed on the multi-bit
wire and on the split wire, they must be checked for
compatibility and the direction must be set to an error
bit, if necessary.

2) Merge colliding wires
There is an overlap between a merger and a pull
resistor, which causes them to be conflicting when
they are not applied in the correct order. The Logisim
semantics states that a pull resistor will set the value
on a wire to the specified value, if the value on
the wire is floating. A merger on the other hand,
will merge wires and if one of the c olliding wires
is floating, it will be set to the value of the other
connected wires. This means that a pull resistor
should not set the value of a wire that could still
collide with another. Only if there is still a floating
value after a merge (in case all wires are floating),
should the value be set by a pull resistor.

3) Solve pull resistors
This should happen near the end as it is only seen as
a ‘last resort’ for filling in a value on a wire.

4) Inserting the Null model where needed
The Null model is only inserted because it is neces-
sary to allow simulation. Therefore, it has no priority
and even has no meaning. The reason why it is last
is simply due to performance. It could be possible
that the translator identified a possible situation where
a Null element is required, though it is no longer
needed after one of the previous transformations.
One such situation would be when wires that would
be illegal in DEVS collide, thus creating a Merger
model, which will then fulfill the role of the Null
model.

IV. SEMANTICS AND TESTING

One of the reasons to perform this transformation to DEVS
was to obtain insight in the semantics of Logisim. This differs
from the approach in [8], where a completely new DSL was
designed as a library of DEVS components and the semantics
were created anew. We comply with the existing semantics of
Logisim. This causes some distinct difficulties, as we need to

extract the semantics from Logisim and replicate this in our
generated DEVS models.
With only the limited amount of information available in
the Logisim Library Reference, we are unable to create se-
mantically equivalent models. Therefore, explicit simulation
and observation of behaviour traces is necessary to guarantee
equivalence. To automate this task, we created an exhaustive
test suite for every basic component. The most important
variations in configuration of this component are placed next
to each other and every possible combination of inputs for this
component is provided. The output is logged with the (very ba-
sic) logging functionality provided by Logisim. Subsequently,
the logged circuit is translated to DEVS and simulated again.
The DEVS simulation creates an XML behaviour trace. This
trace file is converted to the same format as that generated by
Logisim. Both files are compared and the test passes if both
files are identical.

V. PERFORMANCE

As described above, mapping Logisim to DEVS has several
conceptual advantages. The question remains however how be-
haviourally equivalent DEVS and Logisim models compare in
terms of simulation speed. To get some insight into simulation
performance, we use our translator to transform a relatively
complex Logisim circuit to its DEVS equivalent and simulate
it using our PyDEVS simulator. Tests were performed on an
Intel i5-2500 3.3GHz with 4GB RAM, with Logisim v2.7.1
and PyDEVS v1.1.

A. Model

In order to prevent a bias due to a single component
being implemented far more efficiently in either Logisim or
in the translated model, we chose to implement a basic 16-
bit ALU shown in Figure 8. It makes uniform use of all the
most important core components from Logisim (logic gates,
arithmetic, shifting, . . .). To increase the size of the model, we
put several ALUs in parallel as shown in Figure 9. All these
subcircuits will receive the same input (and will thus generate
the same output). To prevent further bias from the instructions
fed into the ALUs, we filled the ROM components containing
the input data (except the instruction) with random data before
starting the simulation. This data was only inserted once and
is thus identical for each simulation run.

Figure 8. A basic ALU subcircuit using Logisim’s core components

B. Results

Figure 10 depicts the running time of a Logisim simulation
and that of the corresponding DEVS simulation for increasing
model sizes (i.e., number of ALUs). Note that we use our
Parallel DEVS simulator (PyPDEVS) to avoid the need for the
select function when simultaneous internal transitions occur.
We use the PyPy just-in-time interpreter as it yields (slightly)
better performance than the standard Python interpreter. Lo-
gisim does not support automatic simulation and timing of
such simulations, so these were done manually. Therefore, the
Logisim timings are only accurate up to one second. A first
observation is that both simulations have O(n) complexity.
Our translation from Logisim to DEVS does hence not intro-
duce artificial complexity. Simulation of the generated DEVS
version is however on average a factor 3.9 slower than that
of the Logisim original (as noticed in the difference in slopes
of the two performance curves). There are several reasons for
this performance difference. First of all, Logisim is written
in Java, whereas our DEVS simulator is written in Python.
The most important cause for the performance difference is
however the generality of DEVS compared to the domain-
specificity of the Logisim logical circuit simulation. While the
Logisim simulator can make several assumptions about the
simulation (e.g., timing of components, collission resolution,
. . .), the DEVS simulator has no such knowledge and is thus
unable to provide the same level of performance. Note that
we did not choose to use multiple cores for the PyPDEVS
simulation, since the computation of the transition functions
does not take much time. This would actually slow down
the simulation due to the setup and destruction time of the
process, certainly because the actual transition functions are

relatively small2. Though slower, the use of DEVS allows one
to use different simulators than the one provided in Logisim,
possibly even a parallellized and distributed simulator (should
it be applicable to the generated model).

