
A PDEVS Simulator Supporting
Multiple Synchronization
Protocols: Implementation and
Performance Analysis

Journal Title
XX(X):1–23
c©The Author(s) 0000

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Ben Cardoen1, Stijn Manhaeve1, Yentl Van Tendeloo1, and Jan Broeckhove1

Abstract
With the ever increasing complexity of simulation models, parallel simulation becomes necessary to perform
simulation within reasonable time bounds. The built-in parallelism of Parallel DEVS is often insufficient to
tackle this problem on its own. Several synchronization protocols have been proposed, each with their
distinct advantages and disadvantages. Due to the significantly different implementation of these protocols,
most Parallel DEVS simulation tools are limited to only one such protocol. In this paper, we present a
Parallel DEVS simulator, grafted on C++11 and based on PythonPDEVS, supporting both conservative
and optimistic synchronization protocols. The simulator not only supports both protocols but also has the
capability to switch between them at runtime. The simulator can combine each synchronization protocols
with either a threaded or sequential implementation of the PDEVS protocol. We evaluate the performance
gain obtained by choosing the most appropriate synchronization protocol. A comparison is made to adevs
in terms of CPU time and memory usage, to show that our modularity does not hinder performance.
We compare the speedup obtained by synchronization with that of the inherent parallelism of PDEVS in
isolation and combination, and contrast the results with the theoretical limits. We further allow for an external
component to gather simulation statistics, on which runtime switching between the different synchronization
protocols can be based. The effects of allocation on our synchronization protocols is also studied.

Keywords
DEVS, Performance, Parallel, Optimistic, Conservative

Received: 30-Jun-2016
Revised: 10-Oct-2016
Accepted: 05-Jan-2017

1University of Antwerp, Belgium

Corresponding author:
Yentl Van Tendeloo
University of Antwerp
Middelheimlaan 1
2020 Antwerp, Belgium
Email: Yentl.VanTendeloo@uantwerpen.be

Submission for the Special Issue of Simulation:
SpringSim 2016 special issue.

Introduction

DEVS [1] is a popular formalism for modelling complex
dynamic systems using a discrete-event abstraction. In
fact, it can serve as a simulation “assembly language” to
which models in other formalisms can be mapped [2].
A number of tools have been constructed by academia

Prepared using sagej.cls [Version: 2015/06/09 v1.01]



2 Journal Title XX(X)

and industry that allow the modelling and simulation of
DEVS models.

But with the ever increasing complexity of simulation
models, parallel simulation becomes necessary to perform
the simulation within reasonable time bounds. Whereas
Parallel DEVS [3] was introduced to increase paral-
lelism, its inherent parallelism is often insufficient [4].
Several synchronization protocols from the discrete event
simulation community [5] have been applied to (Parallel)
DEVS simulation [6]. With synchronization protocols,
different simulation kernels can be at different points in
simulated time, significantly increasing parallelism at the
cost of synchronization overhead. While several parallel
DEVS simulation tools exist, they are often limited to a
single synchronization protocol. The reason for different
synchronization protocols, however, is that their distinct
nature makes them applicable in different situations, each
outperforming the other for specific models [7]. The par-
allel simulation capabilities of current tools are therefore
limited to specific domains.

This paper introduces DEVS-Ex-Machina∗ (“dxex”):
our simulation tool [8] which offers 6 synchronization
protocols. The simulation tool can spawn multiple
kernels, each of which has its own simulation time
and simulation control, though they may exchange
timestamped events with each other. Each kernel can
spawn multiple threads, each of which will be mapped
to a physical CPU core by the operating system. We note
the presence of two kinds of synchronization: inter-kernel
and intra-kernel. Inter-kernel synchronization uses either
no synchronization, conservative synchronization, or
optimistic synchronization. Intra-kernel synchronization
uses either no synchronization or exploits the inherent
parallelism of Parallel DEVS to allocate concurrent
transitions to separate threads. The inherent parallelism
in the intra-kernel synchronization protocol is used pSim
in the remainder of this paper.

This results in the following set of synchronization
protocol combinations:

• No inter-kernel synchronization, no intra-kernel
synchronization (NN)

∗https://bitbucket.org/bcardoen/
devs-ex-machina

• Conservative inter-kernel synchronization, no intra-
kernel synchronization (CN)

• Optimistic inter-kernel synchronization, no intra-
kernel synchronization (ON)

• No inter-kernel synchronization, pSim intra-kernel
synchronization (NP)

• Conservative inter-kernel synchronization, pSim
intra-kernel synchronization (CP)

• Optimistic inter-kernel synchronization, pSim intra-
kernels synchronization (OP)

When refering to a set of them, we use the notation x to
denote any possible algorithm. For example, xP refers to
NP, CP, and OP.

The selected synchronization protocol is transparent
to the simulated model: users only determine the
protocol to use. Users who simulate a wide variety of
models, with different ideal synchronization protocols,
can keep using the exact same tool, but with different
synchronization protocols. As model behaviour, and
thus the ideal synchronization protocol, might change
during simulation, runtime switching of synchronization
protocols is also supported. This runtime switching can
be based on performance metrics, which are logged
during simulation. Information is made available to a
separate component, where a choice can be made about
which synchronization protocol to use. Additionally,
we investigate how model allocation influences the
performance of our synchronization protocols. To this
end, we have included an allocation component in our
simulation kernel.

Our tool is based on PythonPDEVS [9], but imple-
mented in C++11 for increased performance, using fea-
tures from the new C++14 standard when supported by
the compiler. Unlike PythonPDEVS, dxex only supports
multicore parallelism, thus no distributed simulation.

Using several benchmark models, we demonstrate
the factors influencing the performance under a given
synchronization protocol. Additionally, we investigate a
model which changes its behaviour (and corresponding
ideal synchronization protocol) during simulation. Dxex,
then, is used to compare simulation using exactly the
same tool, but with a varying synchronization protocol.
With dxex users can always opt to use the fastest protocol
available, and through its modularity, users could even
implement their own, or variants of existing ones. To

Prepared using sagej.cls

https://bitbucket.org/bcardoen/devs-ex-machina
https://bitbucket.org/bcardoen/devs-ex-machina


3

verify that this modularity does not hamper performance,
we compare to adevs [10], another Parallel DEVS
simulation tool.

The remainder of this paper is organized as follows:
Section BACKGROUND introduces the necessary back-
ground on synchronization protocols. Section DEVS-
EX-MACHINA elaborates on our design that enables
the flexibility to switch protocols. In Section PERFOR-
MANCE EVALUATION, we evaluate the performance of
our tool using the different synchronization protocols,
and we also compare with adevs’s performance. We con-
tinue by introducing runtime switching of synchroniza-
tion protocols and different options for model allocation
in Section RUNTIME SWITCHING and Section MODEL
ALLOCATION, respectively. Related work is discussed in
Section RELATED WORK. Section CONCLUSIONS AND
FUTURE WORK concludes the paper and presents ideas
for future work.

Background
This section briefly introduces the two most prominent
synchronization protocols: conservative and optimistic
synchronization. Both algorithms are supported by dxex.
These protocols synchronize between kernels, but do not
specify the parallelization of events within a single kernel.
For example, pSim is orthogonal to this as it decides upon
the parallelization of events within a single kernel.

Conservative Synchronization
The first synchronization protocol we introduce is conser-
vative synchronization [5]. In conservative synchroniza-
tion, a node progresses independent of all other nodes,
up to the point in time where it can guarantee that no
causality errors happen. When the simulation reaches this
point, the node blocks until it can guarantee a new time
until which no causality errors occur. In practice, this
means that all nodes are aware of the current simulation
time of all other nodes, and the time it takes an event to
propagate (called lookahead). Deadlocks can occur due
to a dependency cycle of models. Multiple algorithms are
defined in the literature to handle both the base protocol,
as well as resolution schemes to handle or avoid the
deadlocks [5].

The main advantage of conservative synchronization
is its low overhead if lookahead is high. Each node

then simulates in parallel, notifying other nodes about
its local simulation time. The disadvantage, however, is
that the amount of parallelism is explicitly limited by
the lookahead. If a node can influence another (almost)
instantaneously, no matter how rarely it occurs, the
amount of parallelism is severely reduced throughout the
complete simulation run. The user is required to define the
lookahead, using knowledge about the model’s behaviour.
Defining an accurate and high lookahead is far from a
trivial task if there is no detailed knowledge of the model.
Even slight changes in the model or its allocation can
change the lookahead, and can therefore have a significant
influence on simulation performance.

