
Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

CLASSIC DEVS MODELLING AND SIMULATION

Yentl Van Tendeloo

Department of Mathematics and Computer Science
University of Antwerp

Middelheimlaan 1
Antwerp, BELGIUM

Hans Vangheluwe

Department of Mathematics and Computer Science
University of Antwerp / Flanders Make vzw

Middelheimlaan 1
Antwerp, BELGIUM

ABSTRACT

DEVS is a popular formalism for modelling complex dynamic systems using a discrete-event abstraction.
At this abstraction level, a timed sequence of pertinent “events” input to a system (or internal, in the case
of timeouts) cause instantaneous changes to the state of the system. Main advantages of DEVS are its
rigorous formal definition, and its support for modular composition. This tutorial introduces the Classic
DEVS formalism in a bottom-up fashion, using a simple traffic light example. The syntax and operational
semantics of Atomic (i.e., non-hierarchical) models are introduced first. Coupled (i.e., hierarchical) models
are introduced to structure and couple Atomic models. We continue to actual applications of DEVS,
for example in performance analysis of queueing systems. All examples are presented with the tool
PythonPDEVS, though this introduction is equally applicable to other DEVS tools. We conclude with
further reading on DEVS theory, DEVS variants, and DEVS tools.

1 INTRODUCTION

DEVS (Zeigler, Praehofer, and Kim 2000) is a popular formalism for modeling complex dynamic systems
using a discrete-event abstraction. At this abstraction level, a timed sequence of pertinent “events” input to
a system cause instantaneous changes to the state of the system. These events can be generated externally
(i.e., by another model) or internally (i.e., by the model itself due to timeouts). The next state of the system
is defined based on the previous state of the system and the event. Between events, the state does not
change, resulting in a piecewise constant state trajectory. Simulation kernels must only consider states at
which events occur, skipping over all intermediate points in time. This is in contrast with discrete time
models, where time is incremented with a fixed increment, and only at these times is the state updated.
Discrete event models have the advantage that their time granularity can become (theoretically) unbounded,
whereas time granularity is fixed in discrete time models. Nonetheless, the added complexity makes it
unsuited for systems that naturally have a fixed time step.

This tutorial provides an introductory text to DEVS (often referred to as Classic DEVS nowadays)
through the use of a simple model in the domain of traffic lights. We start from a simple autonomous
traffic light, which is incrementally extended up to a trafficlight with policeman interaction. Each increment
serves to introduce a new component of the DEVS formalism and the corresponding (informal) semantics.
For each increment, an example implementation is shown with the tool PythonPDEVS (Van Tendeloo and
Vangheluwe 2016), though the concepts are equally well applicable to other tools.

We start with atomic (i.e., non-hierarchical) models in Section 2, and introduce coupled (i.e., hierarchical)
models in Section 3. Section 4 moves away from the traffic light example and presents a more complex
problem. Section 5 presents several directions of further reading on DEVS. Finally, Section 6 summarizes
the tutorial.



Van Tendeloo and Vangheluwe

simulation time

input

simulation time

state

simulation time

output

Yellow

Red

Green

Figure 1: Trace of the autonomous traffic light.

Red
60s

Yellow
3s

Green
57s e=0

Figure 2: Model generating trace in
Figure 1.

2 ATOMIC DEVS MODELS

We commence our explanation of DEVS with the atomic models. As their name suggests, atomic models
are the indivisable building blocks of a model.

Throughout this section, we build up the complete formal specification of an atomic model, introducing
new concepts as they become required. In each intermediate step, we show and explain the concepts we
introduce, how they are present in the running example, and how this influences the semantics. Next to a
full specification of each increment, PythonPDEVS example code is shown to illustrate the close match.

2.1 Autonomous Model

The simplest form of a traffic light is an autonomous traffic light. Looking at it from the outside, we expect
to see a trace similar to that of Figure 1. Visually, Figure 2 presents an intuitive representation of a model
that could generate this kind of trace.

Trying to formally describe Figure 2, we distinguish these elements:

1. State Set (S :×n
i=1Si)

The most obvious aspect of the traffic light is the state it is in, which is indicated by the three
different colours it can have. These states are sequential: the traffic light can only be in one of
these states at the same time. The set of states is not limited to enumeration style as presented
here, but can contain an arbitrary number of attributes.

2. Time Advance (ta : S→ R+
0,+∞

)
For each of the states just defined, we notice the timeout in them. Clearly, some states take longer
to process than others. For example, whereas we will stay in green and red a relatively long time,
the time in the yellow state is only brief. This function needs to be defined for each and every
element of the state set, and needs to deterministically return a duration. The duration can be any
positive real number, including zero and infinity. A negative time is disallowed, as this would
require simulation to go back in time. DEVS allows a time advance of exactly zero, even though
this is impossible in real life. Two use cases for this exist: the delay might be very small and
irrelevant to the problem we are modeling, or the state is an artificial state, without any real-world
equivalent (e.g., as part of a design pattern). Note that DEVS does not consider time bases, despite
the use of seconds in our visualization. Simulation time is just a real number, and the interpretation
given to it is up to the user. Whether these units indicate seconds, years, or even π seconds, is
completely up to the users, as long as it remains fixed throughout the simulation.

