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Abstract. The various meta-modelling tools in existence today all have
differences in their conformance relations, either intentional or acciden-
tal. This results in incompatibilities between tools, where a model cannot
simply be exchanged as-is: the meta-meta-model and semantics likely
differ. Current tools are inflexible in this regard, making their mod-
els grafted on the tool implementation. In this paper, we distinguish
between syntactical and semantical differences between tools, both re-
sulting in non-exchangable models. We propose to explicitly model the
meta-meta-model (addressing syntactical differences) and its semantics
(addressing semantical differences). This allows meta-meta-models and
semantics to be added and manipulated at runtime, making our approach
flexible for new tools as well. Models and languages from different tools
can then be meaningfully stored in a single tool, retaining syntax and
semantics. We provide a prototype implementation: the Modelverse.

1 Introduction

A plethora of meta-modelling tools currently exist, many with their own meta-
circular level and associated conformance semantics. Due to these intentional or
accidental differences, inconsistencies between tools arise: all models, including
languages, become grafted on the tool’s implementation. With the growing im-
portance of tool interoperability, for example in collaboration and model repos-
itories, this might turn into a problem: while the model can be exchanged, the
inherent tool semantics cannot.

These limitations are caused by variations between tools, in which we dis-
tinguish two types: syntactical and semantical. Syntactical variations result in
non-exchangable models, and semantical variations cause unexpected behaviour
with successfully exchanged models. A simple example is multiple inheritance.
Syntactically, some tools do not support this, making them unable to receive
models from tools which do support multiple inheritance. Semantically, some
tools handle the resolution order of multiple inheritance differently, thereby al-
tering the set of allowed instances.

In this paper, we address this problem by explicitly modelling the syntax and
semantics, usually built into the tool. Apart from documentation, new syntax



and semantics can be loaded on-demand, without altering the tool itself. As
such, a single tool is able to store and operate semantically meaningful models
of different tools, given that explicit models are present. Models now become
grafted on another model, which can just as well be exchanged, instead of being
grafted on the tool implementation. Additionally, the created models can be
used as documentation of the syntax and semantics of the tool.

The remainder of this paper is organized as follows. Section 2 specifies the
two types of variations and provides examples. Section 3 presents our explicitly
modelled approach. Section 4 describes our implementation. Section 5 presents
related work. Section 6 concludes the paper and presents future work.

2 Types of Variation

Semantically meaningful model exchange is hindered by tool incompatibilities.
Even similar tools, by the same authors, are often incompatible: AToMPM [19]
and AToM3 [12]; WebGME [14] and GME [13]; DPF [8] and WebDPF [15]. Even
different versions of the same tool can be incompatible, either intentionally [3],
or accidentally due to minor implementation changes or bugs.

To concretize the problem, we focus on two tools throughout the remainder
of the paper: AToMPM [19] and Metadepth [9]. For both tools, we describe some
(hardcoded) differences to illustrate the problem. We present minimal example
languages and models for both syntactical and semantical differences.

We consider two types of variations: syntactical and semantical variations.

2.1 Syntactical Variations

First are syntactical variations, caused by a different abstract syntax of the meta-
language. Such changes can automatically be detected, as a model would rely
on unknown constructs. We show two examples: one with a feature of AToMPM
that Metadepth does not support, and one that is the other way around.

The first example language, in Figure 1a, uses a specific kind of association:
the containment relation, as supported by AToMPM. It resembles an ordinary
association, but indicates that the source element is a container for the target
element. Its primary use is for visual representation, though it is also used as
implicit constraint: containment cycles are not allowed. Instances of class A can
contain instances of the class B, and the other way around. Figure 1b shows an
example instance of this language, where a contains b, but also the other way
around. Conceptually, this does not make any sense. With a containment rela-
tion, this is automatically flagged as an error and the model does not conform. In
Metadepth, which does not support a containment relation, this same language
cannot be loaded; the association type “containment” is unknown. As such, the
model cannot be exchanged either, as it depends on the language. It is possible
to mimic the containment relation in Metadepth by defining the containment
relation as a normal association, which has an additional constraint that does
not allow loops. A semantically equivalent meta-model is shown in Figure 1c.



A B
contains

contains

(a) AToMPM meta-model.

a:A b:B

(b) Invalid instance.

A B
$noLoop([A2B,B2A])$

(c) Metadepth meta-model.

Fig. 1: First example language: use of containment links.