Optimistic Synchronization
A completely different synchronization protocol is
optimistic synchronization [11]. Whereas conservative
synchronization prevents causality errors at all costs,
optimistic synchronization allows them to happen, but
corrects them as soon as they are detected. Each node
simulates as fast as possible, independent of other nodes.
It assumes that no events occur from other nodes, unless
it has explicitly received one at that time. When this
assumption is violated (i.e., an event arrives that should
have been processed in the past), the node rolls back its
simulation time and state to right before the moment when
the event has to be processed. As simulation is rolled back
to a point in time before the event has to be processed,
the event can be processed as if no causality error ever
occurred.

Rolling back simulation time requires the node to store
past model states, so that they can be restored later.
All incoming and outgoing events need to be stored as
well. Incoming events are injected again after a rollback,
when their time has been reached again. Outgoing events
are cancelled after a rollback, through the use of anti-
messages, as potentially different output events have to be
generated. Cancelling events can cause further rollbacks
as the receiving node might also have to roll back its state.
In practice a single causality error can have significant
repercussions on performance.

Further changes are required for unrecoverable
operations, such as I/O and memory management.
These are only executed after the lower bound of all

Prepared using sagej.cls



4 Journal Title XX(X)

simulation times, called Global Virtual Time (GVT) [5],
has progressed beyond their execution time.

The main advantage is that a small lookahead, caused
by infrequent events, does not limit performance. If an
(almost) instantaneous event rarely occurs, performance
is only impacted when it occurs, and not at every
simulation step. The disadvantage is unpredictable
performance due to the arbitrary cost of rollbacks and
their propagation. Even the occurence of rollbacks is
non-deterministic, as it is caused by the interleaving
of different simulation nodes and their communication.
If rollbacks occur frequently, state saving and rollback
overhead can cause simulation to grind to a halt.
Nonetheless, it can be proven that simulation always
progresses, and eventually always terminates. Apart from
overhead in CPU time, a significant memory overhead is
present: intermediate states are stored up to a point where
they can be considered irreversible. Note that, while
optimistic synchronization does not explicitly depends
on lookahead, performance still implicitly depends on
lookahead. Instead of depending on the theoretically
defined safe lookahead, performance is related to the
actually perceived lookahead.

DEVS-Ex-Machina
Historically, dxex is based on PythonPDEVS [9]. Python
is a good language for prototypes, but performance has
proven insufficient to compete with C++-based simulation
kernels [12]. Dxex is a C++11-based Parallel DEVS
simulator, based on the design of PythonPDEVS. Whereas
the feature set is not too comparable, the architectural
design, simulation algorithms, and optimizations are
highly similar.

We will not make a detailed comparison with
PythonPDEVS here, but only mention some supported
features. Dxex supports, similarly to PythonPDEVS, the
following features: direct connection [13], Dynamic
Structure DEVS [14], termination conditions [15], and
a modular tracing and scheduling framework [9]. We do
not elaborate on these features in this paper. But whereas
PythonPDEVS only supports optimistic synchronization,
dxex support multiple synchronization protocols (though
not distributed). This is in line with the design principle of
PythonPDEVS: allow users to pass performance hints [16]
to the simulation kernel. In our case, a user can configure

the simulation kernel with the synchronization protocol to
use, or even switch the synchronization protocol during
runtime. Our implementation in C++11 also allows for
(compiled) optimizations which were plainly impossible
in an interpreted language, such as Python. Dxex uses new
optimizations from the C++14 standard when possible.
The C++11 standard threading primitives are used to
run the different simulation kernels. Within a single
simulation kernel, OpenMP [17] is used to parallelize the
transition functions, as is usual in Parallel DEVS.

Since there is no universal DEVS model standard, dxex
models are incompatible with PythonPDEVS and vice
versa. This is due to dxex models being grafted on C++11,
whereas PythonPDEVS models are grafted on Python.

In the remainder of this section, we elaborate on
our prominent new feature: the efficient implementation
of multiple synchronization protocols within the same
simulation tool, offered transparently to the model.

Synchronization protocols

We previously explained the existence of different
synchronization protocols, each optimized for a specific
kind of model. As no single synchronization protocol is
ideal for all domains, a general purpose simulation tool
should support multiple protocols. We argue that a general
purpose simulation tool should support all six standard
synchronization protocols, as is the case for dxex.

Different protocols relate to different model charac-
teristics. For example, Cx is for when high lookahead
exists between different nodes, whereas Ox is for when
lookahead is unpredictable. It is possible for the syn-
chronization overhead to become larger than the achieved
parallelism, resulting in slower simulation than fully
sequential execution (NN).

Data exchange between different simulation kernels
happens through shared memory, using the new C++11
synchronization primitives. This was also possible in
previous versions of the C++ standard by falling back
to non-portable C functions. C++11 further allows us
to make the implementation portable, as well as more
efficient: the compiler makes further optimizations to
heavily used components.

Prepared using sagej.cls



5

Inter-Kernel Synchronization Our core simulation
algorithm is very similar to the one found in Python-
PDEVS, including many optimizations. Minor modifica-
tions were made though, such that it can be overloaded
by different synchronization protocol implementations.
This way, the DEVS simulation algorithm is implemented
once, but parts can be overridden as needed.

An overview of dxex’s design is given in Figure 1.
It shows that there is a simulation Kernel, which
simulates the AtomicModels connected to it. The
superclass Kernel represents a standalone simula-
tion kernel (Nx). Subclasses define specific variants,
such as ConservativeKernel (conservative syn-
chronization), OptimisticKernel (optimistic syn-
chronization), and DynamicKernel (Dynamic Struc-
ture DEVS). In theory, more synchronization protocols
(e.g., other algorithms for conservative synchronization)
can be added without altering our design.

The following inter-kernel synchronization protocols
are implemented.

None (Nx) No inter-kernel synchronization is the base
case, implemented in the Kernel. It can be overloaded
by any of the other simulation kernels, which augment it
with inter-kernel synchronization methods.

Conservative (Cx) For conservative synchronization,
each kernel determines the kernels it is influenced by.
Each model needs to provide a lookahead function,
which determines the lookahead depending on the current
simulation state. Within the returned time interval, the
model promises not to raise an event.

Optimistic (Ox) For optimistic synchronization, each
node must be able to roll back to a previous point in
time. This is implemented with state saving. This needs
to be done carefully in order to avoid unnecessary copies,
and minimize the overhead. We use the default: explicitly
save each and every intermediate state. Mattern’s
algorithm [18] is used to determine the GVT, as it
runs asynchronously and uses only 2n synchronization
messages. Once the GVT is found, all nodes are
informed of the new value, after which fossil collection
is performed, and irreversible actions (e.g., printing)
are committed. The main problem we encountered in
our implementation is the aggressive use of memory.
Frequent memory allocation and deallocation caused
significant overheads, certainly when multiple threads do

so concurrently. This made us switch to the use of thread-
local memory pools. Again, we made use of specific new
features of C++11, that are not available in Python, or
even previous versions of the C++ language standard.

Intra-Kernel Synchronization In our tool, each simula-
tion kernel is capable of executing concurrent transitions
in parallel, whether they are external, internal, or conflu-
ent.

None (xN) No intra-kernel parallelism is used,
meaning that all concurrent transitions are processed
sequentially. Note that the order in which they are
processed is non-deterministic.

pSim (xP) With intra-kernel parallelism, a config-
urable number of threads is allocated to optimally divide
the processing load of concurrent transitions. The parallel
execution of transitions introduces some overhead in
thread pooling and locking, and disallows some optimiza-
tions in optimally rescheduling models. The concurrency
of events and the combined computational load of the
transitions has to outweigh this overhead to obtain a sig-
nificant speedup, as we will demonstrate in Section PER-
FORMANCE EVALUATION.

Synchronization Protocol Transparency
We define synchronization protocol transparency as
having a single model, which can be executed on any kind
of kernel, without any modifications. User should thus
only provide one model, implemented in C++11, which
can be simulated using any of the six synchronization
protocols. The synchronization protocol to use is a simple
configuration option. The exception is conservative
synchronization (Cx), where a lookahead function is
required, which is not used in other synchronization
kernels. Two options are possible: either a lookahead
function must always be provided, even when it is not
required and possibly not used, or we use a default
lookahead function if none is defined.

Always defining a lookahead function might seem
redundant, especially should the user never want to
use conservative synchronization. Defining the lookahead
is difficult and can often be unpredictable. The more
attractive option is for the simulation tool to provide a
default lookahead function, such that simulation can run
anyway, but likely not at peak performance. Depending

Prepared using sagej.cls



6 Journal Title XX(X)

Figure 1. Dxex design.

on the model, simulation performance might still be faster
than Nx.