3. Internal Transition (δint : S→ S)
With the states and timeouts defined, the final part is the definition of which is the next state from
a given state. This is the job of the internal transition function, which gives the next state for each



Van Tendeloo and Vangheluwe

〈S,qinit ,δint , ta〉
S = {GREEN,YELLOW,RED}

qinit = (GREEN,0.0)
δint = {GREEN→ YELLOW,

YELLOW→ RED,

RED→ GREEN}
ta = {GREEN→ 57,

YELLOW→ 3,
RED→ 60}

Model 1: Autonomous atomic DEVS.

from pypdevs.DEVS import *

class TrafficLightAutonomous(AtomicDEVS):
def __init__(self):

AtomicDEVS.__init__(self, "Light")
self.elapsed = 0.0
self.state = "Green"

def intTransition(self):
state = self.state
return {"Red": "Green",

"Yellow": "Red",
"Green": "Yellow"}[state]

def timeAdvance(self):
state = self.state
return {"Red": 60,

"Yellow": 3,
"Green": 57}[state]

Listing 1: PythonPDEVS representation of Model 1

state. As it is a function, every state has at most one next state, preventing any possible ambiguity.
Note that the function does not necessarily have to be total, nor injective: some states might not
have a next state (i.e., if the time advance was specified as +∞), and some states have the same
state as next state. Up to now, only the internal transition function is described as changing the
state. Therefore, it is not allowed for other functions (e.g., time advance) to modify the state: their
state access is read-only.

4. Initial Total State (qinit : Q)
We also need to define the initial state of the system. While this is not present in the original
specification of the DEVS formalism in (Zeigler, Praehofer, and Kim 2000), we include it here
as it is a vital element of the model. But note that, instead of being an “initial state” (sinit), it is
a “total state” (qinit). This means that we not only select the initial state of the system, but also
define how long we are already in this state. Elapsed time is therefore added to the definition of
the initial total state, to allow more flexibility when modeling a system. To the simulator, it will
seem as if the model has already been in the initial state for some time. Total states are specified
as follows: Q = {(s,e)|s ∈ S,0≤ e≤ ta(s)}

We describe the model in Figure 2 as the 4-tuple defined in Model 1. Listing 1 presents the example
specification as PythonPDEVS code.

Algorithm 1 Simulation pseudo-code for autonomous models.
time← 0
current state← initial state
last time←−initial elapsed
while not termination condition(current state, time) do

time← last time+ ta(current state)
current state← δint(current state)
last time← time

end while

For this simple formalism, we define the semantics as in Algorithm 1. The model is initialized with
simulation time set to 0, and the state set to the initial state (i.e., GREEN). Simulation updates the time with
the returnvalue of the time advance function, and executes the internal transition function on the current
state to get the new state. This is repeated until simulation terminates.



Van Tendeloo and Vangheluwe

simulation time

input

simulation time

output

show_yellow
show_red

show_green

simulation time

state

Yellow

Red

Green

Figure 3: Trace of the autonomous traffic light with output.

Red
60s

Yellow
3s

Green
57s

!show_yellow

!show_green
!show_red

e=0

Figure 4: Model generating trace in
Figure 3.

2.2 Autonomous Model With Output

Recall that DEVS is a modular formalism, with only the atomic model having access to its internal state.
This raises a problem for our traffic light: others have no access to the current state (i.e., its colour).

We therefore want the traffic light to output an event indicative of its current colour, in this case in
the form of a string (and not as the element of an enumeration). For now, the output is tightly linked to
the set of state, but this will not remain the case. Our desired trace is shown in Figure 3. We see that we
now output events indicating the start of the specified period. Recall, also, that DEVS is a discrete event
formalism: the output is only a single event at some discrete point in time and is not a continuous signal.
The receiver of the event thus would have to store the event to know the current state of the traffic light
at any given point in time. Visually, the model is updated to Figure 4, using the exclamation mark on a
transition to indicate output generation. Output only happens at an internal transition.

Analysing the updated model, we see that two more concepts are required to allow for output.

1. Output Set (Y :×l
i=1Yi)

Similarly to defining the set of allowable states, we should also define the set of allowable outputs.
This set serves as an interface to other components, defining the events it expects to receive. Events
can have complex attributes as well, though we again limit ourself to simple events for now. If
ports are used, each port has its own output set.

2. Output Function (λ : S→ Y ∪{φ})
With the set of allowable events defined, we still need to generate the events. Similar to the other
functions, the output function is defined on the state, and deterministically returns an event (or no
event). As seen in Figure 4, the event is generated before the new state is reached. This means
that instead of the new state, the output function still uses the old state (i.e., the one that is being
left). For this reason, the output function needs to be invoked right before the internal transition
function. In the case of our traffic light, the output function needs to return the colour of the next
state, instead of the current state. For example, if the output function receives the GREEN state as
input, it needs to generate a show yellow event.
Similar to the time advance function, this function does not output a new state, and therefore state
access is read-only. This might require some workarounds: outputting an event often has some
repercussions on the model state, such as removing the event from a queue. Since the state can’t
be written to, these changes need to be remembered and executed as soon as the internal transition
is executed.
Note that it is possible for the output function not to return any output, in which case it returns φ .

We describe the model in Figure 4 as the 6-tuple defined in Model 2. Listing 2 presents the example
specification as PythonPDEVS code.