VI. RELATED WORK

Another approach to the mapping between digital logical
circuits and DEVS (in particular, DEVS-Suite) is presented in
[8]. Our approach differs in that we symbolically transform
arbitrary Logisim models instead of providing a library of
DEVS models for the common components in logic circuits.
The DEVS models for common logic components are very
similar in both approaches. In our transformation however,
we faithfully reproduce Logisim semantics, including all its
idiosyncracies.
The ability to model and simulate the possibly non-
deterministic environment (modelled in DEVS) in which the
system under study operates was also the reason behind the
transformation presented in [9]. In that work, UML2.0 Class
Diagrams + Statecharts were transformed to DEVS.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a transformation from Logisim models to
behaviourally equivalent DEVS models was presented. The
transformation rules were described and implemented. The
translator implementation as well as the DEVS simulator used
and the models used for performance analysis are available
at [10]. The behavioural equivalence between Logisim mod-
els and their generated DEVS counterparts was exhaustively
tested. Also, some performance comparisons were made be-
tween native Logisim simulation and that of the generated

2In Python, threads are unable to use true parallellism due to the global
interpreter lock. If true multicore performance is desired, it is necessary to
use multiple processes which will all run in a seperate Python interpreter.
Needless to say, this has a high overhead.

Figure 9. The main model, containing sub-circuits

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

T
im

e
 (

s
)

Number of ALUs

Performance comparison

Logisim
Linear

PyPy PyPDEVS
Linear

Figure 10. Performance of Logisim and generated DEVS

DEVS models. The simulation of the generated DEVS models
using our PyPDEVS simulator (with the PyPy interpreter) was
on average 3.9 times slower than native Logisim simulation.
This result is not surprising as Logisim is specifically op-
timized for the domain of logic circuit simulation whereas
DEVS and its simulators are generic.

Crafting the Logisim to DEVS transformation did give
us insight into the intrictate details of the semantics of the
Logisim components. Another advantage of transformation to
DEVS is that a Logisim circuit can thus be embedded in a
larger DEVS model. This allows for example coupling of the
circuit to a model of the environment in which it will be
used. The transformation also allows us to use Logisim as
a domain-specific visual modelling environment yet use any
DEVS-compliant simulator.

In the future, we plan to bridge the (performance) gap
between a dedicated simulator such as Logisim and generic
simulation in DEVS. A first approach is to transform a Logisim
model to a single atomic DEVS model, including the domain-
specific (discrete-time) simulation techniques. This is similar
to the approach we took in [9] when translating Statechart
models to DEVS. A second, and more general approach is
to use activity-enhanced simulation [11]. In this approach, the
DEVS model is enhanced with a model of computational load
and the generic DEVS simulator is augmented with capabilities
to use these “hints” to increase performance. We believe that
with appropriate hints, the DEVS simulator will be able to
use the domain-specific information and achieve performance
matching that of a dedicated domain-specific simulator.

ACKNOWLEDGMENT

Naomi Christis’ work on a Logisim to Verilog translator,
the starting point for our contribution, is gratefully acknowl-
edged.

REFERENCES

[1] C. Burch, “Logisim v2.7.1,” http://ozark.hendrix.edu/∼burch/logisim/,
March 2011.

[2] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of Modeling and
Simulation, 2nd ed. Academic Press, 2000.

[3] J.-S. Bolduc and H. Vangheluwe, “Expressing ODE models as DEVS:
Quantization approaches,” in Proceedings of the AIS’2002 Conference
(AI, Simulation and Planning in High Autonomy Systems), F. Barros and
N. Giambiasi, Eds. Society for Modeling and Simulation International
(SCS), April 2002, pp. 163 – 169, Lisboa, Portugal.

[4] H. Vangheluwe and G. Vansteenkiste, “The cellular automata formalism
and its relationship to DEVS,” in 14th European Simulation Multi-
conference (ESM), R. Van Landeghem, Ed. Society for Modeling
and Simulation International (SCS), May 2000, pp. 800–810, Ghent,
Belgium.

[5] “IEEE Standard for Verilog Hardware Description Language,” IEEE Std
1364-2005 (Revision of IEEE Std 1364-2001), 2006.

[6] J.-S. Bolduc and H. Vangheluwe, “The modelling and simulation
package PythonDEVS for classical hierarchical DEVS,” McGill Univ.,
Tech. Rep., 2001.

[7] A. C. H. Chow and B. P. Zeigler, “Parallel DEVS: a parallel,
hierarchical, modular, modeling formalism,” in Proceedings of
the 26th conference on Winter simulation, ser. WSC ’94. San
Diego, CA, USA: SCS, 1994, pp. 716–722. [Online]. Available:
http://dl.acm.org/citation.cfm?id=193201.194336

[8] Y. Chen and H. S. Sarjoughian, “A component-based simulator for
MIPS32 processors,” Simulation, vol. 86, no. 5-6, pp. 271–290, 2010.

[9] R. Shaikh and H. Vangheluwe, “Transforming UML2.0 Class Diagrams
and Statecharts to atomic DEVS,” in SpringSim/TMS-DEVS, 2011, pp.
205–212.

[10] Y. Van Tendeloo, “Logisim to DEVS translator,” http://msdl.cs.mcgill.
ca/people/yentl, 2012.

[11] A. Muzy, L. Touraille, H. Vangheluwe, O. Michel, D. R. Hill, and M. K.
Traoré, “Activity regions in discrete-event systems,” in SpringSim/TMS-
DEVS. SCS, April 2010, pp. 176 – 182.