Defining a lookahead function is therefore recom-
mended in combination with conservative synchroniza-
tion, but it is not a necessity, as a default value ε (i.e.,
the smallest representable timestep) is used otherwise.
Providing this default implementation has no impact in
sequential or optimistic simulation; as the function is
never called, the compiler will optimize it out. By provid-
ing this default implementation in the model base class
we ensure that a model can run with any synchronization
protocol.

Increasing Parallelism
The goal of our contribution is to increase simulation
performance as much as possible, leveraging parallel
computation in the process. Parallelizing goes further,
however, than merely implementing the different synchro-
nization protocols.

We observed that after implementing all synchroniza-
tion protocols, performance was still not within accept-
able levels. Profiling revealed that most of the overhead
was caused by two issues: memory management and
random number generation. For both, it is already known
that they can have significantly impact on parallelizability
of code, since they introduce sequential blocks. Both
were tackled using approaches that are in common use
in the parallel programming world. We briefly mention

Prepared using sagej.cls



7

how the application of these techniques influences our
performance.

Memory Management Memory management is tradi-
tionally seen as one of the major bottlenecks in paral-
lel computation [19], since memory bandwidth doesn’t
increase as fast as the number of CPU cores using it.
While this is always a problem, it is aggravated in dxex
by providing automatic memory management for events
and states. A model written for Nx synchronization will
run correctly with conservative (Cx) or optimistic (Ox)
synchronization without altering, from the point of view
of the modeller, the (de)allocation semantics of events or
states.

Furthermore, allocating and deallocating memory by
making calls to the operating system, as is typically
done by calls such as malloc, happens sequentially.
To counter this, our memory allocators are backed by a
thread-aware pooling library. With Nx synchronization,
no allocated event persists beyond a single time advance,
even allowing the use of an arena-style allocator.
Conservative and optimistic simulation need to use
generic pool allocators since events are shared across
kernels and thus have a different lifetime.

Intra-kernel events can be (de)allocated without
synchronization with the other kernels. They can be
returned immediately to the memory allocator as the
lifetime of these objects is known at creation. In
contrast, inter-kernel events need a GVT algorithm
to determine when safe deallocation can occur. Intra-
kernel synchronization protocols therefore have a lower
overhead than inter-kernel synchronization protocols.
Simulations with many inter-kernel events suffer a
performance hit, whereas the impact of many intra-kernel
events can be minimized using arena allocators [20].

Dxex uses Boost Pool [21] allocators for Cx and
Ox synchronization, and arena-style allocators for Nx
synchronization. The latter can be faster, but at the cost of
additional configuration. The allocators are supplemented
by the library tcmalloc [22], reducing lock contention in
malloc calls.

We primarily investigate this for optimistic simulation,
as this is the most memory consuming mode of
simulation [5]. Simulation execution times for all
four combinations are shown in Figure 2. Optimistic
simulation greatly benefits from the use of tcmalloc,

Figure 2. Effect of memory allocators with ON
synchronization.

regardless of the allocator. Nonetheless the pool allocator
also reduces the allocation overhead, though only by a
relatively small fraction. Both techniques are required to
reduce the overhead of memory allocations in dxex, and
are turned on by default.

Both pools and tcmalloc try to keep memory allocated
instead of returning it to the Operating System (OS). As
a result, the OS will usually report memory consumption
that is higher than the actual amount of stored data.

Random Number Generators Random Number Gen-
erators (RNG) are another aspect of the program that can
limit parallelization. All accesses to the RNG will result in
the modification of a global (i.e., shared between threads)
variable. This easily becomes a bottleneck in simulation,
since random numbers are a common occurrence in sim-
ulation [23]. As such, a nontrivial amount of time in a
simulation is often spent waiting for an RNG.

We still need to guarantee determinism and isolation
between the calls to the RNG, as well as avoiding
excessive synchronization. Dxex uses the Tina RNG
collection (TRNG) [24] as an alternative random number
generator with performance and multithreading in mind.
Since the RNG is an implicit part of the state in the
Parallel DEVS formalism, though often not implemented
as such, we evaluated performance for both approaches:
one global RNG per thread, and one RNG per atomic
DEVS model.

We see in Figure 3 that storing the RNG in
the state is very expensive for the default Standard
Template Library (STL) random number generator with

Prepared using sagej.cls



8 Journal Title XX(X)

Figure 3. Speedup with different RNG usage patterns
compared to STL random number generator.

optimistic synchronization. This is primarily caused by
the significant difference in size: 2504 bytes for the
STL random number generator, and 24 bytes for the
Tina random number generator. Only Ox synchronization
seems affected, as it needs to copy more bytes in every
transition due to state saving. No additional copies need
to happen in Nx or Cx synchronization.

Figure 3 shows that, for NN synchronization, any of the
three alternatives is three times faster than STL RNG. For
Cx and Ox synchronization, the synchronization overhead
seems to be the main bottleneck, as seen by the big
speedup gap with Nx synchronization. Cx synchronization
is almost unaffected by changing the RNG.

Performance Evaluation
In this section, we evaluate the performance of different
synchronization protocols in dxex. We also compare to
adevs [10], currently one of the most efficient simulation
tools [25, 26], to show that our modularity does not
impede performance. CPU time and memory usage is
compared for different synchronization protocols.

We start with a comparison of NN synchronization,
to show how adevs and dxex relate in this simple case.
Afterwards, we compare inter-kernel synchronization
protocols, including a comparison with adevs again. Inter-
kernel synchronization protocols are then compared in
combination with intra-kernel synchronization protocols,
in the context of recent theoretical work [27].

For all benchmarks, results are well within a 5%
deviation of the average, such that only the average

is used in the remainder of this section. The same
compilation flags were used for both adevs and dxex
benchmarks (“-O3 -flto”). To guarantee comparable
results, no I/O was performed during benchmarks. Before
benchmarking, simulation traces were used to verify
that adevs and dxex return exactly the same simulation
results. Benchmarks were performed using Linux, but our
simulation tool works equally well on Windows and Mac.
The exact parameters for each benchmark can be found in
our repository.

The benchmarks are ran on a machine with 8 x AMD
Opteron(TM) Processor 6274 with 8 cores per CPU (for a
total of 64 cores) and 192 GB RAM.

Benchmark Models
We use three different benchmark models, covering
different aspects of the simulation tool.

First, the Queue model, based on the HI model of
DEVStone [28], creates a chain of hierarchically nested
atomic DEVS models. A single generator pushes events
into the queue, which get consumed by the processors
after a fixed or random delay. It takes two parameters:
the width and depth of the hierarchy. This benchmark
reveals the complexity of the simulation kernel for an
increasing amount of atomic models and an increasingly
deep hierarchy. An example for a width and depth of 2 is
shown in Figure 4.

Second, the Interconnect model, a merge of PHold [29]
and the HI model of DEVStone [28], creates n atomic
models, where each model has exactly one output port.
Similar to PHold, all models are connected to one another,
but all through the same port: every atomic model receives
each generated event (i.e., the event is broadcasted).
The model takes one parameter: the number of atomic
models. This benchmark shows the complexity of event
creation, event routing, and simultaneous event handling.
An example for three atomic models is shown in Figure 5.

Third, the PHold model [29], creates n atomic models,
where each atomic model has exactly n− 1 output ports.
Each atomic model is directly connected to every other
atomic model. After a random delay, an atomic model
sends out an event to a randomly selected output port.
Output port selection happens in two phases: first it is
decided whether the event should be sent within the same
kernel, or outside of the kernel. Afterwards, a uniform

Prepared using sagej.cls



9

Figure 4. Queue model for depth and width 2.

Model

Model

Model

Figure 5. Interconnect model for three models.

Model

Model

Model

Model

Figure 6. PHold model for four models. Color denotes
the two nodes.

selection is made between the possible atomic models.
The model takes two parameters: the percentage of remote
events (determining the percentage of events routed to
other kernels), and the percentage of high-priority events.
High-priority events are events generated in a very short
time after the previous event. This benchmark shows
how the simulation kernel behaves in the presence of
many local or remote events, in combination with a
varying percentage of high-priority events. An example
for four atomic models, split over two kernels, is shown
in Figure 6.

Single kernel (NN Synchronization)
We start by evaluating NN synchronization performance,
in order to obtain a baseline for our comparison of other
synchronization protocols.

Queue For the first benchmark, we tested the effect of
hierarchical complexity of the model in the performance
of the simulator. A set of three tests was performed, where
each test has the same number of atomic models but an
increasing depth. The results can be seen in Figure 7.
Since dxex performs direct connection [13] on the model,
there is no performance hit when the depth is increased.
Direct connection only needs to be done at initialization,

Figure 7. Queue benchmark results with NN
synchronization.

making it a neglible one time cost for long running
simulations. Adevs, on the other hand, suffers from the
increased depth, even though some similar (but not
identical) optimization to event passing was made [30].
With every new hierarchical layer, routing an event from
one atomic model to the next becomes more expensive,
resulting in an increase in runtime.