Van Tendeloo and Vangheluwe

〈Y,S,qinit ,δint ,λ , ta〉
Y = {show green,show yellow,show red}
S = {GREEN,YELLOW,RED}

qinit = (GREEN,0.0)
δint = {GREEN→ YELLOW,

YELLOW→ RED,

RED→ GREEN}
λ = {GREEN→ show yellow,

YELLOW→ show red,

RED→ show green}
ta = {GREEN→ 57,

YELLOW→ 3,
RED→ 60}

Model 2: Autonomous atomic DEVS model with
output.

from pypdevs.DEVS import *

class TrafficLightWithOutput(AtomicDEVS):
def __init__(self):

AtomicDEVS.__init__(self, "Light")
self.state = "green"
self.elapsed = 0
self.observe = self.addOutPort("observer")

def intTransition(self):
state = self.state
return {"Red": "Green",

"Yellow": "Red",
"Green": "Yellow"}[state]

def timeAdvance(self):
state = self.state
return {"Red": 60,

"Yellow": 3,
"Green": 57}[state]

def outputFnc(self):
state = self.state
out_map = {"Red": "show_green",

"Yellow": "show_red",
"Green": "show_yellow"}

return {self.observe: out_map[state]}

Listing 2: PythonPDEVS representation of Model 2

The pseudo-code is slightly altered to include output generation, as shown in Algorithm 2. Recall that
output is generated before the internal transition is executed, so the method invocation happens right before
the transition.
Algorithm 2 DEVS simulation pseudo-code for autonomous models with output.

time← 0
current state← initial state
last time←−initial elapsed
while not termination condition(current state, time) do

time← last time+ ta(current state)
out put(λ (current state))
current state← δint(current state)
last time← time

end while

2.3 Interruptable Model

Our current traffic light specification is still completely autonomous. While this is fine in most circumstances,
the police might want to temporarily shut down the traffic lights when they are managing traffic manually.
To allow for this, our traffic light must process external events: the event from the policeman to shutdown
and to start up again. Figure 5 shows the trace we wish to obtain. A model generating this trace is shown
in Figure 6, using a question mark to indicate event reception.

We once more require two additional elements in the DEVS specification.

1. Input Set (X =×m
i=1Xi)



Van Tendeloo and Vangheluwe

simulation time

input

simulation time

state

Green

Red

Yellow

simulation time

output

show_red

show_yellow

show_green

toManual
toAutomatic

Manual

turn_off

Figure 5: Trace of the autonomous traffic light.

!show_yellow

!show_green

!show_red

?toManual

?toManual

?toManual

Red
60s

Yellow
3s

Green
57s

Manual
∞s

?toAutomatic

e=0

Figure 6: Naive model that should
generate the trace in Figure 5 (but
doesn’t).

Similar to the output set, we need to define the events we expect to receive. This is again a definition
of the interface, such that others know which events are understood by this model.

2. External Transition (δext : Q×X → S)
Similar to the internal transition function, the external transition function is allowed to define the
new state as well. First and foremost, the external transition function is still dependent on the
current state, just like the internal transition function. The external transition function has access
to two more values: the elapsed time (making it a total state), and the input event. The elapsed
time indicates how long it has been for this atomic model since its last transition (either internal
or external). Whereas this number was implicitly known in the internal transition function (i.e.,
the value of the time advance function), here it needs to be passed explicitly. Elapsed time is a
number in the range [0, ta(s)], with s being the current state of the model. Note that it is inclusive
of both 0 and ta(s): it is possible to receive an event right after a transition happened, or right
before an internal transition happens. The combination of the current state and the elapsed time is
often called the total state (Q) of the model. We have previously seen the total state, in the context
of the initial total state. The received event is the final parameter to this function. A new state
is deterministically defined through the combination of these three parameters. Since the external
transition function takes multiple parameters, multiple external transitions might be defined for
a single state. Nonetheless, at most one transition should be applicable at all times to prevent
non-determinism.

While we now have all elements of the DEVS specification for atomic models, we are not done yet.
When we include the additional state MANUAL, we also need to send out an output message indicating
that the traffic light is off. But recall that an output function was only invoked before an internal transition,
so not before an external transition. To have an output nonetheless, we need to make sure that an internal
transition happens before we actually reach the MANUAL state. This can be done through the introduction
of an artificial intermediate state, which times out immediately, and sends out the turn off event. Instead
of going to MANUAL upon reception of the toManual event, we go to the artificial state TOMANUAL. The
time advance of this state is set to 0, since it is only an artificial state without any meaning in the domain
under study. Its output function is triggered immediately after, due to the time advance of zero, and the
turn off output is generated while transferring to MANUAL. Similarly, when we receive the toAutomatic
event, we need to go to an artificial TOAUTOMATIC state to generate the show red event. A visualization
of the corrected trace and corresponding model is shown in Figure 7 and Figure 8 respectively.



Van Tendeloo and Vangheluwe

simulation time

input

simulation time

state

Green

Red

Yellow

simulation time

output

show_red

show_yellow

show_green

toManual
toAutomatic

Manual

turn_off

ToManual

ToAuto

Figure 7: Trace of the interrupt traffic light with corrected artificial
states.

!show_yellow

!show_green

!show_red

?toManual

?toManual

?toManual

Red
60s

Yellow
3s

Green
57s

?toAutomatic

!show_red

!turn_off

Manual
∞s

To
Manual

0s

To
Automatic

0s

e=0

Figure 8: Model generating trace in
Figure 7.

We describe the model in Figure 8 as the 8-tuple defined in Model 3. Listing 3 presents the example
specification as PythonPDEVS code.

Algorithm 3 DEVS simulation pseudo-code for interruptable models.
time← 0
current state← initial state
last time←−initial elapsed
while not termination condition(current state, time) do

next time← last time+ ta(current state)
if time next event ≤ next time then

elapsed← time next event− last time
current state← δext((current state,elapsed),next event)
time← time next event

else
time← next time
out put(λ (current state))
current state← δint(current state)

end if
last time← time

end while

Algorithm 3 presents the complete semantics of an atomic model in pseudo-code. Similar to before,
we still have the same simulation loop, but now we can be interrupted externally. At each time step, we
need to determine whether an external interrupt occurs before the internal interrupt is scheduled. If that is
not the case, we simply continue like before, by executing the internal transition. If there is an external
event that must go first, we execute the external transition.