The second example language, in Figure 2a, uses multiplicities on a class, as
supported by Metadepth. The lower and upper cardinality is defined as an integer
attribute on the class. Its primary use is to restrict the number of instances of
this specific type: the number of instances must be within this range. The class
A requires that there are exactly two instances of A in every model conforming
to it. Figure 2b shows an example instance, where only one instance of A is
present. With the class multiplicities, this is automatically flagged as an error
and the model does not conform. In AToMPM, which does not support class
multiplicities, this same language cannot be loaded: the attribute “multiplicity”
is unknown. It is possible to mimic multiplicities in AToMPM by defining a
global constraint, which checks the number of instances of A. A semantically
equivalent meta-model is shown in Figure 2c.

A[2]

(a) Metadepth meta-model.

a1:A

(b) Invalid instance.

A
$allInstances("A").size() == 2$

(c) AToMPM meta-model.

Fig. 2: Second example language: use of node multiplicities.

In both example languages, the tools are equivalent in their expressiveness
(i.e., they can be used to express the same language), but the language must
be represented differently. As such, languages, and therefore models, cannot be
easily exchanged without a conversion at the abstract syntax level.

2.2 Semantical Variations

Second are semantical variations, caused by a difference in the implementation
of the conformance check, which provides the semantics for the abstract syntax
of the meta-language. Clearly, just calling an association “containment” or an
attribute “multiplicity” does not automatically give it the correct semantics:
it needs to be defined somewhere. Semantic differences are indetectable when
models are exchanged, as they structurally conform.

Note that we consider the semantics of the meta-modelling language (i.e.,
what does a given meta-model mean), and not the semantics of the modelling
language (i.e., what does a given model mean). The former is mostly hardcoded



in the tool, whereas the latter is domain-specific and implemented using, for
example, model transformations.

The third and final example language, in Figure 3a, uses multiple inheritance,
as supported by both AToMPM and Metadepth. An example of such a language
is shown in Figure 3a, where the class C inherits from both A and B. Both A
and B define the same attribute but with different types. It is unclear which
of the two is selected for C, which inherits from both. The semantics attached
to multiple inheritance, responsible for the choice, is hardcoded in both tools
and left undocumented. Only experimentation is therefore possible to figure out
what it means, resulting in Figure 3b for AToMPM and Figure 3c for Metadepth.
As the set of conforming instances differs, for the same language, both tools
attach different semantics to the language. AToMPM seems to resolve the earliest
created inheritance link, whereas Metadepth seems to lexicographically sort the
class names and picks the first match.

C

A
d : int

B
d : string

(a) Metamodel.

d = "a"

c2:C
d = 1

c1:C

(b) AToMPM instances.

d = 1

c1:C
d = "a"

c2:C

(c) Metadepth instances.

Fig. 3: Third example language: use of multiple inheritance.

While the example difference here is likely intentional, many other differences
exist that are likely accidental (e.g., bugs or ommissions). For example, AToMPM
does not check the type of attributes, and Metadepth cannot connect edges when
inheritance is involved, nor can it have attributes with specific keyworded names
(e.g., “id”). Notwithstanding the source of the difference, the semantic differences
make model exchange meaningless. And when the tool semantics is altered (e.g.,
an intentional change, a bugfix, or a newly introduced bug), it is possible that
a previously conforming model suddenly becomes invalid, or that a previously
invalid model suddenly becomes valid.

2.3 Problem Scope

The previously introduced problems are often irrelevant for users of a single tool.
As such, we do not propose to alter existing (meta-)modelling tools, though it
might be useful to have sufficient documentation. The true problem lies else-
where, with tools that explicitly have to communicate with many different tools:
model repositories.

The primary purpose of model repositories is model storage and exchange. It
makes sense that they want to maximize the set of supported tools, thereby max-
imizing the available models. Model repositories, however, have to understand



the models they are managing, as otherwise they would be reduced to a mere file
server. When working with models from different tools, and possibly exchanging
them between these tools, it becomes important to take these syntactical and
semantical variations into account.

3 Explicit Type/Instance Relations

Varying abstract syntax and semantics at the meta-language level were identified
as the root of the problem. Current tools acknowledge that an explicit meta-
model is required to create a flexible modelling tool, in which the language can
be altered. They do not, however, take this one level up the meta-modelling
hierarchy: the language used to create new languages, the meta-language, is
hardcoded in the tool. Being hardcoded, the problem becomes even worse: they
are not flexible either, as the hardcoded aspects cannot be altered in any way. For
this reason, we propose to explicitly model both the meta-language’s abstract
syntax and semantics, and make this fully flexible at runtime.

Some aspects of current tools are already modelled explicitly. We distin-
guish three layers, as commonly agreed upon: M1 (model level), M2 (language
level, or meta-model), and M3 (meta-language level, or meta-meta-model). For

Metadepth, both M1 (MAS
1 ) and M2 (MAS

2 , MSEM
2 ) are explicitly modelled.