Interconnect In the Interconnect model, we increase
the number of atomic models, quadratically increasing
the number of couplings and the number of external
transitions. As shown in Figure 8, adevs now outperforms
dxex by a fair margin. Analysis showed that this is caused
by the high amount of events: event creation is much
slower in dxex than it is in adevs, despite dxex’s use of
memory pools. To shield the user from threading and
deallocation concerns, dxex provides an event superclass
from which the user can derive to create a specialized
event type. Copying, deallocation, and tracing are done
at runtime, adding significant overhead when events
happen frequently. Profiling the benchmarks revealed the
increased cost of output generation and deallocation as the
determining factor.

PHold The PHold model is very similar to the
Interconnect model. The biggest difference is that the
amount of messages sent is much lower. The number of
events scales linear with the number of atomic models, not
quadratic. Figure 9 shows that in terms of performance
dxex and adevs are very close to each other, with adevs
slightly outperforming dxex.

Prepared using sagej.cls



10 Journal Title XX(X)

Figure 8. Interconnect benchmark results with NN
synchronization.

Figure 9. PHold benchmark results with NN
synchronization.

Inter-Kernel Parallelism (CN and ON
synchronization)

We now continue by describing our inter-kernel paralle-
lims performance for different synchronization protocols,
compared to adevs. The speedup of adevs is computed
with the corresponding dxex NN synchronization bench-
mark. This was done to take into account the performance
difference observed in NN synchronization. As such,
the highest speedup indicates the fastest results among
all tools, independent of NN synchronization results for
adevs. We only compare xN results, as we are now only
interested in the differences between the various inter-
kernel synchronization protocols, and have thus disabled
all other forms of parallelism. These results are gener-
alized to conservative and optimistic synchronization in

Figure 10. Queue model strong scaling speedup
compared to dxex NN synchronization. Each kernel uses
one thread, and has one physical CPU core allocated to
it.

general. The comparison between xN and xP is made later
on.

Queue The Queue model is one single chain of atomic
models, resembling a pipeline. This structure can be
exploited to prevent cyclic dependencies in CN and ON
synchronization.

Figure 10 shows the speedup compared to NN
synchronization for a fixed problem size, with an
increasing number of used CPU cores (i.e., strong
scaling). As the number of cores increases, ON quickly
becomes the worst choice. This is mainly caused by the
pipeline structure of the model: the last atomic models
in the queue only respond to incoming messages and
therefore have to be rolled back frequently. The difference
between dxex CN and adevs CN becomes smaller when
more and more cores are used. The same effect can be
seen when the problem size is increased in tandem with
the number of used CPU cores (i.e., weak scaling) in
Figure 11.

Interconnect In the Interconnect model, we determine
how broadcast communication is supported across
kernels. The number of atomic models is now kept
constant at eight. Results are shown in Figure 12. When
the number of kernels increases, performance decreases
due to increasing contention in conservative simulation
and the increasing number of rollbacks in optimistic
simulation. All atomic models depend on each other and
have no computational load whatsoever, negating any

Prepared using sagej.cls



11

Figure 11. Queue model weak scaling speedup
compared to dxex NN synchronization. Each kernel uses
one thread, and has one physical CPU core allocated to
it.

Figure 12. Interconnect benchmark results for ON and
CN synchronization, compared to dxex NN
synchronization. Each kernel uses one thread, and has
one physical CPU core allocated to it.

possible performance gain by splitting up the work over
multiple kernels.

PHold In the PHold model, we first investigate the
influence of the percentage of remote events on the
speedup. A remote event in this context is an event
that is sent from an atomic model on one kernel to an
atomic model on another kernel. When remote events are
rare, optimistic synchronization rarely has to roll back,
thus increasing performance. With more frequent remote
events, however, optimistic synchronization quickly
slows down due to frequent rollbacks. Conservative
synchronization, on the other hand, is mostly unconcerned

Figure 13. PHold benchmark results using four kernels,
with varying percentage of remote events.

with the number of remote events: the mere fact that
a remote event can happen, causes it to block and
wait. Even though a single synchronization protocol is
ideal throughout the whole simulation run, it shows
that different synchronization protocols respond very
differently to a changing model.

Adevs is significantly slower for CN synchronization.
Analysis of profiling callgraphs shows that exception
handling in adevs is the main cause. To keep the
models equivalent, the adevs version does not provide
the {begin,end}Lookahead methods, which accounts for
the exception handling. These functions require the user
to implement a state saving method. But in contrast to
PythonPDEVS and dxex, which handle this inside the
kernel, users need to manually define this. We feel this
would lead to an unfair comparison as we would like
to keep the models agnostic of the underlying protocols
across all benchmarks.

Contrary to normal events, high-priority events happen
almost instantaneously, restricting lookahead to a very
small value. Even when normal events occur most often,
conservative synchronization always blocks until it can
make guarantees. Optimistic synchronization, however,
simply goes forward in simulation time and rolls back
when these high-priority events happen. This situation
closely mimics the model typically used for comparing
conservative and optimistic synchronization [5].

Figure 14 shows how simulation performance is
influenced by the fraction of these high-priority events.
If barely any high-priority events occur, conservative
synchronization is penalized due to its excessive blocking,

Prepared using sagej.cls



12 Journal Title XX(X)

Figure 14. PHold benchmark results using four kernels,
with varying amount of high-priority events.

which often turned out to be unnecessary. When many
high-priority events occur, optimistic synchronization
is penalized due to its unconditional progression
of simulation, which frequently needs to be rolled
back. Results show that there is no single perfect
synchronization algorithm for this kind of model:
depending on configuration, either synchronization
protocol might be better.

Intra-Kernel Parallelism (xP
synchronization)
The abstract simulator of Parallel DEVS included its
own notion of parallelism, which we refered to as pSim,
and have implemented as xP synchronization. The xP
synchronization protocol is trivial, as it merely executes
a set of independent functions concurrently. As indicated
before, intra-kernel synchronization is independent of
inter-kernel synchronization in dxex. That is, all six
combinations are possible. Following the theoretical
analysis published in [27], a comparison is warranted
between xN and xP synchronization.

Model We have opted to use the Queue model
for this comparison, as it allows for many interesting
configurations. We have three different configurations,
each using 16 threads in total, to be ran on a CPU with 16
CPU cores: NP synchronization uses one kernel with 16
threads each; OP and CP synchronization use 4 kernels
with 4 threads each; and ON and CN synchronization
use 16 kernels with 1 thread each. Additionaly, NN
synchronization only uses one kernel and one thread, as

it is completely sequential. All speedup results are shown
in comparison to NN synchronization. Atomic models are
always equally distributed over the available kernels.

This allows us to observe which is more efficient
in obtaining a speedup, each with the same number
of CPU cores available. We simulate a computational
load by a sleep of 5 milliseconds. The model is
configured with depth 4 and width 300 if the transition
function has no load (i.e., no sleep), and width 50
if the computational load is active (i.e., sleeps for 5
milliseconds). In our configuration, an imminent atomic
model always generates output, resulting in the receiving
atomic model becoming imminent. The probability that
an internal transition in an atomic model generates
output and is connected to a receiving atomic model is
1 (q = 1 [27]). The probability that an atomic model
becomes immediately imminent depends on whether
fixed or random time advance is used (p [27]). In the
case of a fixed time advance, a model will always
become immediately imminent (p = 1). When random
time advance is used, this probability is 1

n , with n
denoting the total amount of atomic models, as only one
atomic model becomes active (p = 1

n ).
The benchmarks are run sufficiently long enough to

guarantee that the frequency of internal and external
transitions is equal within a benchmark, regardless of
the randomness of the time advance. In our model each
atomic model executes internal and external transitions,
creating an ideal use case to evaluate the speedup
xP synchronization can obtain. The key difference is
that although the event frequency is the same, their
concurrency is not. The coefficient of variation of our
results is less than 1%. The communication overhead is
hard to estimate, but given our coefficient of variation, we
can expect this overhead to be constant.

We consider two cases: one where all transition func-
tions happen simultaneously, and one where transition
functions never happen simultaneously. We defer the
discussion on which of these two is the most realistic, as
this depends on the problem domain. For example, in a
simulation with a fixed timestep (e.g., cell-based models,
discretization of continuous model), transition functions
often occur simultaneously. Conversely, simulations with
an arbitrary timestep (e.g., many independent systems
communicating together) have very few simultaneous
events.