3 COUPLED DEVS MODELS

While our traffic light example is able to receive and output events, there are no other atomic models to
communicate with. To combine different atomic models together and have them communicate, we introduce



Van Tendeloo and Vangheluwe

〈X ,Y,S,qinit ,δint ,δext ,λ , ta〉
X = {toAutomatic, toManual}
Y = {show green,show yellow,show red,

turn off}
S = {GREEN,YELLOW,RED,

TOMANUAL,TOAUTOMATIC,MANUAL}
qinit = (GREEN,0.0)
δint = {GREEN→ YELLOW,

YELLOW→ RED,

RED→ GREEN,

TOMANUAL→MANUAL,

TOAUTOMATIC→ RED}
δext = {((GREEN,∗), toManual)→ TOMANUAL

((YELLOW,∗), toManual)→ TOMANUAL

((RED,∗), toManual)→ TOMANUAL

((MANUAL,∗), toAutomatic)→ TOAUTOMATIC}
λ = {GREEN→ show yellow,

YELLOW→ show red,

RED→ show green,

TOMANUAL→ turn off,

TOAUTOMATIC→ show red}
ta = {GREEN→ 57,

YELLOW→ 3,
RED→ 60,
MANUAL→+∞,

TOMANUAL→ 0,
TOAUTOMATIC→ 0}

Model 3: Interruptable DEVS model.

from pypdevs.DEVS import *
from pypdevs.infinity import INFINITY

class TrafficLight(AtomicDEVS):
def __init__(self):
AtomicDEVS.__init__(self, "Light")
self.state = "Green"
self.elapsed = 0.0
self.observe = \

self.addOutPort("observer")
self.interrupt = \

self.addInPort("interrupt")

def intTransition(self):
state = self.state
return {"Red": "Green",

"Yellow": "Red",
"ToManual": "Manual",
"ToAutomatic": "Red",
"Green": "Yellow"}[state]

def timeAdvance(self):
state = self.state
return {"Red": 60,

"Yellow": 3,
"Green": 57,
"ToManual": 0,
"ToAutomatic": 0,
"Manual": INFINITY}[state]

def outputFnc(self):
state = self.state
out_map = {"Red": "show_green",

"Yellow": "show_red",
"ToManual": "turn_off",
"ToAutomatic": "show_red",
"Green": "show_yellow"}

return {self.observe: out_map[state]}

def extTransition(self, inputs):
inp = inputs[self.interrupt]
if inp == "toManual":
return "ToManual"

elif inp == "toAutomatic":
if self.state == "Manual":
return "ToAutomatic"

Listing 3: PythonPDEVS representation of
Model 3



Van Tendeloo and Vangheluwe

coupled models. This is done in the context of our previous traffic light, which will be connected to a
policeman. The details of the traffic light are exactly like before; the details of the policeman are irrelevant
here, as long as it outputs toAutomatic and toManual events.

3.1 Basic Coupling

The first problem we encounter with coupling the traffic light and policeman together is the structure:
how do we define a set of models and their interrelations? This is the core definition of a coupled model:
it is merely a structural model that couples models together. Contrary to the atomic models, there is no
behaviour associated to a coupled model. Behaviour is the responsibility of atomic models, and structure
that of coupled models.

To define the basic structure, we need three elements.

1. Model instances (D)
The set of model instances defines which models are included within this coupled model.

2. Model specifications ({Mi}= {〈Xi,Yi,Si,qinit,i,δint,i,δext,i,λi, tai〉|i ∈ D})
Apart from defining the different instances of submodels, we must include the atomic model
specification of these models. For each element defined in D, we include the 8-tuple specifying
the atomic model. By definition, a submodel of the coupled DEVS model always needs to be an
atomic model. This can be relaxed to include coupled DEVS models as well, as shown by (Zeigler,
Praehofer, and Kim 2000).

3. Model influencees ({Ii}= {2D})
Apart from defining the model instances and their specifications, we need to define the connections
between them. Connections are defined through the use of influencee sets: for each atomic model
instance, we define the set of models influenced by that model. There are some limitations on
couplings, to disallow inconsistent models:
•A model should not influence itself (∀i ∈ D : i /∈ Ii)
While there is no significant problem with this in itself, it would cause the model to trigger
both its internal and external transition simultaneously. As it is undefined which one should
go first, this situation is not allowed. In other words, a model should not be an element in its
own set of influencees.
•Only links within the coupled model are allowed (∀i ∈ D : Ii ⊆ D)
This is another way of saying that connections should respect modularity.

Note that there is no explicit constraint on algebraic loops (i.e., a loop of models that have a
time advance equal to zero, preventing the progression of simulated time). If this situation is not
resolved, it is possible for simulation to get stuck at that specific point in time. The situation is only
problematic if the circular dependency never gets resolved, causing a livelock of the simulation.

A coupled model can thus be defined as a 3-tuple: 〈D,{Mi},{Ii}〉.

3.2 Input and Output

Our coupled model now couples two atomic models together. But while it is now possible for the policeman
to pass the event to the traffic light, we again lost the ability to send out the state of the traffic light. The
events can’t reach outside of the current coupled model. Therefore, we augment the coupled model with
input and output events (Xself and Yself, respectively), serving as the interface to the coupled model. A
coupled model can thus be defined as a 5-tuple: 〈Xself,Yself,D,{Mi},{Ii}〉.