In AToMPM, the syntax of M3 (MAS
3 ) is additionally explicitly modelled. Both

tools hardcode the semantics of M3 (MSEM
3 ). It is this aspect of the tool that

we will also model explicitly in our approach.

As both MAS
3 and MSEM

3 are explicitly modelled in our approach, it be-
comes possible to (1) alter them at runtime (e.g., optimizations, refactorings);
(2) create and use new ones at runtime (e.g., support a new tool, bugfixes);
and (3) have multiple of them simultaneously (e.g., models from different tools
loaded in a single tool).

3.1 Meta-meta-model (MAS
3 )

The meta-meta-model MAS
3 defines the concepts that can be used when defining

a new language, or meta-model. It has two primary purposes. First, it can serve
as documentation for language engineers: what is the name of attributes, what
constraints can be added, whether multiple inheritance is supported, and so on.
Second, it is required for several operations that need an explicit meta-model.
For example RAMification [7], used to create a new language to express model
transformation rules by Relaxing, Augmenting, and Modifying the existing lan-

guage. Differences in MAS
3 lead to syntactical differences between tools, which

can be automatically detected by comparing two MAS
3 models.

The MAS
3 of AToMPM is shown in Figure 4, modelled explicitly using Entity-

Relation Diagrams. It shows the various attributes that can be set on a class,
such as “attributes” to define new attributes, and “name”. Perhaps surprisingly,
attributes have no dedicated entity, in contrast to other approaches, such as
EMF.



GlobalConstraint
name
event
code

GlobalAction
name
event
code

Class
name
attributes
constraints
actions
cardinalities
abstract

Association

Inheritance

Fig. 4: AToMPM’s MAS
3 , taken directly from AToMPM itself.

3.2 Meta-Language Semantics (MSEM
3 )

The meta-language semantics MSEM
3 defines the semantics of concepts defined

in MAS
3 . It takes a model and its meta-model as input, and determines whether

the model conforms to the meta-model. Its primary purpose is in determining
whether a model is valid with respect to a given language specification (i.e., check

conformance). Differences in MSEM
3 lead to semantical differences between the

tools, which are difficult to detect automatically. Indeed, we would need to verify

if two models for MSEM
3 behave exactly the same in every possible context.

Due to space restrictions, we only show a snippet of the conformance al-
gorithm of Metadepth, pertaining to the multiplicity checks of classes in Al-
gorithm 1. This pseudo-code can be modelled in an explicitly modelled action
language.

Algorithm 1 MSEM
3 snippet for the cardinality check.

for all class ∈ allInstances(M3, Class) do
assert allInstances(M2, class) ≥ class.lower cardinality
assert allInstances(M2, class) ≤ class.upper cardinality

end for

4 Implementation

As a proof of concept, we implemented this approach in our prototype tool:
the Modelverse1 [21, 23]. We describe the basics of the Modelverse, and present
our implementation of this approach in our prototype tool. We show that our

approach can indeed handle different types of MAS
3 and MSEM

3 in the same
tool, making it compatible with multiple tools. We do not consider technical
challenges, such as how to export a model and load it again in our tool.

The Modelverse, in essence, consists of an explicitly modelled action lan-
guage interpreter, combined with an action language implementation of all meta-
modelling behaviour. As such, not only the conformance aspects are modelled

1 https://msdl.uantwerpen.be/git/yentl/modelverse.git



explicitly, but all other aspects as well, such as model instantiation, model trans-
formation, and model management in general. The action language semantics
has been explicitly modelled as well [22]. When defining a new conformance
relation, this is therefore a model in the Modelverse and an extension to the
Modelverse at the same time.

The interrelations between all models, such as conformance relations, are also
modelled explicitly. For each conformance relation, the link is specified by the
source model (instance), target model (meta-model), and conformance seman-
tics. As such, a model can conform to the same meta-model through multiple
conformance semantics, or to different meta-models using the same conformance
semantics, or to different meta-models using different conformance semantics.

Using this explicitly modelled approach, the Modelverse is able to offer the
same results for the conformance checks as either AToMPM or Metadepth, or
any other tool, for that matter. An overview of how these explicitly modelled
interrelations are stored, is shown in Figure 5, which itself represents a model
in the Modelverse. While L1 and L2 can only be created in AToMPM and
Metadepth, respectively, L3 is a valid language in both. Nonetheless, both tools
attach a different semantics to L3, as seen in the two different instances: M3
and M4. Both conformance semantics are also explicitly modelled, as shown at
the right. These are again typed by something, in this case using a conformance
relation defined specifically for the Modelverse, though also explicitly modelled.
This could just as well have been any other previously defined semantics.