Prepared using sagej.cls



13

Figure 15. Queue speedup benchmark with p = 1, q = 1,
and significant computational load

Concurrent events (q = 1; p = 1) First we create a
model where all transitions happen simultaneously, with a
significant computational load in the transition functions.
In Figure 15, we observe that all synchronization
protocols result in a speedup of about 10. In this scenario
there is no real advantage between the different parallel
configurations. Note, however, that NP synchronization is
trivial to implement, whereas Ox and Cx synchronization
are much more difficult to implement.

Random events (q = 1; p = 1
n ) Now we randomize

the time advance in the atomic models, resulting in
very few transition functions that happen simultaneously.
Even when two transitions are only minimally apart in
simulated time, they cannot be executed in parallel, as
there might otherwise be a causality error. The transition
function has the same computational load as in the
previous configuration. Results are shown in Figure 16.
We observe that NP synchronization adds little overhead,
but doesn’t achieve any significant speedup either. With
ON and CN synchronization, we again achieve high
speedups. This is not the case with OP and CP
synchronization, as we only have four kernels available
for inter-kernel synchronization. The four threads per
kernel, in this case, are not used fully as only two
transitions occur simultaneously at all times.

Computational load Finally, we remove the compu-
tation load from the transition function, in combination
with many concurrent events. Figure 17 shows that for
NP synchronization, the overhead of thread manage-
ment and shared memory communication is crippling for

Figure 16. Queue speedup benchmark with p = 1
n

,
q = 1, and significant computational load

Figure 17. Queue speedup benchmark with p = 1, q = 1,
and trivial computational load

performance. Even though many events occur concur-
rently, the computation in the transition function does
not outweigh the overhead. This results in much slower
simulation than NN synchronization. Even OP and CP
synchronization are unable to achieve any performance
increase, whereas ON and CN synchronization increase
performance marginally. This is because the overhead
of thread management is avoided, similar to the results
obtained by Himmelspach et al. [4]

Discussion In dxex, any inter-kernel synchronization
protocol can be combined with any intra-kernel synchro-
nization protocol. While xP synchronization can offer a
significant speedup at a trivial implementation cost, p
must be high throughout the whole simulation. Addition-
ally, the computational load of the transition functions
should be high enough to warrant the thread management

Prepared using sagej.cls



14 Journal Title XX(X)

overhead. We conclude that each synchronization proto-
col has its distinct advantages and disadvantages: inter-
kernel synchronization protocols depend on the coupling
of models and are difficult to implement, whereas intra-
kernel synchronization protocols depend on the number
of concurrent transitions and are trivial to implement.

Memory Usage
Apart from simulation execution time, memory usage
during simulation is also of great importance. Having
insufficient memory may cause sudden deterioration
in performance, even to the point of making the
simulation infeasible. We therefore also investigate the
memory usage of different synchronization protocols,
again comparing to adevs.

We do not tackle the problem of states that become too
large for a single machine to hold. This problem can be
mitigated by distributing the state over multiple machines,
which neither dxex nor adevs support.

Remarks Both dxex and adevs use tcmalloc as
memory allocator, allowing for thread-local allocation.
Additionally, dxex uses memory pools to further reduce
the frequency of expensive system calls (e.g., malloc and
free). tcmalloc only gradually releases memory back to
the OS, whereas our pools will not do so at all. Due
to our motivation for memory usage analysis, we will
only measure peak allocation in maximum resident set
size as reported by the OS. We only show results for xN
synchronization, as xP synchronization has no significant
additional memory requirements for a reasonable number
of threads.

Results Figure 18 shows the memory used by the
different benchmarks. Results are in megabytes, and show
the total memory footprint of the running application
(i.e., text, stack, and heap). Note the logarithmic scale
due to the high memory consumption of optimistic
synchronization.

Unsurprisingly, Ox synchronization results show very
high memory usage due to the saved states. Note the
logarithmic scale that was used for this reason. Optimistic
synchronization results vary heavily depending on thread
scheduling by the operating system, as this influences the
drift between nodes. Comparing similar approaches, we
notice that dxex and adevs have very similar memory use.

Figure 18. Memory usage results.

Cx synchronization always uses more memory than Nx
synchronization, as is to be expected. Additional memory
is required for the multiple kernels, but also to store all
events that are processed simultaneously.

Conclusions on Performance Evaluation
We have shown that our contribution is invaluable for
high performance simulation: depending on the expected
behaviour, modellers can choose the most appropriate
synchronization protocol. Each synchronization protocol
has its own specific kind of models for which it is the best
one. But even with the right synchronization protocol, we
have seen that two problems remain.

First, although a synchronization protocols might be
ideally suited for specific model behaviour, nothing
guarantees that the model will exhibit the same behaviour
throughout the simulation. Similarly to the polymorphic
scheduler [12], we wish to make it possible for the
ideal synchronization protocol to be switched during
simulation. When changes to the model behaviour
are noticed, the used synchronization protocol can be
switched as well.

Second, the allocation of models is nontrivial and has
a significant impact on performance. While speedup for
the Queue model, for example, was rather high in most
cases, this is mostly due to characteristics of the model:
the dependency graph does not contain any cycles. When
cycles were introduced, as in the Interconnect model,
performance became disastrous.

In the next two sections, we elaborate on these two
problems.

Prepared using sagej.cls



15

Runtime Switching
Simply because a synchronization protocol is ideal at the
start of the simulation, does not mean that it stays ideal
during the simulation. It is well known, and repeated in
the previous section, that model behaviour significantly
influences the ideal synchronization protocol. Contrary
to many modelling formalisms, the DEVS formalisms
makes it possible to model basically any kind of discrete
event model. As such, it is possible for the model
to significantly change its behaviour throughout the
simulation.

Defining the ideal synchronization protocol at the start
of the simulation, when information about future model
behaviour is scarce, might therefore not offer the best
possible performance. In dxex, we not only make it
possible to define the synchronization protocol to use,
but also to change this decision throughout simulation.
To switch between intra-kernel synchronization protocols,
we only have to execute all concurrent transitions
sequentially. This case is trivial, as it just flips a boolean,
and is thus not further considered in this section. To
switch between inter-kernel synchronization protocols, all
kernels are notified of the switch and they are forced to
stop simulation. When stopped, each kernel instantiates a
new kernel, with the new synchronization protocol, that is
provided with the simulation state of the previous kernel.
Simulation is then resumed with the new kernels after the
previous ones are destroyed.

As usual, switching imposes an overhead and should
thus only be done if the benefits outweigh the induced
overhead. This overhead depends on the size of the
model and the number of kernels. For a simple model
and a few kernels, the overhead is less than a second.
Creating new kernels and moving the simulation models
has an overhead linear in the amount of kernels and
atomic models. The time required to synchronize and
halt the existing kernels is variable, especially if the old
synchronization protocol is optimistic since there is no
real limit on the virtual time difference between kernels.
Given that the existing kernels are equally loaded, this
time difference will in practice scale linearly with the
number of kernels.

Although we currently only support manual switches
between different synchronization protocols, this is not
necessarily the case. Ideally, a new component is

added to the kernel, which monitors model behaviour
and simulation performance, and toggles between them
automatically. Our interface is augmented with the
necessary bindings for such a decision component.
Also, our interface is augmented with an interface for
statistics gathering and model behaviour analysis. With
all interfaces implemented and tested, we only leave
open the actual switching logic. Machine learning is
a possible direction for future implementations of this
decision component.

Statistics Gathering
Traditionally, models are not exposed to simulation kernel
details as they work at a different level of abstraction:
modellers only care about simulation results, and not
about how these results are obtained (e.g., through parallel
or distributed simulation). This is different for a new
kernel component that has to monitor the behaviour of not
only the model, but the simulator as well.

We add performance metrics in the kernel, which logs
relevant performance metrics and processes them for use
in other components. These metrics include the number
of events created and destroyed, the number of inter- and
intra-kernel events, the number of rollbacks, the measured
lookahead, details of the GVT and EOT calculations, and
information on the fairness between kernels. With all
these metrics, the decision component can get a global
view on both model and kernel behaviour.

For example, if the actually seen lookahead is
significantly higher than the defined lookahead, it might
be interesting to switch to optimistic synchronization.
When the number of rollbacks is excessively high,
switching to conservative synchronization might be
considered.

Visualization of Communication To provide more
insight in our benchmark models, we created a simple
visualization of their simulation trace. This trace
visualizes the allocation of the model and all defined
connections. For each connection, the number of events
transferred is annotated. Examples are shown for the three
benchmark models used before: Figure 19, Figure 20, and
Figure 21 show traces for the Queue, Interconnect, and
PHold models, respectively. Using this information, we
notice that the Interconnect benchmark indeed has a lot
of inter-kernel events. Despite the similar structure, the

Prepared using sagej.cls



16 Journal Title XX(X)

PHold model does not have as many inter-kernel events.
These results are relevant information that can be used by
the hotswapping component.