The constraints on the couplings need to be relaxed to accomodate for the new capabilities of the
coupled model: a model can be influenced by the input events of the coupled model, and likewise the
models can also influence the output events of the coupled model. The previously defined constraints over
the influencees are relaxed from D to D∪{self}, to allow for connections to and from the coupled model.



Van Tendeloo and Vangheluwe

3.3 Tie-breaking

Recall that DEVS is considered a formal and precise formalism. But while all components are precisely
defined, their interplay is not completely defined yet: what happens when the traffic light changes its state
at exactly the same time as the policeman performs its transition? Would the traffic light switch on to the
next state first and then process the policeman’s interrupt, or would it directly respond to the interrupt,
ignoring the internal event? While it is a minimal difference in this case, the state reached after the timeout
might respond significantly different to the incoming event.

DEVS solves this problem by defining a tie-breaking function (select : 2D→D). This function takes
all conflicting models and returns the one that gets priority over the others. After the execution of that
internal transition, and possibly the external transitions that it caused elsewhere, it might be that the set
of imminent models has changed. If multiple models are still imminent, we repeat the above procedure
(potentially invoking the select function again with the new set of imminent models).

This new addition changes the coupled model to a 6-tuple: 〈Xsel f ,Ysel f ,D,{Mi},{Ii},select〉

3.4 Translation Functions

Finally, in this case we had full control over both atomic models that are combined. We might not always
be that lucky, as it is possible to reuse atomic models defined elsewhere. Depending on the application
domain of the reused models, they might work with different events. For example, if our policeman and
traffic light were both predefined, with the policeman using go to work and take break and the traffic light
listening to toAutomatic and toManual, it would be impossible to directly couple them together. While it is
possible to define wrapper blocks (i.e., artificial atomic models that take an event as input and, with time
advance zero, output the translated version), DEVS provides a more elegant solution to this problem.

Connections are augmented with a translation function (Zi, j), specifying how the event that enters
the connection is translated before it is handed over to the endpoint of the connection. The function thus
maps output events to input events, potentially modifying their content.

Zself, j : Xself→ X j ∀ j ∈ D
Zi,self : Yi→ Yself ∀i ∈ D
Zi, j : Yi→ X j ∀i, j ∈ D

These translation functions are defined for each connection, including those between the coupled model’s
input and output events: {Zi, j|i∈D∪{self}, j ∈ Ii}. The translation function is implicitly assumed to be the
identity function if it is not defined. In case an event needs to traverse multiple connections, all translation
functions are chained in order of traversal.

With the addition of this final element, we define a coupled model as a 7-tuple. We describe the model
as the 7-tuple defined in Model 4. Listing 4 presents the example specification as PythonPDEVS code.
In PythonPDEVS, the translation function is an optional third parameter of the connectPorts method.
By default, the identity function is used.

4 APPLICATION TO QUEUEING SYSTEMS

The usefulness of DEVS of course goes further than traffic lights. We briefly present a simple queueing
problem and describe results obtained through DEVS modeling and simulation. Due to space restrictions,
the used models and an elaborate explanation on their specification can be found online at https://msdl.
uantwerpen.be/documentation/PythonPDEVS/queueing.html.

4.1 Problem Description

In this example we model the behaviour of a simple queue that gets served by multiple processors.
Implementations of this queueing systems are widespread, such as for example at airport security. Our
model is parameterizable in several ways: we can define the random distribution used for event generation

https://msdl.uantwerpen.be/documentation/PythonPDEVS/queueing.html
https://msdl.uantwerpen.be/documentation/PythonPDEVS/queueing.html


Van Tendeloo and Vangheluwe

〈Xself,Yself,D,{Mi},{Ii},{Zi, j},select〉

Xself ={}
Yself ={}

D ={light,police}
Mlight =〈...〉

Mpolice =〈...〉
Ilight ={}

Ipolice ={light}
∀i, j ∈{police, light,self} : Zi, j = id

select = {{police, light}→ police,

{police}→ police,

{light}→ light}

Model 4: Coupled DEVS model of the system.
Atomic DEVS models not shown for brevity.

from pypdevs.DEVS import *

from trafficlight import TrafficLight
from policeman import Policeman

class TrafficLightSystem(CoupledDEVS):
def __init__(self):
CoupledDEVS.__init__(self, "system")
self.light = \

self.addSubModel(TrafficLight())
self.police = \

self.addSubModel(Policeman())
self.connectPorts(self.police.out,

self.light.interrupt)

def select(self, imm):
if self.police in imm:

return self.police
else:

return self.light

Listing 4: PythonPDEVS representation of
Model 4

times and event size, the number of processors, performance of each individual processor, and the scheduling
policy of the queue when selecting a processor. Clearly, it is easier to simulate this with DEVS than it is to
model mathematically. For our performance analysis, we show the influence of the number of processors
(e.g., metal detectors) on the average and maximal queueing time of jobs (e.g., travellers).

Events (people) are generated by a generator using some distribution function. They enter the queue,
which decides the processor that they will be sent to. The queue works First-In-First-Out (FIFO) in case
multiple events are queueing. For a processor to signal that it is available, it needs to signal the queue.
The queue keeps track of available processors. When an event arrives at a processor, it is processed for
some time, depending on the size of the event and the performance characteristics of the processor. After
processing, the processor signals the queue and sends out the event that was being processed.