MMMAToMPM MMMMetaDepth

L1 L2L3

M1 M2M3 M4 SEMAToMPM SEMMetaDepth

MMMModelverse

Action
Language

SEMModelverse

Fig. 5: Overview of languages, models, and relations in the Modelverse.

5 Related Work

The conformance relation plays a crucial role in Model Driven Development
(MDE) [20, 1]. But while it has often been studied, it has remained hardcoded
in various tools. Research up to now has mostly focussed on defining different
levels of conformance [6] and new types of conformance, such as relaxed [17]
or partial [18]. Nonetheless, they are hardcoded and partially inflexible as well:
tools cannot be extended with additional conformance relations, nor can existing
conformance relations be inspected or manipulated.

Updates to the hardcoded syntax and semantics, such as UML, have resulted
in (often unnecessary) breakage of conformance [3]. As such, old models cannot



be loaded in newer versions of the same tool, if tools update their implementation
of the UML. But whereas a model might still load in a newer version of the UML,
nothing guarantees that the same semantics are used in its evaluation.

In the multi-level modelling community, many aspects of conformance are
still being investigated, specifically for newly introduced physical attributes. For
example, the “potency” attribute has various meanings, though in all tools it
is typed as a natural number [16]. All identified semantics were implemented
side by side in Metadepth, and users could toggle between them on a case-
by-case basis. While this certainly gives great freedom, it creates yet another
specification of the semantics: a union of existing ones. Future definitions might
yet again require changes to this specification, potentially breaking conformance.

When models are exchanged, the first thoughts are of the technological prob-
lems: how to transfer the data from one tool to another. Various serialization
formats were conceived for this problem, such as XMI and JSON. Nonetheless,
they limit themselves to transfering data only, not the actual model. Essentially,

MAS
2 is exchanged, but MAS

3 and MSEM
3 are not. As such, models can be

exchanged, assuming that both tools implement the same MAS
3 and MSEM

3 .
Should they differ, the exchanged data becomes semantically meaningless.

This brings us to model repositories, which, using this approach, often re-
sort to semantically meaningless model exchange. For example, ReMoDD [5],
being as general as possible, sacrifices model semantics: uploaded models have
only marginally more semantics than arbitrary files. Advanced operations, which
rely on the semantics of these models, are not supported. Another solution, as

taken by MDEForge [2], is to restrict exchanged models to its own MAS
3 and

MSEM
3 . This allows them to actually use the models, for example for model

transformations [4], though they do so by limiting the set of supported tools.

A posteriori typing [11] has been proposed as a way to have multiple types for
a single model. But whereas our approach does not consider any conformance
relation as special, a posteriori typing starts from a special relation: the con-
structive type. The constructive type is the type used to instantiate the model,
and cannot be changed. All other types, discovered on-the-fly, are completely
flexible. Even though multiple meta-models can be found for a single model, all

conformance relations must use the same MAS
3 and MSEM

3 . As such, only MAS
2

can change, and not MAS
3 nor MSEM

3 , though this provides sufficient knowledge
to reuse operations between different meta-models. Concepts [10] serve a similar

purpose, but also with similar restrictions: there is only freedom at MAS
2 .

6 Conclusions and Future Work

We have presented the problem of combining multiple (meta-)modelling tools,
each with their own meta-meta-model syntax and semantics. This problem is
particularly relevant in the context of model repositories, where the collaboration
between multiple tools is the primary requirement.



We proposed to explicitly model all aspects of the conformance relation: its
abstract syntax and semantics. Using our approach, we have shown that we
can achieve full flexibility. A single tool was able to store, in a semantically
meaningful way, models with the same semantics as other tools. Furthermore, a
single model can conform using multiple such semantics, potentially to different
abstract syntax definitions as well.

A prototype implementation of this approach was presented in the Model-
verse, our explicitly modelled meta-modelling environment. The Modelverse was
able to handle multiple models, meta-models, and also meta-meta-models, all
with their own associated semantics. At runtime, new conformance semantics
models could be uploaded, and existing ones could be modified.

In future work, we plan to investigate the influence of the conformance rela-
tion on other modelling operations as well, such as the allInstances operation.
Also, we intend to create a variability model of all differences encountered in

various MAS
3 and MSEM

3 implementations, of which each tool implementation
is (theoretically) a specific configuration. Finally, this approach is ideally suited
for semantically meaningfull model exchange between two existing tools: the
unifying tool, using our approach, would be able to perform the translation au-
tomatically.
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