Model Allocation
Although the synchronization protocol is one of the
defining factors in simulation performance, model
allocation has a significant impact on which protocol is
ideal. Depending on the model structure, and how it is
mapped to the different kernels, it might not even make
sense to parallelize at all. Indeed, if the model is allocated
such that frequent communication is necessary between
kernels, parallelism is naturally reduced. This brings us
to the topic of model allocation, as also implemented
in PythonPDEVS [31]. In this section we focus on the
inter kernel synchronization protocols, as intra kernel
synchronization is unaffected by the inter kernel topology.

The modeller can specify which kernel a model should
be allocated to, should such manual intervention be
required. This is handled by the default model allocator.
If no preference is given, a simple striping scheme is used
but this is often insufficient. By overriding the default
allocator, a modeller tunes the allocation scheme for a
specific model. This interface can be linked to graph
algorithms for automatic allocation scheme generation,
for example to avoid cycles in the dependency graph.

Performance Evaluation
To evaluate the influence of model allocation, we define
a new model, based on PHold [29]. The model structure
resembles a tree: an atomic model can have a set of
children, with children being connected to each other
recursively.

Unlike the Queue model, the width of the hierarchy
is still present in the topology of the atomic models
after direct connection. The PHoldTree model allows
us to investigate speedup in terms of model allocation,
by modifying the depth and width (fanout) model
parameters.

The PHoldTree model is similar in structure to models
of gossiping in social networks [32]. The lookahead of
an atomic node is the minimally allowed ε, as is often
the case in realistic models (e.g., if it is unknown what
the lookahead might be). We demonstrate the importance

of allocation by comparing performance of a breadth-first
versus a depth-first scheme. Both options are automated
ways of allocation that are independent of the model.

PHoldtree, like Queue, is highly hierarchical, but its
flattened structure cannot be partitioned into a chain,
as was the case in the Queue model. This topology is
interesting since it highlights the effects of allocation.
First, we evaluate the model with NN synchronization to
provide a baseline for further results.

No Inter-Kernel Synchronization (NN) Since adevs
does not use direct connection, we expect a noticeable
performance difference between dxex and adevs. This is
shown in Figure 23, where the fanout (n) determines
the performance penalty adevs suffers compared to dxex.
Profiling indeed indicates that an increase in width per
subtree (n) leads to higher overheads in adevs due to the
lack of direct connection. Dxex uses direct connection,
making it independent of fanout. Performance of dxex is,
for this model, only dependent on the number of models.
Slight deviations can still be seen, though, caused by the
initialization overhead of direct connection. Both adevs
and dxex scale linearly in the number of atomic models.

Inter-Kernel Synchronization (CN and ON) Next, we
run the model using two different allocation schemes,
based on Breadth-First Search (BFS) and Depth-First
Search (DFS). First, we explain both allocation schemes.

Breadth-first allocation traverses the tree in a breadth-
first way, allocating subsequently visited atomic models
to the same node. Intuitively, atomic models at the
same level in the tree, but not necessarily siblings, are
frequently allocated to the same node. Since there is only
infrequently some communication between siblings, and
even never between different subtrees, this does not sound
an intuitive allocation. This allocation strategy is shown in
Figure 24.

Depth-first allocation traverses the tree in a depth-first
way, allocating subsequently visited atomic models to the
same node. Intuitively, subtrees are frequently allocated
to the same node, as shown in Figure 25.

Both allocators will try to divide models evenly over
kernels. The effects of varying the number of atomic
models per kernel are already evaluated in the previous
section on scaling. Here we want to highlight the overhead
of communication and inter-kernel dependence.

Prepared using sagej.cls



17

Core 0 Core 1 Core 2 Core 3 

Generator Processor_0
49

Processor_1
49

Processor_2
47

Processor_3
45

Processor_4
43

Processor_5
42

Processor_6
41

Figure 19. Queue model simulation trace across 4 kernels.

Core 0 Core 1 Core 2 

Generator0

Generator3

4

Generator1
4

Generator2

4

Generator4

4

Generator5

44 4 4

4

4

4

4

4

4 4

4

4

4

4 44

4

4 4

4

44 4 4

4

Figure 20. Interconnect simulation trace for 6 atomic
models on 3 kernels.

Core 0 Core 1 Core 2 

Processor_0

Processor_1

21

Processor_2

Processor_3

2

Processor_4

Processor_5

21 1 1 1241

1

24 11

2

121 12

Figure 21. PHold simulation trace for 6 atomic models
on 3 kernels.

Model

Model

Model Model Model Model

Model

Figure 22. PHoldTree model for depth 3 and width 2.

Figure 23. Effect of hierarchy with NN synchronization.

Model

Model Model Model

Model Model Model Model Model Model Model Model Model

Figure 24. PHoldTree model breadth first allocation with
4 kernels.

Model

Model Model Model

Model Model Model Model Model Model Model Model Model

Figure 25. PHoldTree model depth first allocation with 4
kernels.

The breadth first allocation scheme results in a
dependency chain with multiple branches, much like in
the Queue model. Such a linear dependency chain can
result in a higher speedup, as demonstrated with the
Queue model. This is not always true though: a single
kernel with an unbalanced computational load slows
down the remainder of the chain. This effect is also
apparent if the thread a kernel runs on is not fairly
scheduled by the operating system. With conservative
synchronization this leads to excessive polling of the EOT
of the other kernels. With optimistic synchronization this
leads to a cascade of rollbacks, since dependent kernels
will simulate ahead of the slower kernel.

After simulation the traces can be visualized for both
breadth-first and depth-first allocation. Using a breadth-
first allocation scheme, as shown in Figure 26, we notice
that many events get exchanged between kernels. This is
caused by the high number of inter-kernel connections
and the high number of events exchanged over these
connections. The number of connections between atomic
models at the same simulation kernel is also rather low.
Using a depth-first allocation scheme, however, as shown

Prepared using sagej.cls



18 Journal Title XX(X)

Core 0 

Core 1 

Core 2 

Core 3 

Processor_1

Processor_3

13

Processor_9

18

Processor_15

14 1

Processor_4

6

Processor_5

4

Processor_6

2

7

Processor_10

Processor_11

5

Processor_12

6

Processor_16

8

Processor_17

7

Processor_18

6

6

105 7

14

0

0

Figure 26. Visualization of a simulation of the model in
Figure 24.

in Figure 27, minimizes inter-kernel connections while
maximizing intra-kernel connections.

Simulation results are shown in Figure 28 for both
allocation schemes in combination with both synchro-
nization protocols. We see that for both synchronization
protocols, the depth-first allocation is significantly better
than breadth-first allocation. This is what we expected
for this model: depth-first allocation preserves locality
better than breadth-first allocation. Whereas this is the
case in this example, this is not true in general, as the ideal
allocation depends on the model being simulated.

The most prominent aspect of these results is the low
performance for conservative depth-first allocation for
two kernels. This is mostly caused by the introduction of
synchronization protocols: suddenly we need to take into
account other kernels and passing around of lookahead
values. And since the number of kernels is low, the
overhead dominates. Optimistic is less sensitive to the
number of atomic models per kernel as it does not need to

Core 0 

Core 1 

Core 2 

Core 3 

Processor_15

Processor_16

8

Processor_17

7

Processor_18

67

14

Processor_9

7

Processor_10

Processor_11

5

Processor_12

6

5

Processor_3

1

Processor_4

6

Processor_5

4

Processor_6

26

10

Processor_1

14

18

13

0

0

Figure 27. Visualization of a simulation of the model in
Figure 25.

poll each model for a lookahead, this explains the lower
runtime penalty observed for optimistic.

Interestingly, we see that optimistic synchronization
is less influenced by the allocation than conservative
synchronization. This is likely caused by the lower num-
ber of connections to take into account in conservative
synchronization. Whereas conservative synchronization
needs to take into account even scarcely used connections,
optimistic synchronization does not. The same is true
in the opposite direction, though, where optimistic syn-
chronization is slower when a good allocation is chosen.
Conservative synchronization will then be able to make
better estimates, whereas optimistic synchronization does
not make estimations.

Prepared using sagej.cls



19

Figure 28. PHoldTree model performance using different
allocation schemes.

Related Work
Several similar DEVS simulation tools have already been
implemented, though they differ in several key aspects.
We discuss several dimensions of related work, as we try
to compromise between different tools.