4.2 Performance Analysis

We now run the simulation with the models defined online at https://msdl.uantwerpen.be/documentation/
PythonPDEVS/queueing.html. By executing the experiment, a CSV file is generated, which can be analyzed.
Depending on the data stored during simulation, analysis can show the average queueing times, maximal
queueing times, number of events, processor utilization, and so on.

Corresponding to our initial goal, we perform the simulation in order to find out the influence of
opening multiple processors on the average and maximum queueing time. Figure 9 shows the evolution of
the waiting time for subsequent clients. Figure 10 shows the same results, drawn using boxplots. These
results indicate that while two processors are able to handle the load, maximum waiting time is rather high:
a median of 300 seconds and a maximum of around 600 seconds. When a single additional processor is
added, average waiting time decreases significantly, and the maximum waiting time also becomes tolerable:
the average job is served immediately, with 75% of jobs being handled within 25 seconds. Further adding
processors still has a positive effect on queueing times, but the effect might not warrant the increased cost
in opening processors: apart from some exceptions, all customers are processed immediately starting from
four processors. Ideally, a cost function would be defined to quantize the value (or dissatisfaction) of waiting
jobs, and compare this to the cost of adding additional processors. We can then optimize that cost function
to find out the ideal balance between paying more for additional processors and losing money due to long

https://msdl.uantwerpen.be/documentation/PythonPDEVS/queueing.html
https://msdl.uantwerpen.be/documentation/PythonPDEVS/queueing.html


Van Tendeloo and Vangheluwe

 0

 50

 100

 150

 200

 250

 300

S
e

c
o

n
d

s

Queueing times

Processors
2 3 4 5

Figure 9: Evolution of queueing times for subse-
quent customers.

 0

 100

 200

 300

 400

 500

 600

 700

2 3 4 5

S
e

c
o

n
d

s

Processors

Queueing times

Figure 10: Boxplot of queueing times for varying
number of active processors.

job processing times. The ideal balance depends on several factors, including our model configuration and
the cost function used, though these considerations are outside the scope of DEVS.

5 FURTHER READING

As this is only an introductory tutorial, we present further reading in more advanced directions. We consider
three directions of interest: DEVS theory, DEVS variants, and DEVS tools.

5.1 Theory

Our introduction to DEVS has been example-driven and in a bottom-up fashion. This forced us to drop
some important theoretical concepts, which have no practical use to users of DEVS.

We did not go into the exact semantics of a Coupled DEVS model, apart from an intuitive explanation
of its meaning as a hierarchical model. This brings us to the closure under coupling property of DEVS,
which states that any coupled model can be rewritten as an equivalent atomic model. As the semantics
of an atomic model is known, this provides denotational semantics to coupled models. The full closure
under coupling proof, also called “flattening”, can be found in the original specification of DEVS (Zeigler,
Praehofer, and Kim 2000). An efficient algorithm for symbolic flattening of models is presented by (Chen
and Vangheluwe 2010). Another way of defining the semantics is the operational approach: providing
similar pseudo-code for a coupled DEVS simulator, as we did for atomic models. This is called the abstract
simulator, and can also be found in the original specification of DEVS (Zeigler, Praehofer, and Kim 2000).

These algorithms are only focused on specifying the behaviour, and not so much on performance. A
performance-oriented view can be found in (Nutaro 2010) and in (Muzy and Nutaro 2005). Additionally,
an example-driven introduction to DEVS and its abstract simulator is given in (Wainer 2009).

Another aspect that we ignored, is the standardization of DEVS: due to the sheer amount of imple-
mentations, simulators ideally need to interact with one another. At least, models should be exchangable
between them. This is not the case, however, as standardization is still ongoing. More information on
standardization, and the problems encountered with it, can be found in (Sarjoughian and Chen 2011).

Related to this is the problem of compliance: all DEVS simulators might have different features and
model representation, though they should still comply to the formal specification introduced here. It has
been shown that compliance is often not the core concern for several tools (Li, Vangheluwe, Lei, Song,
and Wang 2011; Van Tendeloo and Vangheluwe 2017), resulting in many non-compliant implementations.

While we presented DEVS in the context of performance analysis and queuing simulation, DEVS is
often used in other domains as well because of its genericity. It has been shown that DEVS can serve as
a simulation assembly language, onto which other languages can be mapped (Vangheluwe 2000).



Van Tendeloo and Vangheluwe

5.2 Variants

As the DEVS formalism is rather verbose and doesn’t offer many of the features that one would expect
nowadays, many variants have been created for specific problems. We provide pointers for some of them.

Parallel DEVS is probably the most popular variant, and is, in many tools, considered to be a replacement
for the Classic DEVS formalism. It is mostly the same conceptually, though it allows for internal transitions
to happen in parallel, thus removing the need for the (admittedly artificial) select function. This requires
the addition of bags of events and a new confluent transition function. A description of Parallel DEVS can
be found in (Chow and Zeigler 1994).

Dynamic Structure DEVS is a dynamic structure extension to the DEVS formalism. It allows to change
the structure of models during simulation, such as adding or removing new atomic or coupled models,
and adding or removing links between different models. While this can also be modeled in DEVS by
manually expanding the set of allowed configurations, Dynamic Structure DEVS allows for simulator
support, significantly increasing performance and ease-of-use. A description of Dynamic Structure DEVS
can be found in (Barros 1995), and the abstract simulator in (Barros 1998). Variants of Dynamic Structure
DEVS have also been created for Parallel DEVS (Barros 1997), and with different ways of representing
the dynamicity (Uhrmacher 2001).