In terms of code design and philosophy, dxex is
most related to PythonPDEVS [9]. Performance of
PythonPDEVS was decent through the use of “hints” from
the modeler. In this spirit, we offer users the possibility
to choose between different synchronization protocols.
This allows users to choose the most appropriate
synchronization protocol, depending on the model.
Contrary to PythonPDEVS, however, dxex doesn’t support
distributed simulation [15], model migrations [31], or
activity hints [16].

Although PythonPDEVS offers very fast turnaround
cycles, simulation performance was easily outdone by
compiled simulation kernels. In terms of performance,
adevs [10] offered much faster simulation, at the cost of
compilation time. While this is beneficial for long running
simulations, small simulations are therefore negatively
impacted. The turnaround cycle in adevs is much slower,

specifically because the complete simulation kernel is
implemented using templates in header files. As a result,
the complete simulation kernel has to be compiled again
every time. Similarly to vle [33] and PowerDEVS [34],
dxex compromises by separating the simulation kernel
into a shared library. After the initial compilation of the
simulation tool, only the model has to be compiled and
linked to the shared library. This significantly shortens the
turnaround cycle, while still offering good performance.
In terms of performance, dxex is shown to be competitive
with adevs. Despite its high performance, adevs does not
support optimistic synchronization, which we have shown
to be highly relevant for certain kinds of models.

Previous DEVS simulation tools have already imple-
mented multiple synchronization protocols, though none
have done so in a strictly modular way that allows
straightforward protocol switching for a single given
model. For example, adevs only supports conservative
synchronization, and vle only supports experiment-level
parallelism (i.e., run independent experiments in paral-
lel). Closest to our support for multiple synchronization
protocols is CD++ [35]. For CD++, both a conservative
(CCD++ [36]) and optimistic (PCD++ [37]) variant
exist. Despite the implementation of both protocols, they
are entirely different projects. Some features might there-
fore be implemented in CCD++ and not in PCD++, or
vice versa. And while this might not be a problem at
this time, the problem will only get worse when each
project follows its own course. Dxex, on the other hand,
is a single project, where the choice of synchroniza-
tion protocol is a simple configuration option. CD++,
however, implements both conservative and optimistic
synchronization for distributed simulation, whereas we
limit ourselves to parallel simulation. A new architecture
for sequential PDEVS simulation has been introduced in
[38] with promising performance results. This algorithm
achieves a speedup by using xP synchronization. By
limiting our approach to pure parallel simulation (i.e.,
no distributed simulation), we are able to achieve higher
speedups through the use of shared memory communica-
tion. Recent work on parallel speedup in DEVS investi-
gates theoretical limits of PDEVS [39, 27]

In the PDES community, the problem of choosing
between synchronization protocols is well known and
documented [40]. The challenges of implementing
such runtime switching have previously been explored

Prepared using sagej.cls



20 Journal Title XX(X)

already [41], and implemented [42]. Our contribution
entails bringing this same feature to the Parallel DEVS
community, further expanding upon our support for
multiple synchronization protocols.

Model allocation and its impact on parallel perfor-
mance has previously also been studied in the PDES
community [43]. Referenced as partitioning of the sim-
ulation model, most studies distinguish between com-
munication and computation as the two dimensions to
partition over. Partitioning a model is identified as an
issue to achieve scalability [44]. Some research in this
context has been done for Parallel DEVS [45, 46].
Our contribution studies the effect of partitioning with
emphasis on the effect of communication between kernels
and in the presence of a flattened hierarchy. We focus
on static partitioning since this is a limiting factor for
our conservative synchronization implementation which
does not support model migration. Model migration, as
implemented by PythonPDEVS, might be an interesting
addition to model allocation.

In summary, dxex tries to find the middle ground
between the concepts of PythonPDEVS, the performance
of adevs, and the multiple synchronization protocols of
CD++. To further profit from our multiple synchroniza-
tion protocols in a single tool, we further added runtime
switching between synchronization protocols and model
allocation support.

Conclusions and Future Work

In this paper, we introduced DEVS-Ex-Machina (“dxex”),
a new C++11-based Parallel DEVS simulation tool.
Our main contribution is the implementation of multiple
synchronization protocols for parallel simulation. We
have shown that there are indeed models which
can be simulated significantly faster using either
synchronization protocol. Dxex allows the user to choose
between any of the six supported synchronization
protocols. We distinguish between inter-kernel (none,
conservative, and optimistic synchronization) and intra-
kernel (sequential or parallel concurrent transitions)
synchronization protocols, which are orthogonal to
one another. Depending on observed model behaviour
and simulation performance, runtime switching between
synchronization protocols can be used.

Notwithstanding our modularity, dxex achieves per-
formance competitive to adevs, another very efficient
DEVS simulation tool. Performance is measured both in
elapsed time, and memory usage. Our empirical analysis
shows that allocation of models over kernels is critical to
enable a parallel speedup. Furthermore we have shown
when and why optimistic synchronization can outperform
conservative and vice versa. We have also shown the
influence of using the parallelism inherent in the Parallel
DEVS formalism, and its interaction with inter-kernel
synchronization algorithms. Finally we investigated the
effect of memory (de)allocation on parallel simulation.

Future work is possible in several directions. First, our
implementation of optimistic synchronization should be
more tolerant to low-memory situations. In its current
state, simulation will simply halt with an out-of-memory
error. Having simulation control, which can throttle the
speed of nodes that use up too much memory, has
been shown to work in these situations [5]. Faster GVT
implementations [47, 48] might further help to minimize
this problem. Second, the runtime switching between
synchronization protocols can be driven using machine
learning techniques. The simulation engine is already
capable of collecting data to inform such a process, and
is designed to listen for commands from an external
component. Third, automatic allocation might be possible
by analysis of the connections between models. This
information is already used in dxex to construct the
dependency graph in conservative synchronization. A
graph algorithm that distributes models, while avoiding
cycles, could be used to offer a parallel speedup in either
optimistic or conservative synchronization. Similarly, it
could serve as a default parallel allocation scheme that can
be improved by the user. Finally, the use of transactional
memory can offer several advantages in this project. If it
becomes part of the new C++17 standard it would be of
great interest to see if it can help reduce the performance
effects of memory allocation and synchronization.

ACKNOWLEDGMENTS
This work was partly funded with a PhD fellowship
grant from the Research Foundation - Flanders (FWO).
Partial support by the Flanders Make strategic research
centre for the manufacturing industry is also gratefully
acknowledged.

Prepared using sagej.cls



21

References
[1] Zeigler B, Praehofer H and Kim TG. Theory of

Modeling and Simulation. 2nd ed. Academic Press,
2000.

[2] Vangheluwe H. DEVS as a common denominator
for multi-formalism hybrid systems modelling. In
IEEE International Symposium on Computer-Aided
Control System Design. 2000. pp. 129–134.

[3] Chow ACH and Zeigler B. Parallel DEVS: a
parallel, hierarchical, modular, modeling formalism.
In Proceedings of the 1994 Winter Simulation
Multiconference. 1994. pp. 716–722.

[4] Himmelspach J and Uhrmacher A. Sequential
processing of PDEVS models. In Proceedings of the
3rd European Modeling & Simulation Symposium.
2006. pp. 239–244.

[5] Fujimoto R. Parallel and Distributed Simulation
Systems. 1st ed. New York, NY, USA: John Wiley
& Sons, Inc., 1999.

[6] Kim KH, Seong YR, Kim TG et al. Distributed
simulation of hierarchical DEVS models: Hierar-
chical scheduling locally and time warp globally.
Transactions of the SCS 1996; 13(3): 135–154.

[7] Jafer S and Wainer G. Conservative vs. optimistic
parallel simulation of DEVS and Cell-DEVS: A
comparative study. In Proceedings of the 2010
Summer Simulation Multiconference. 2010. pp.
342–349.

[8] Cardoen B, Manhaeve S, Tuijn T et al. Performance
analysis of a PDEVS simulator supporting multiple
synchronization protocols. In Proceedings of
the 2016 Symposium on Theory of Modeling and
Simulation - DEVS. 2016. pp. 614–621.

[9] Van Tendeloo Y and Vangheluwe H. The modular
architecture of the Python(P)DEVS simulation
kernel. In Proceedings of the 2014 Symposium on
Theory of Modeling and Simulation - DEVS. 2014.
pp. 387–392.

[10] Nutaro J. adevs. http://www.ornl.gov/˜1qn/
adevs/, 2015.

[11] Jefferson D. Virtual time. ACM Transactions on
Programming Languages and Systems 1985; 7(3):
404–425.

[12] Van Tendeloo Y. Activity-aware DEVS simulation.
Master’s Thesis, University of Antwerp, Antwerp,
Belgium, 2014.

[13] Chen B and Vangheluwe H. Symbolic flattening of
DEVS models. In Proceedings of the 2010 Summer
Simulation Multiconference. 2010. pp. 209–218.