Cell-DEVS is another variant of the DEVS formalism, which merges Cellular Automata with DEVS.
Model specification is similar to Cellular Automata models, but the underlying formalism used for simulation
is DEVS. This allows the continuous time base of DEVS to be used for Cellular Automata models. A
variant for Parallel DEVS exists as well (Troccoli and Wainer 2003).

Many other variants exist, each with their own focus. Examples are the addition of model analyzabil-
ity (Hwang 2005) and the addition of non-determinism (Kwon, Park, Jung, and Kim 1996).

5.3 Tools

Our introduction to DEVS has made use of PythonPDEVS (Van Tendeloo and Vangheluwe 2016), which is
an efficiency-oriented (Van Tendeloo and Vangheluwe 2014b), distributed (Van Tendeloo and Vangheluwe
2015), and activity-aware (Van Tendeloo and Vangheluwe 2014a) DEVS simulator. Nonetheless, all concepts
introduced in this tutorial are equally applicable to other DEVS simulation tools as well.

ADEVS (Nutaro 2015) is a minimalistic, though highly efficient, C++ implementation of the Parallel
DEVS formalism. DEVS-Suite (Kim, Sarjoughian, and Elamvazhuthi 2009) is a full modeling and simulation
environment implemented in Java, with a visual simulation interface. VLE (Quesnel, Duboz, Ramat, and
Traoré 2007) is a full modeling and simulation environment implemented in C++, with a visual modeling
interface. PowerDEVS (Bergero and Kofman 2011) is a highly efficient C++ implementation of the DEVS
formalism, combined with a modeling and simulation environment. X-S-Y (Hwang 2012) is another Python
implementation, which implements the FD-DEVS formalism. DEVSimPy (Capocchi, Santucci, Poggi, and
Nicolai 2011) is a modeling and simulation tool which relies on PythonPDEVS as its simulation kernel.
A Parallel DEVS debugging extension (Van Mierlo, Van Tendeloo, and Vangheluwe 2017) allows for
fine-grained debugging, based on the PythonPDEVS simulation kernel. DesignDEVS (Goldstein, Breslav,
and Khan 2016) is an intuitive DEVS simulator. DEVS-Ruby (Franceschini, Bisgambiglia, Bisgambiglia,
and Hill 2014) is another DEVS simulator written in Ruby.

Several comparisons are made between different tools, such as a comparison of their interface, features
and performance (Van Tendeloo and Vangheluwe 2017), and an in-depth comparison of performance (Risco-
Martı́n, Mittal, Fabero Jiménez, Zapater, and Hermida Correa ).

6 SUMMARY

In this tutorial, we briefly presented the core ideas behind DEVS, a popular formalism for the modelling
of complex dynamic systems using a discrete-event abstraction. DEVS is primarily used for the simulation
of queueing networks, of which an example was given. It is most applicable for the modelling of discrete



Van Tendeloo and Vangheluwe

event systems with component-based modularity. It can, however, be used much more generally as a
simulation assembly language, or as a theoretical foundation for these formalisms. Further reading on
DEVS is provided with additional details on the theoretical aspects, a list of variations, and several tool
implementations.

Acknowledgement

This work was partly funded with a PhD fellowship grant from the Research Foundation - Flanders (FWO),
and partially supported by Flanders Make vzw, the strategic research centre for the manufacturing industry.

REFERENCES

Barros, F. J. 1995. “Dynamic structure discrete event system specification: a new formalism for dynamic
structure modeling and simulation”. In Proceedings of the Winter Simulation Conference, edited by
C. Alexopoulos, K. Kang, W. R. Lilegdon, and D. Goldsman, 781–785: Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Barros, F. J. 1997. “Modeling formalisms for dynamic structure systems”. ACM Transactions on Modeling
and Computer Simulation 7:501–515.

Barros, F. J. 1998. “Abstract simulators for the DSDE formalism”. In Proceedings of the 1998 Winter
simulation Conference, edited by D. J. Medeiros, E. F. Watson, J. S. Carson, and M. S. Manivannan,
407–412: Piscataway, New Jersey: Institute of Electrical and Electronics Engineers, Inc.

Bergero, F., and E. Kofman. 2011. “PowerDEVS: a tool for hybrid system modeling and real-time simulation”.
Simulation 87:113–132.

Capocchi, L., J. F. Santucci, B. Poggi, and C. Nicolai. 2011. “DEVSimPy: A Collaborative Python Software
for Modeling and Simulation of DEVS Systems”. In Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises, 170–175.

Chen, B., and H. Vangheluwe. 2010. “Symbolic flattening of DEVS models”. In Proceedings of the 2010
Summer Simulation Multiconference, 209–218.

Chow, A. C. H., and B. P. Zeigler. 1994. “Parallel DEVS: a parallel, hierarchical, modular, modeling
formalism”. In Proceedings of the 1994 Winter Simulation Conference, edited by J. D. Tew, S. Mani-
vannan, D. A. Sadowski, and A. F. Seila, 716–722: Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc.

Franceschini, R., P.-A. Bisgambiglia, P. Bisgambiglia, and D. Hill. 2014. “DEVS-Ruby: a domain specific
language for DEVS modeling and simulation (WIP)”. In Proceedings of the Symposium on Theory of
Modeling & Simulation - DEVS, 103–108.

Goldstein, R., S. Breslav, and A. Khan. 2016. “DesignDEVS: reinforcing theoretical principles in a practical
and lightweight simulation environment”. In Proceedings of the 2016 Spring Simulation Multiconference,
2:1–2:8.

Hwang, M.-H. 2005. “Generating finite-state global behavior of reconfigurable automation systems: DEVS
approach”. In Proceedings of the International Conference on Automation Science and Engineering,
254 – 260.