[14] Barros F. Modeling formalisms for dynamic
structure systems. ACM Transactions on Modeling
and Computer Simulation 1997; 7: 501–515.

[15] Van Tendeloo Y and Vangheluwe H. An overview
of PythonPDEVS. In RED CW (ed.) JDF 2016
– Les Journées DEVS Francophones – Théorie et
Applications. 2016. pp. 59–66.

[16] Van Tendeloo Y and Vangheluwe H. Activity in
PythonPDEVS. In Proceedings of the workshop on
Activity-based Modeling and Simulation. 2014. pp.
2:1–2:10.

[17] OpenMP Architecture Review Board. OpenMP
application program interface version 4.5.
http://www.openmp.org/mp-documents/
openmp-4.5.pdf, 2015.

[18] Mattern F. Efficient algorithms for distributed
snapshots and global virtual time approximation.
Journal of Parallel and Distributed Computing
1993; 18(4): 423–434.

[19] Drepper U. What every programmer should know
about memory. https://lwn.net/Articles/250967/,
2007.

[20] Hanson D. Fast allocation and deallocation of
memory based on object lifetimes. Software:
Practice and Experience 1990; 20(1): 5–12.

[21] Cleary S and Bristow P. Boost Pool: Fast memory
pool allocation. http://www.boost.org/doc/
libs/1_61_0/libs/pool/doc/html/, 2011.

Prepared using sagej.cls

http://www.ornl.gov/~1qn/adevs/
http://www.ornl.gov/~1qn/adevs/
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.boost.org/doc/libs/1_61_0/libs/pool/doc/html/
http://www.boost.org/doc/libs/1_61_0/libs/pool/doc/html/


22 Journal Title XX(X)

[22] Ghemawat S and Menage P. TCMalloc: Thread-
caching malloc. http://goog-perftools.
sourceforge.net/doc/tcmalloc.html, 2005.

[23] L’Ecuyer P. Random numbers for simulation.
Communications of the ACM 1990; 33(10): 85–97.

[24] Bauke H and Mertens S. Random numbers for large-
scale distributed Monte Carlo simulations. Physical
Review E 2007; 75(6): 066701:1–066701:14.

[25] Wainer G, Glinsky E and Gutierrez-Alcaraz M.
tudying performance of devs modeling and simu-
lation environments using the devstone benchmark.
SIMULATION 2011; 87(7): 555–580.

[26] Van Tendeloo Y and Vangheluwe H. An evaluation
of DEVS simulation tools. SIMULATION 2016;
DOI:10.1177/0037549716678330.

[27] Zeigler B, Nutaro J and Seo C. What’s the
best possible speedup achievable in distributed
simulation: Amdahl’s law reconstructed. In
Proceedings of the 2015 Symposium on Theory of
Modeling and Simulation - DEVS. 2015. pp. 189–
196.

[28] Glinsky E and Wainer G. DEVStone: a
benchmarking technique for studying performance
of DEVS modeling and simulation environments.
In Proceedings of the 9th IEEE/ACM International
Symposium on Distributed Simulation and Real-
Time Applications. 2005. pp. 265–272.

[29] Fujimoto R. Performance of Time Warp under
synthetic workloads. In Proceedings of the SCS
Multiconference on Distributed Simulation. 1990.
pp. 23–28.

[30] Muzy A and Nutaro J. Algorithms for efficient
implementations of the DEVS & DSDEVS abstract
simulators. In 1st Open International Conference on
Modeling and Simulation (OICMS). 2005. pp. 273–
279.

[31] Van Tendeloo Y and Vangheluwe H. Python-
PDEVS: a distributed Parallel DEVS simulator. In
Proceedings of the 2015 Symposium on Theory of
Modeling and Simulation - DEVS. 2015. pp. 844–
851.

[32] Jelasity M. Gossip. Springer Berlin Heidelberg,
2011. pp. 139–162.

[33] Quesnel G, Duboz R, Ramat E et al. VLE: a
multimodeling and simulation environment. In
Proceedings of the 2007 Summer Simulation
Multiconference. 2007. pp. 367–374.

[34] Bergero F and Kofman E. PowerDEVS: a tool for
hybrid system modeling and real-time simulation.
Simulation 2011; 87(1-2): 113–132.

[35] Wainer G. CD++: a toolkit to develop DEVS
models. Software: Practice and Experience 2002;
32(13): 1261–1306.

[36] Jafer S and Wainer G. Flattened conservative
parallel simulator for DEVS and Cell-DEVS.
In Proceedings of International Conferences on
Computational Science and Engineering. 2009. pp.
443–448.

[37] Troccoli A and Wainer G. Implementing Parallel
Cell-DEVS. In Proceedings of the 36th Annual
Symposium on Simulation. 2003. pp. 273–280.

[38] Vicino D, Niyonkuru D, Wainer G et al. Sequential
PDEVS architecture. In Proceedings of the 2015
Symposium on Theory of Modeling and Simulation -
DEVS. 2015. pp. 165–172.

[39] Capocchi L, Santucci JF and Zeigler B. PDEVS
protocol performance prediction using activity
patterns with Finite Probabilistic DEVS. In
Proceedings of the 2016 Symposium on Theory of
Modeling and Simulation - DEVS. 2016. pp. 605–
613.

[40] Jha V and Bagrodia R. A unified framework for
conservative and optimistic distributed simulation.
In Proceedings of the 8th workshop on Parallel and
distributed simulation. 1994. pp. 12–19.

[41] Das S. Adaptive protocols for parallel discrete
event simulation. In Proceedings of the 1996 Winter
Simulation Conference. 1996. pp. 186–193.

[42] Perumalla K. µsik-a micro-kernel for paral-
lel/distributed simulation systems. In Workshop on

Prepared using sagej.cls

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html


23

Principles of Advanced and Distributed Simulation.
2005. pp. 59–68.

[43] Bahulkar K, Wang J, Abu-Ghazaleh N et al.
Partitioning on dynamic behavior for parallel
discrete event simulation. In Proceedings of the
ACM/IEEE/SCS 26th Workshop on Principles of
Advanced and Distributed Simulation. 2012. pp.
221–230.

[44] Nicol D. Scalability, locality, partitioning and
synchronization PDES. In Proceedings of the 12th
Workshop on Parallel and Distributed Simulation.
1998. pp. 5–11.

[45] Himmelspach J, Ewald R, Leye S et al. Parallel
and distributed simulation of Parallel DEVS models.
In Proceedings of the 2007 Spring Simulation
Multiconference - Volume 2. 2007. pp. 249–256.

[46] Ewald R, Himmelspach J and Uhrmacher A. A non-
fragmenting partitioning algorithm for hierarchical
models. In Proceedings of the 2006 Winter
Simulation Conference. 2006. pp. 848–855.

[47] Fujimoto R and Hybinette M. Computing Global
Virtual Time in shared-memory multiprocessors.
ACM Transactions on Modeling and Computer
Simulation 1997; 7(4): 425–446.

[48] Bauer D, Yaun G, Carothers C et al. Seven-
O’Clock: A new distributed GVT algorithm using
network atomic operations. In Proceedings of
the Workshop on Principles of Advanced and
Distributed Simulation. 2005. pp. 39–48.

Author Biographies

Ben Cardoen is a Master’s student in Computer Science at
the University of Antwerp, Belgium.

Stijn Manhaeve is a Master’s student in Computer Science
at the University of Antwerp, Belgium.

Yentl Van Tendeloo is a PhD student at the University of
Antwerp, Department of Mathematics and Computer Science,
Antwerp, Belgium.

Jan Broeckhove is a full professor at the University of
Antwerp, Department of Mathematics and Computer Science,
Antwerp, Belgium.

Prepared using sagej.cls


	Introduction
	Background
	Conservative Synchronization
	Optimistic Synchronization

	DEVS-Ex-Machina
	Synchronization protocols
	Inter-Kernel Synchronization
	Intra-Kernel Synchronization

	Synchronization Protocol Transparency
	Increasing Parallelism
	Memory Management
	Random Number Generators


	Performance Evaluation
	Benchmark Models
	Single kernel (NN Synchronization)
	Queue
	Interconnect
	PHold

	Inter-Kernel Parallelism (CN and ON synchronization)
	Queue
	Interconnect
	PHold

	Intra-Kernel Parallelism (xP synchronization)
	Memory Usage
	Remarks
	Results

	Conclusions on Performance Evaluation

	Runtime Switching
	Statistics Gathering
	Visualization of Communication


	Model Allocation
	Performance Evaluation
	No Inter-Kernel Synchronization (NN)
	Inter-Kernel Synchronization (CN and ON)


	Related Work
	Conclusions and Future Work