Moon Ho Hwang 2012. “X-S-Y”. https://code.google.com/p/x-s-y/.
Kim, S., H. S. Sarjoughian, and V. Elamvazhuthi. 2009. “DEVS-Suite: a simulator supporting visual

experimentation design and behavior monitoring”. In Proceedings of the 2009 Spring Simulation
Multiconference, 161:1–161:7.

Kwon, Y. W., H. C. Park, S. H. Jung, and T. G. Kim. 1996. “Fuzzy-DEVS formalism: concepts, realization
and application”. In Proceedings of AI, Simulation and Planning in High Autonomy Systems, 227 –
234.

Li, X., H. Vangheluwe, Y. Lei, H. Song, and W. Wang. 2011. “A testing framework for DEVS formalism
implementations”. In Proceedings of the 2011 Spring Simulation Multiconference, 183–188.

https://code.google.com/p/x-s-y/


Van Tendeloo and Vangheluwe

Muzy, A., and J. J. Nutaro. 2005. “Algorithms for efficient implementations of the DEVS & DSDEVS
abstract simulators”. In 1st Open International Conference on Modeling and Simulation, 273–279.

Nutaro, J. J. 2010. Building Software for Simulation: Theory and Algorithms, with Applications in C++.
1st ed. Wiley.

Nutaro, James J. 2015. “adevs”. http://www.ornl.gov/∼1qn/adevs/.
Quesnel, G., R. Duboz, E. Ramat, and M. K. Traoré. 2007. “VLE: a multimodeling and simulation

environment”. In Proceedings of the 2007 Summer Simulation Multiconference, 367–374.
Risco-Martı́n, J. L., S. Mittal, J. C. Fabero Jiménez, M. Zapater, and R. Hermida Correa. “Reconsidering

the performance of DEVS modeling and simulation environment using the DEVStone benchmark”.
SIMULATION.

Sarjoughian, H. S., and Y. Chen. 2011. “Standardizing DEVS models: an endogenous standpoint”. In
Proceedings of the 2011 Spring Simulation Multiconference, 266–273.

Troccoli, A., and G. Wainer. 2003. “Implementing Parallel Cell-DEVS”. In Proceedings of the 2003 Spring
Simulation Symposium, 273–280.

Uhrmacher, A. M. 2001. “Dynamic structures in modeling and simulation: a reflective approach”. ACM
Transactions on Modeling and Computer Simulation 11:206–232.

Van Mierlo, S., Y. Van Tendeloo, and H. Vangheluwe. 2017. “Debugging Parallel DEVS”. SIMULA-
TION 93(4):285–306.

Van Tendeloo, Y., and H. Vangheluwe. 2014a. “Activity in PythonPDEVS”. In Proceedings of ACTIMS
2014, 2:1–2:10.

Van Tendeloo, Y., and H. Vangheluwe. 2014b. “The Modular Architecture of the Python(P)DEVS Simulation
Kernel”. In Proceedings of the Symposium on Theory of Modeling & Simulation - DEVS, 97–102.

Van Tendeloo, Y., and H. Vangheluwe. 2015. “PythonPDEVS: a distributed Parallel DEVS simulator”. In
Proceedings of the 2015 Spring Simulation Multiconference, 844–851.

Van Tendeloo, Y., and H. Vangheluwe. 2016. “An Overview of PythonPDEVS”. In JDF 2016 – Les Journées
DEVS Francophones – Théorie et Applications, edited by C. W. RED, 59–66.

Van Tendeloo, Y., and H. Vangheluwe. 2017. “An evaluation of DEVS simulation tools”. SIMULA-
TION 93(2):103–121.

Vangheluwe, H. 2000. “DEVS as a common denominator for multi-formalism hybrid systems modelling”.
In IEEE International Symposium on Computer-Aided Control System Design, 129–134.

Wainer, G. A. 2009. Discrete-Event Modeling and Simulation: A Practitioner’s Approach. 1st ed. CRC
Press.

Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of Modeling and Simulation. 2nd ed. Academic
Press.

Author Biographies

YENTL VAN TENDELOO is a PhD student at the University of Antwerp (Belgium). He is a member of
the Modelling, Simulation and Design (MSDL) research lab. In his Master’s thesis, he worked on MDSL’s
PythonPDEVS simulator, a simulator for Classic DEVS, Parallel DEVS, and Dynamic Structure DEVS.
The topic of his PhD is the conceptualization and development of a new meta-modelling framework and
model management system called the Modelverse. His e-mail address is Yentl.VanTendeloo@uantwerpen.be.

HANS VANGHELUWE is a Professor at the University of Antwerp (Belgium), an Adjunct Professor at
McGill University (Canada) and an Adjunct Professor at the National University of Defense Technology
(NUDT) in Changsha, China. He heads the Modelling, Simulation and Design (MSDL) research lab.
He has a long-standing interest in the DEVS formalism and is a contributer to the DEVS community of
fundamental and technical research results. His e-mail address is Hans.Vangheluwe@uantwerpen.be.

http://www.ornl.gov/~1qn/adevs/
Yentl.VanTendeloo@uantwerpen.be
Hans.Vangheluwe@uantwerpen.be

	Introduction
	Atomic DEVS models
	Autonomous Model
	Autonomous Model With Output
	Interruptable Model

	Coupled DEVS models
	Basic Coupling
	Input and Output
	Tie-breaking
	Translation Functions

	Application to Queueing Systems
	Problem Description
	Performance Analysis

	Further reading
	Theory
	Variants
	Tools

	Summary

